Neural data analysis

Mackenzie Mathis, PhD




M detection and localization

individual identification

posture estimation

From genes to behavior through the lens
of systems neuroscience

Mty

”At this level of analysis, neuroscientists
study how different neural circuits analyze
sensory information, form perceptions of the
external world, make decisions, and execute
movements.”

DeepMind
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Environment

Tuia et al. 2022

Behavior

Brain

Allen Institute

system (circuits)

Neurons (& glia)

Brainbow (Litchman Lab)

Synapses

NetPyNE

Genes & molecules,
proteins

AlphaFold (DeepMind)

How can we study this?

N

video recordings, EMGs

functional imaging
(2P, 1P, fMRI, EEG)

multi-modal ML models

computer vision & RL

network neuroscience

RNNs, transformers

GLMs, latent variable models

pharmacology,
patch clamping

RNAseq, proteomics

Hodgkin-Huxley
LIF (NEURON, nengo, etc)

ODEs, LIF

AlphaFold,
gene-regulatory networks

Experimentally-derived data

Data-driven &
Theory-driven models
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AGENT: BIOLOGICAL CNS

Modeling adaptive behavior

ENVIRONMENT

AGENT: MODEL CNS

(

Vision

Proprioception
Touch

Motor

@ motion capture

e constrain model b

5
Sensory:

Proprioception
Touch
Vision

Motor
High-level
controllers

Motor
Low-level
controller

Hausmann et al. Current Opinion in Neurobiology 2021
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Data driven
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modeling

Record from neural data
during a behavioral task

attract similar
samples

repel dissimilar
samples

Joint models that describe
neural variance & representations

Task-driven modelling

} Constrain ANN based on
behavioral task to test
hypotheses about a system

Sandbrink et al. 2023 eLife
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A. Mathis Lab (Marin Vargas et al. in press Cell)

NN models that describe
neural variance & computationally
constrain system



[=

PrL

Doubling Time: 6.3 £ 0.2 years (n=92)

=N

o

o

o
|

500

100—:

Simultaneously Recorded Neurons
()]
o
|

I | I | | I | I | I

| | |
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Publication Date

= Stevenson and Kording (2011), updated in 2022

We are now able to
record thousands of
neurons
simultaneously


http://www.nature.com/neuro/journal/v14/n2/full/nn.2731.html

Keypoint tracking with DeepLabCut

CalmAn: CNN based feature extraction + deconvolution

Large-scale behavioral & neural
mm) recordings call for new methods to
link neural dynamics and behavior



What information is our brain trying to encode & decode?

Stimulus Spikes
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* How do neurons (K) respond to a certain stimulus (x)?
 Our brain needs to determine what is going on in the

real world from patterns of spikes.

«  We mathematically model this as P(K|x), where the neural response of population K to a
stimulus (or event) x.

« K is a vector representing the activity of N neurons, and each entry represents, e.g., the
number of spikes in some time bin or the rate response of that particular neuron.



=PrlL What information is our brain trying to encode & decode?

Stimulus
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« Qur brain needs to
determine what is
going on in the real
world from patterns of
spikes.
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cPrL What information is our brain trying to encode?

Stimulus Spikes

- $ -

- Pixels on a screen (Pillow et al. 2008)
- Events, like behavior: moving through an environment with arm or body
- other neurons!

10



EPFL :

When recording from just 20 neurons, there are over
one million possible instantaneous ON/OFF patterns of
spiking (22°) for a small time bin; this number grows to

one billion for 30 neurons (239)

\ 4

In reality, this is much smaller due to neural
connectivity constrains, but estimating all pattern
frequencies reliably from typical recordings is
impossible even for small populations!

$

behavioral monitoring

Fully observed statistical models are tools that
allow us to approximate the firing distribution with
reasonable constraints ...

neural recordings in vivo Adapted from C. Hurwitz 2021 Current Opinion Neuro
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Computational methods for mapping (K) neural activity to a certain stimulus (x)

Table 1

Fully observed models: A table (adapted from the study by O’Donnell et al. [50]) characterizing model properties and limitations. Here, N
is the number of neurons and D is the number of coefficients per interaction term, such as filter sizes for GLM or number of parameters

for parametric copula families. Sampling is possible from all of these models.

Model References Number of parameters Closed-form pattern probabilities? Fit for large N?
Dichotomized Amari et al. [2] ~NP No Yes
Gaussian Macke et al. [42]
Pairwise Schneidman et al. [79] ~NP No? Difficult
MaxEnt Shlens et al. [82]
Tractable Tkacik et al. [87] ~NP Yes® Yes
MaxEnt Gardella et al. [24]

O’Donnell et al. [50]
GLM Pillow et al. [60] ~DN? No Difficult
Vine Aas et al. [1] ~DNP Yes Yes
Copula Onken and Panzeri [53]

& For a more detailed comparison of MaxEnt models, see Table 1 in Ref. [77].

- Adapted from C. Hurwitz 2021 Current Opinion Neuro
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Input dimensions

Generalized Linear Models
X
.

GLMs

scalar output, y
time

—
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EPFL 1
Generalized Linear Models: many variants!

Model Name Likelihood Nonlinearity Output type
| i Linear regression Gaussian A : identity real values
1 (y — 1) —0'
Ply) = 2mo? R K %
‘ { Poisson GLM Poisson @ exponential discrete counts
Y —\
P(y) = ex;( ) A = exp (HTx) 0,1,2,3...
73
‘ { Logistic regression Bernoulli ‘ |OgiStiC binary
P(y) =p¥(1 —p)l_y p=f (OTX) 0,1

Adapted from Dr. Cristina Savin
and neuromatch academy
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Logistic regression

Behaviour
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The model assumes the preceding
behavior causes the spike Temporal filter
(“receptive field” of the model)

A Left <
W | ! \ . Right —
: i Om 1.6m

Data: Grosmark et al. 2016 Scienci
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Poisson GLM

e A

y!

- Stochastic Output:
Nonlinearity spiking  discrete spikes

o Plys=y) =

* In the model, each neuron’s input is described by a set of linear filters:
e astimulus filter, or spatial receptive field (O)

Pt = exp Zgi Xt—i
{

image adapted from JW Pillow et al. Nature, 1-5 (2008) doi:10.1038/nature07140

16
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Details: Poisson GLM

Poisson Distribution: Single Event

*Probability of events y; at time t

Formula: -
Ne

y!

*A: rate parameter (average number of events)
+y!: factorial of y (number of events)

Link Function and Predictors
* A linked to predictors x;
 Formula:

A = exp(6 z,)

& : model parameters ( as a vector)
* X, : predictors vector

Likelihood: All Data Points
«Joint probability as the product of individual probabilities

Formula Py, : T) = H P(y:)

*Assumes independence between data points

‘ Simplify!!

Log Likelihood

log £ = Zlog P(yt)
t

17
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Details: fitting the Poisson GLM

Fit the model to find parameters that
maximize the log-likelihood:

0™ = argmax, log L(0)

J(6)
Since the space is concave (a nice feature), in
practice, we invert it so we can use gradient \
descent \
X \ Minimum
x}\ l
g

\ 4

Images from: https://machinelearningspace.com/a-
] comprehensive-guide-to-gradient-descent-algorithm/
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Poisson GLM

_ Stochastic Output:
Nonlinearity spiking  discrete spikes

o- |

spike filter
) “VC:'\"" - | * In the model, each neuron’s input is described by a set
Neuron 1 of linear filters:
Coupling % » astimulus filter, or spatio-temporal receptive field;
filters * a post-spike filter, which captures dependencies on
‘ spike-train history (for example, refractoriness,
| burstiness and adaptation);
Q o ' | | * aset of coupling filters, which capture
| dependencies on the recent spiking of other cells
Neuron 2 )

= JW Pillow et al. Nature, 1-5 (2008) doi:10.1038/nature07140
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Stimulus
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Coupling

Post- sptke filter

filters

+

=

> ||

)

This model allows for accounting for
“other” neurons activity patterns



=PrL Experimental set up: the retina ganglion cell

A
g
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surround
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= Purves, Figure 11.21

In Pillow et al 2008, they stimulate
RGCs with white noise:

ON mosaic OFF mosaic

OOO%O ) %%é

120 pm
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=PrL GLMs in action: Pillow et al. 2008

— Retinaldata 6013 ON-ON
—— Full model @30
- Uncoupled @ 0 1

c PSTH prediction d Spike prediction
—- (% variance) (bits per spike)
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GLMs in action: Pillow et al. 2008

a
ﬂ,” p(s|r) | ”H ”IH "H
p(s) \
Encoding Bayesian
p(rls) model decoding
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Linear decoding

Uncoupled model

#l Poisson model
Full model

-

——

Bayesian decoding

GLMs with coupling filters were
shown to capture 40% more visual
information from the retina than
optimal linear decoding, indicating that
GLMs can model additional details in the
activity that are relevant for representing
the stimulus!



Keypoint tracking with DeepLabCut

CalmAn: CNN based feature extraction + deconvolution

Large-scale behavioral & neural
mm) recordings call for new methods to
link neural dynamics and behavior

24
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Summary, part 1

* Neural encoding and neural decoding are fundamental descriptions of neural (coding)
processing and data analysis.

« Afundamental goal is: how much information does K have about x

« We mathematically model this as P(K|x), where the neural response of population K to a
stimulus (or event) x. K is a vector representing the activity of N neurons, and each entry
represents, e.g., the number of spikes in some time bin or the rate response of that
particular neuron.

 Generalized Linear Models (GLMs) are very attractive for both individual neurons and
populations, yet assume linear 8 dynamics (careful: despite having a nonlinear
parameter).
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From GLMs to more powerful models ...

In P-GLMs, external inputs, inputs from other neurons, and each neuron’s
spiking history are weighted, summed up, and transformed by a rate
function, which drives a stochastic process to model spiking activity.

For typical rate functions, fitting P-GLMs is a convex optimization problem
that can be solved efficiently

Despite their flexibility, GLMs cannot model networks with neurons
that perform non-linear integration of multiple external inputs....
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Mapping behavioral actions to (nonlinear) neural computations

CalmAn: CNN based feature extraction + deconvolution Keypoint tracking with DeeplLabCut

- Mathis Lab Data



EPFL 2
Manifolds (embeddings) for measuring neural trajectories

Neural manifold Behavioral manifold
of interest (NMOI) of interest (BMOI)
; | corr
Neuron 3 OO((e\a“ona °sSp Ono'en Variable 3
}» Neuron 2 488 )— Variable 2
Neuron 1 “ | Variable 1

Mehrdad Jazayeri and Arash Afraz Neuron 2017



=PFL  Population analysis can reveal core

principles of neural coding

1
Urai et al Nat Neurosci 2022 b
c ;
z \~~_\\ S ) /‘)
© Nl o
- A
o \ —~—
E ¢ \ "j-_\\i
i \ ) PC3

N PC2
.~ ‘\‘(_ 1
®

Behaviorally relevant neural
variance within a small
number of dimensions

Neural computations at population
dynamics but not in
single-neuron firing rates

Intrinsic attractor manifold
and population dynamics of 2
a canonical cognitive circuit

across waking and sleep

Intrinsic

Chaudhuri, R. et al. Nat Neurosci 2019 Dimension

Inspired by Jazayeri & Ostojic
Current Opinion Neurobio 2021

|
See also: Mante et al Nature (2013), Churchland et al Nature (2012), Sadtler et al Nature (2014), Elsayed & Cunningham Nat Neurosci (2017)



EPFL
Manifolds for measuring

Linear (PCA) methods for

neural trajectories measuring neural trajectories
Neural manifold Behavioral manifold
of interest (NMOI) of interest (BMOI)
. PC3
Neuron 3 Ooﬁe\at\ona corr eSpOn de/-)oe Variable 3
Neuron 2 A Variable 2
Neuron 1 \‘. Variable 1 %
) <

Mehrdad Jazayeri and Arash Afraz Neuron 2017

30
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Linear (PCA) methods for
measuring neural trajectories

A *
PC3 |
30 - _
PCA estimate
c
/?O:L > 20 -
C
&)
< £
S 10 -
\ """" True dimension

Altan E, Solla SA, Miller LE, Perreault
EJ. PLoS Comput Biol. 2021

31
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Statistical models for capturing the statistical structure

of large-scale neural populations

Dynamics

Model Trajectories Mapping Function A Observation Single-trial”
PCA/FA [68] Static Linear Gaussian No
dPCA [100] Static Linear Gaussian No
jPCA [13] Linear” Linear Gaussian No
LDS [84] Linear Linear Gaussian Yes
PLDS [43] Linear Linear Poisson Yes
PSID [75] Linear Linear Gaussian® Yes
PfLDS [23] Linear Neural Network Poisson Yes
SLDS [56] Switching Linear Linear Gaussian Yes
RSLDS [41,97] Recurrent Switching Linear Linear Gaussian Yes
PLRNN-SSM [101] Piecewise-linear RNN Linear Gaussian Yes
LFADS [55] RNN Linear Poisson Yes
GP-RNN [80] RNN GP Poisson/Gaussian Yes
GPFA [11] GP Linear Gaussian Yes
GPFADS [72] GP* Linear Gaussian Yes
VLGP [95] GP Linear Poisson® Yes
P-GPLVM [93] GP GP Poisson Yes

piVAE GIN Flow Non-linear Poisson Yes

N Mapping back to spikes

Adapted from C. Hurwitz 2021 Current Opinion Neuro

32
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Nonlinear embeddings via linear dynamical system (LDS)

Dynamics of n neurons are modulated by LDS fLDS: exchange observation model
w/ m-dim latent state (z) that evolves: such that each neuron as a separate
nonlinear dep. on latent variable:

Z'rl i N(/.Ll, Ql) A = linear dynamics matrix (m x m)
Q1 = covariance of initial states

er(t+1) ‘er-t ~/ N(Azrt, Q)j Q = Gaussian noise

Observation model:

Trti|Zre ~ P (Arei = [f(2Zr1)]4) - Trti|Zrt ~ Px (Arti = [ fo(2Zrt)]i)

where [f(z,¢)]; is the i*" element of a deterministic “rate” function f(z,¢) : R™ — R”™, and Py (\)
is a noise model with parameter A.

(a)Reaching trajectory  (b) PLDS (c) PfLDS

Linear dvnamical neural population models through
nonlinear embeddings

W (an” | Wonm Nowbr | | Prsk) , . I* 1 oo
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=PrL Better nonlinear embeddings by conditioning on the latent space

Label-based variational
auto encoder — piVAE: Zhou & Wei NeurlPS 2020

P(Z]|y) P(X|Z2) prAE outperformed:
LFADS (Pandarinath 2019)
- dPCA (Kobak 2016)
- PCA
- pfLDS (Gao 2016)
label latent observation
Ground truth latents piVAE wi/test labels piVAE w/o labels VAE Limitations:

- No identifiably guarantee*

- Restrictive assumptions on
the generative model
(Poisson)

*Not consistent across animals,
cannot combine across datasets/can’t
separate the latents
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Latent (hidden) underlying Observable neural data

brain-state factors (z)

X = (X1 X -...Xp)

N
I
~
N
=
N
N
N
S
<~
neurons
4_»

time

N
v
X

Mixing function

™ ldentifiable: “the sources can be separated”- Aapo Hyvarinen

v

= gl(z)

Identifiable non-linear ICA: the problem setting....

Non-linear ICA attempts to find non-
linear components such that they
correspond to a well-defined generative
model (Hyvarinen et al., 2001; Jutten et
al., 2010).

The aim is to recover the inverse
function g as well as the
independent components z based
on observations of x alone.

35



=PrL 26

Latent (hidden) underlying Observable neural data What we want: to learn the
true underlying latents

brain-state factors (z) /
—\/\\/\—’v\/— —\W

°
°
°
neurons
4_»
i

v

time

Z - x=g(z) |

Mixing function This can also be thought of as

dimensionality reduction
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We can leverage paired behavior + neural data to learn latent embeddings

Behaviour e S

labels O
Time ) :
labels 0 ') < """ % o ? * » : PR ot
il 1|11 Eheal T ‘ v 1 WO & e
II I I I I I - (PR - - | PPN S -
w st R A
_— R (Pull Direction)
_r\—.'\-[\--—-._ ..I,‘\’_
N NN 2

Joystick
Y direction

3D kinematics, reward, reward history, learning rate, trial timing, sensory inputs ....
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PFL . .
&7 CEBRA : an algorithm for joint modeling of auxiliary & times series data

a /*T{ﬁ';z CEBRA ; Nonlinear encoder Contrastive learning Low-dimensional
& ///f (neural network (f)) + (loss function) > embedding
Bﬁggggur M N Final layer
Attract (L) output
m S 4 @
labels samples
inii 11 Y ._) o o o > "
mir | png i W W W W
Neuraldata (L1 | 1] 1 1 E 3 4 7 \ feoel
(N) 1 epe
NI X . 0 dissimilar
LN NN ] o samples

- Schneider, Lee, Mathis Nature 2023
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&7 CEBRA : an algorithm for joint modeling of auxiliary & times series data

/ p pairs of neural data

—

v

attract similar
samples

¢(;)

n _
IE —YPLX, + lo Z ¥ yi)
XNP(X) Y+~p(Y| X) l/}( y+) g - —
Yi,-Yn~qyIX) i=1

p = Positive distribution
q = Negative distribution

\ q pairs of
neural data

repel dissimilar
samples



=Pl CEBRA outperforms UMAP, tSNE, and generative models

In an equivalent benchmarking setting

Reconstruction score

100 1
e w
artifical neurons’ - .
firing rates 90 - :
r : o . ©)
2n r Fa L < 3 %
P L 80 1 g : &
3 ".' .. b . »
r i 4
100 70 - .
Ground truth latents CEBRA reconstruction ' ; - ) 3
behavior label latent 2 X {5/ g é\& @3
N ol
S
>
piVAE-poisson, R2:0.95  piVAE- Iaplace R%:0.81 pNAE gaussian, R?:0.76 pNAE~un|form R?:0.78 PIVAE- "‘ff""‘ml‘y peisson, fody TS, BinA, tams  EIUL, SO
= 95 Highly consistent
< . & high performance
x 901
s :
g 85{ ‘..
o .o fs ey
CEBRA-poisson, R%:0.92 CEBRA- -laplace, R2:0.93 ”EBRA-gaussmn R?:0.96 CEBRA-uniform, R?:0.96 CEBRA- refractory_poisson, S e g e 9
: ; £ 75 ) Si o
1, Seo LA
v - e 8 o cebra
70- g *+ e piVAE

Poisson Gaussian Laplace uniform refractory
Poisson

Noise type

40



=PiL High performance and consistent latent embeddings: test-case, the CA1 map of space....

Behaviour

= Data: Grosmark et al. 2016 Science

Position (m)

120 |

Neuron #

Time (sec)

L))

[

v

40

41



=PFL " Howto choose the positive/ negative distributions to obtain embeddings?

Use time: nearby samples form a positive pair
Assumption: Interesting factors vary across time

Behaviour

v
)
< . il

Left < '
N Fight —>
Om 1.6m

Position (m)
"

v

Self-supervised sampling based on time difference

42



=PTL" How to choose the positive/negative distributions to obtain embeddings?

Build an empirical distribution of time differences
— Behavior conditional distribution is independent of current location

Density

0

Position (m)

—0.25 0.00 0.25

o Y B

- sampling based on empirical behavior differences

v
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d CEBRA sampling schemes
Hypothesis-driven A.ttr.act
(position label) similar
s 161 & samples
E |
pus [
S 0.8
o o
* ool : . . 7\
0 10 20 30 ®
Discovery
(time only)g 0060 0 0, Repel dissimilar
0 10 20 30 I
Time (s) samples

Erroneous: keep structure of neural data, behavior-label shuffled

Discover-driven and hypothesis-based embeddings

Discovery-driven SSL

Shuffle Control



=PrL Hypothesis-guided latent embeddings "

Behaviour

0im Vg Hypothesis testing Training loss, goodness of fit
Position only Direction only Position + Direction

Direction, shuffled
Position, shuffled
P + D, shuffled

\\‘“"*»‘WM Direction only
Position only
: Position + Direction

0 2.000 4,000
Iterations

- goodness of fit is theoretically defined



EPFL
CEBRAYyields highly consistent embeddings across different animals performing the same task

46

unsupqrvised unsupeirvised
[ \ [ \
d CEBRA CEBRA conv-pi-VAE conv-pi-VAE autoLFADS
Behaviour Time with test-time labels L
§ § 1.6m
Latent 2 Latent 2 Latent 2
e 94.3 77 74.7 53.1 64.2 67.9 411 100
EEL 61068 2149 76
3 60 =69 32 4120
[t R? %
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69 68 El:] Y424 37
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P e S




High performance decoding of space from hippocampus

=== True
~—~ 160 r . ’r “\
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cPrL Somatosensory cortex: embeddings reveal positional and A vs. P dynamics

100
a a e
X 80 :
o~ o
ac .
Data:Chowdhury 60 -
et al 2020 eLife
3 4 8 16 32
Dimensions
CEBRA-Behaviour CEBRA-Time conv-pi-VAE conv-pi-VAE autoLFADS t-SNE UMAP
with test time labels without labels
Q ~ M,d \
o
S
e
\ o~




cPrL Somatosensory cortex: embeddings reveal positional and A vs. P dynamics

active 100
< 80
™~ o
o .
Data:Chowdhury 60 °
et al 2020 eLife
3 4 8 16 32
Dimensions
CEBRA-Time: no explicit positional information used . CEBRA-Behavior: labels are continuous position
y-position . 1 ‘ '
10 active ( passive -
0 /
-5
-10




=PrlL CEBRA can also provide an interpretable embedding space visualization of the data

active (a)Reaching trajectory  (b) PLDS (c) PILDS

CEBRA-Behaviour CEBRA-Time conv-pi-VAE conv-pi-VAE autoLFADS t-SNE UMAP
with test time labels without labels
—
4 . 7 A ™~
r
b
<} ’
Y
\ o

= CEBRA (Schneider, Lee, Mathis 2013)
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Using CEBRA to unover differences in neural
dynamics across the visual system

51



=PrL

Learnable latent embeddings from V1: mapping naturalistic video to latent spaces across

animals, sessions, modalities ...

ALLEN

INSTITUTE

Data: de Vries et al. (2020)
Deitch, Rubin, and Ziv (2021)
= Siegle et al. (2021)

6 2P calcium
A, ', imaging

% 0 20 30 40

Neurons
—
o
o

300 _ : _ _
0 10 20 30 40
Time (s)



=PrL Sensory input as “behavior” labels: leveraging visual latent features

Behavior + Neural data Non-Linear Encoder —} Behavior- and Time-guided —} Low-dimensional
. i (neural network) contrastive learning embedding
behavior-labels @ @ |
L AN — — attract
i 5@ ~ [ similar
time-onl g~
a2

(@ | N samples
_. @) ® L
i rn N — > > / '\
i ]I ||I . - ‘, \ > .
neuraldata 111 |1l |
(i.e., calcium ' N . 9 ® .
or spikes) |\ repel .
_I‘J\ - dissimilar L
. samples final layer output

g 5% : : : :
g « Can we find evidence for movie-feature representations
Caron et al 2021 arxiv in V1 using CEBRA-Behavior, CEBRA-Time?
Emerging \/Ffrf»pethies l}w Self-Supervised vit_small-8 vit_small-16
. « Can we produce highly similar embeddings from either
Q { ‘/ Neuropixels or GCaMP6 data?
« Can we leverage across data-input type?
O TTee—
—_—
Time (sec)

* Interpretability: can we decode the natural movie frames
from the neural latent embeddings?



=PrL Sensory input as “behavior” labels: leveraging visual latent features

Behavior + Neural data Non-Linear Encoder —J» Behavior- and Time-guided = Low-dimensional

. (neural network) contrastive learning embedding
behavior-labels & @ "
I [
<A \_J — — attract
L . ~ similar — ]
time-only éa.-."]l { * ,'r N

. samples
. L
nrn N /" '\
Il ]I ||I . i * > > ./ \ —»> .
neuraldata (111 |1 I
(i.e., calcium N . J ® )
or spikes) |\ repel .
_PJ\ - dissimilar L
samples

final layer output

Time-is a tunable parameter

)\ \/} | \So;, CEBRA-.

Behaviop

Caron et al 2021 arxiv
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Pseudo-mouse decoding framework:
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2-Photon CEBRA _True Video
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Summary

Neural encoding and neural decoding are fundamental descriptions of neural (coding) processing
and data analysis.

A fundamental goal is: how much information does K have about x

We mathematically model this as P(K|x), where the neural response of population K to a stimulus (or
event) X. K is a vector representing the activity of N neurons, and each entry represents, e.g., the
number of spikes in some time bin or the rate response of that particular neuron.

Generalized Linear Models (GLMSs) are very attractive for both individual neurons and populations,
yet assume linear 8 dynamics (careful: despite having a nonlinear parameter).

Modern hardware advances continue to push the upper limit on the # of neurons we can record, and
therefore we need new mathematical tools for understanding neural coding.

Manifold of behavioral and neural data hypothesis comes into play...

Two large classes of approaching modeling a system: data-driven or hypothesis (task)--driven
Modern methods for mapping the statistical properties of neurons to a stimulus/behavior are fully-
observable models and latent variable models.

Latent variable models infer hidden (i.e., latent) variables that capture the underlying structure of the
observed data through a joint probability distribution.

VAEs and contrastive learning approach to neural analysis; contrastive learning (CEBRA) has highly
attractive properties like combining across datasets and producing consistent latent embeddings.
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