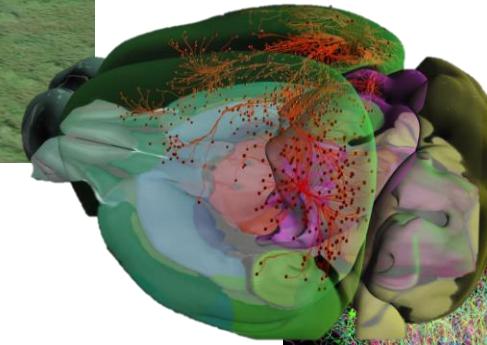
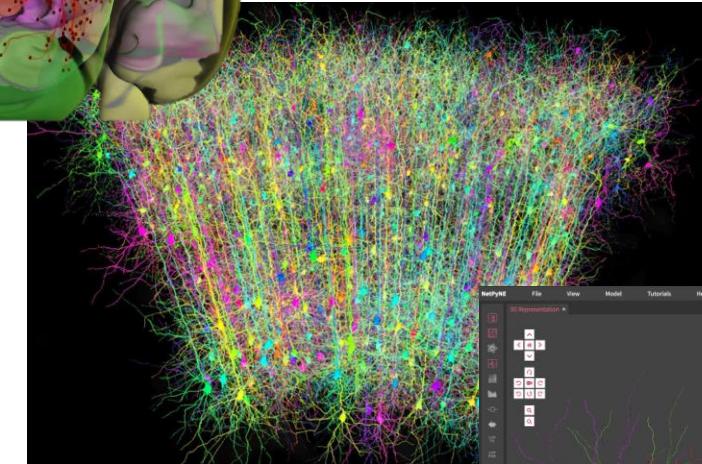
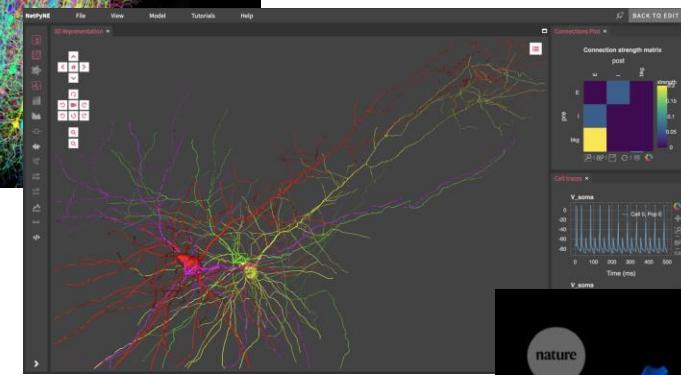


Neural data analysis

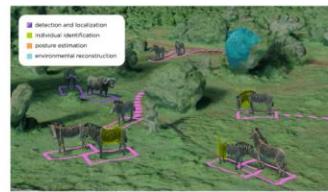
Mackenzie Mathis, PhD

From genes to behavior through the lens of systems neuroscience

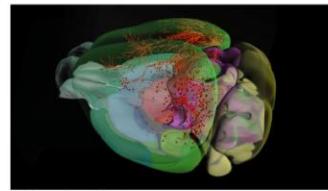


"At this level of analysis, neuroscientists study how different neural circuits analyze sensory information, form perceptions of the external world, make decisions, and execute movements."

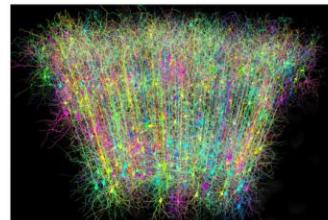
How can we study this?



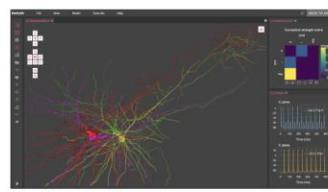
Tuia et al. 2022



Allen Institute



Brainbow (Lichtman Lab)



NetPyNE

AlphaFold (DeepMind)

Environment

Behavior

Brain

system (circuits)

Neurons (& glia)

Synapses

Genes & molecules,
proteins↑
Experimentally-derived data →

video recordings, EMGs

multi-modal ML models

computer vision & RL

network neuroscience

functional imaging
(2P, 1P, fMRI, EEG)

RNNs, transformers

GLMs, latent variable models

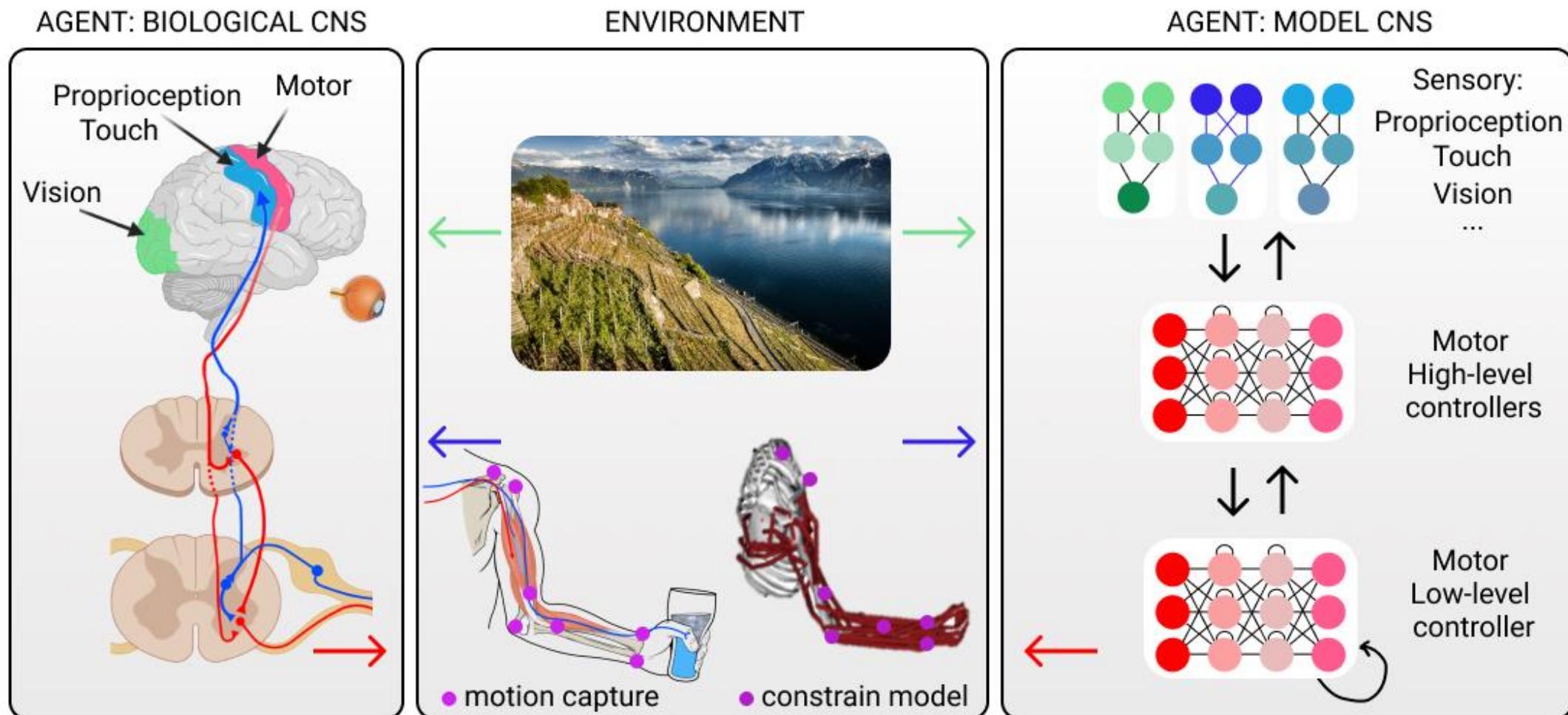
pharmacology,
patch clampingHodgkin-Huxley
LIF (NEURON, nengo, etc)

ODEs, LIF

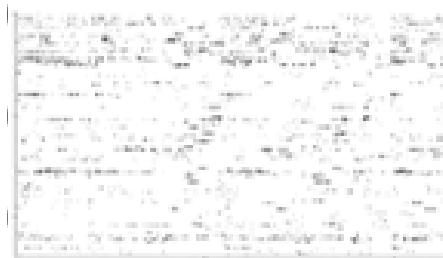
RNAseq, proteomics

AlphaFold,
gene-regulatory networksData-driven &
Theory-driven models

Modeling adaptive behavior



Data-driven modeling

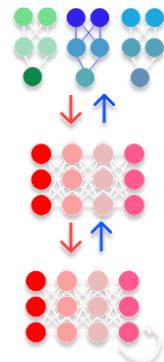
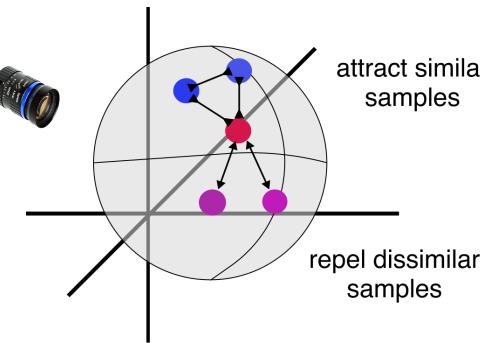


Record from neural data
during a behavioral task

GLMs

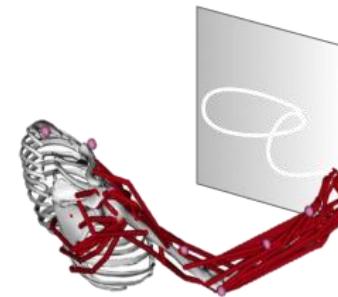
-
-
-

ANNs



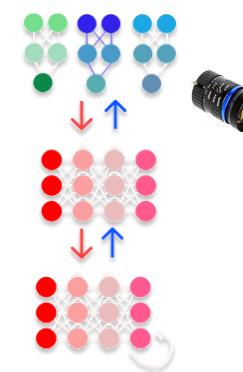
Joint models that describe
neural variance & representations

Task-driven modelling

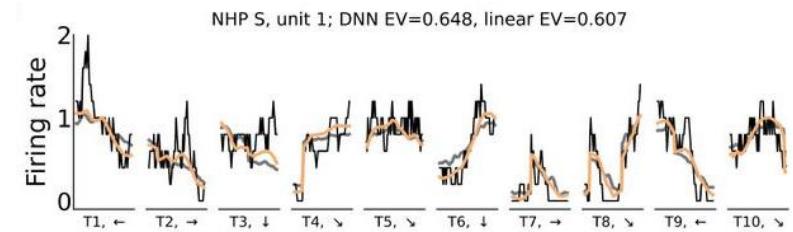


Constrain ANN based on
behavioral task to test
hypotheses about a system

Sandbrink et al. 2023 eLife

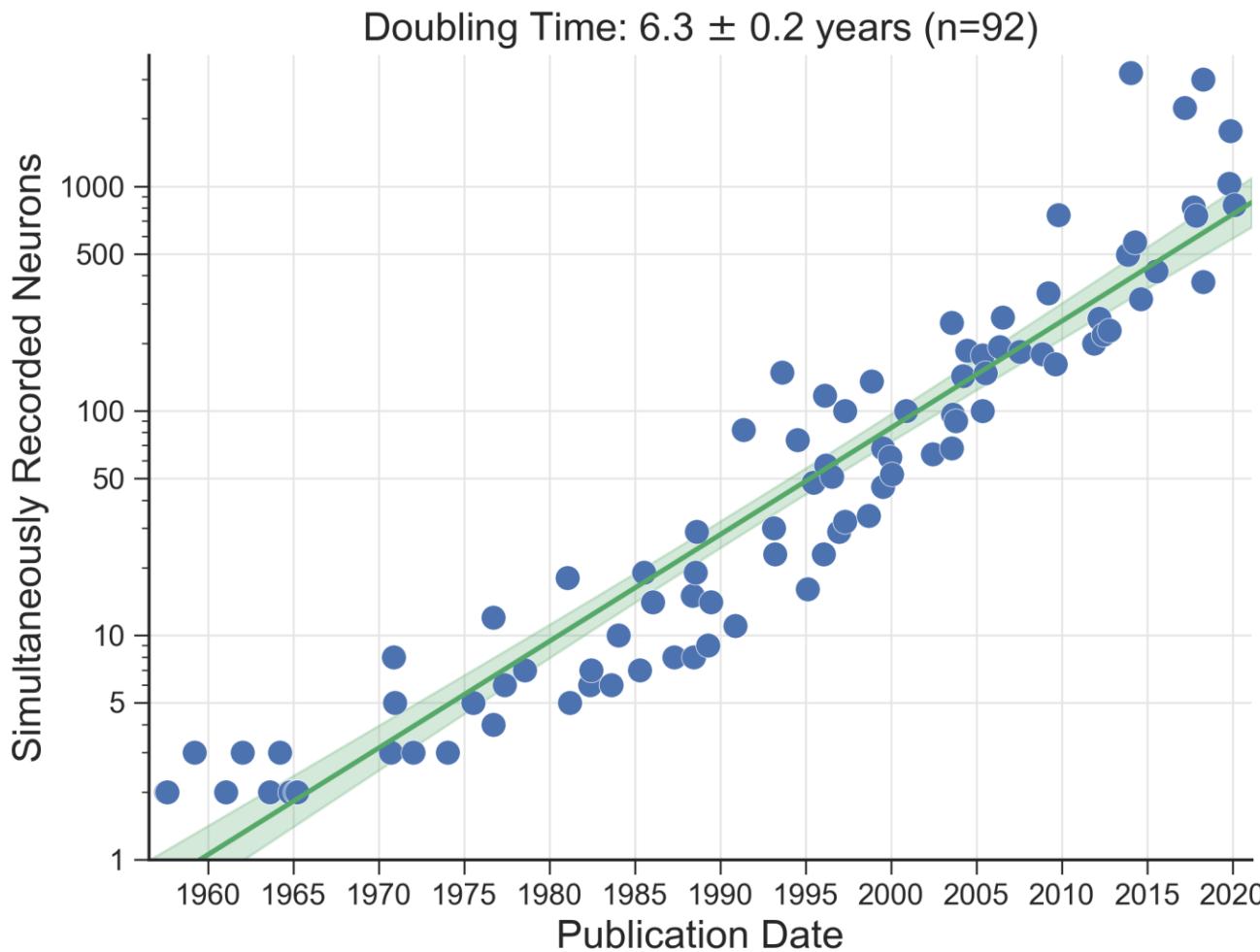


Task-driven models (hand position and velocity task)
Linear model



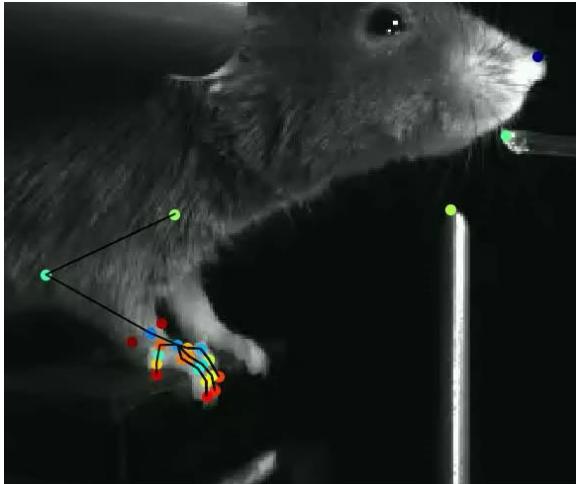
A. Mathis Lab (Marin Vargas et al. in press Cell)

NN models that describe
neural variance & computationally
constrain system



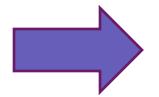
**We are now able to
record thousands of
neurons
simultaneously**

- Stevenson and Kording (2011), updated in 2022



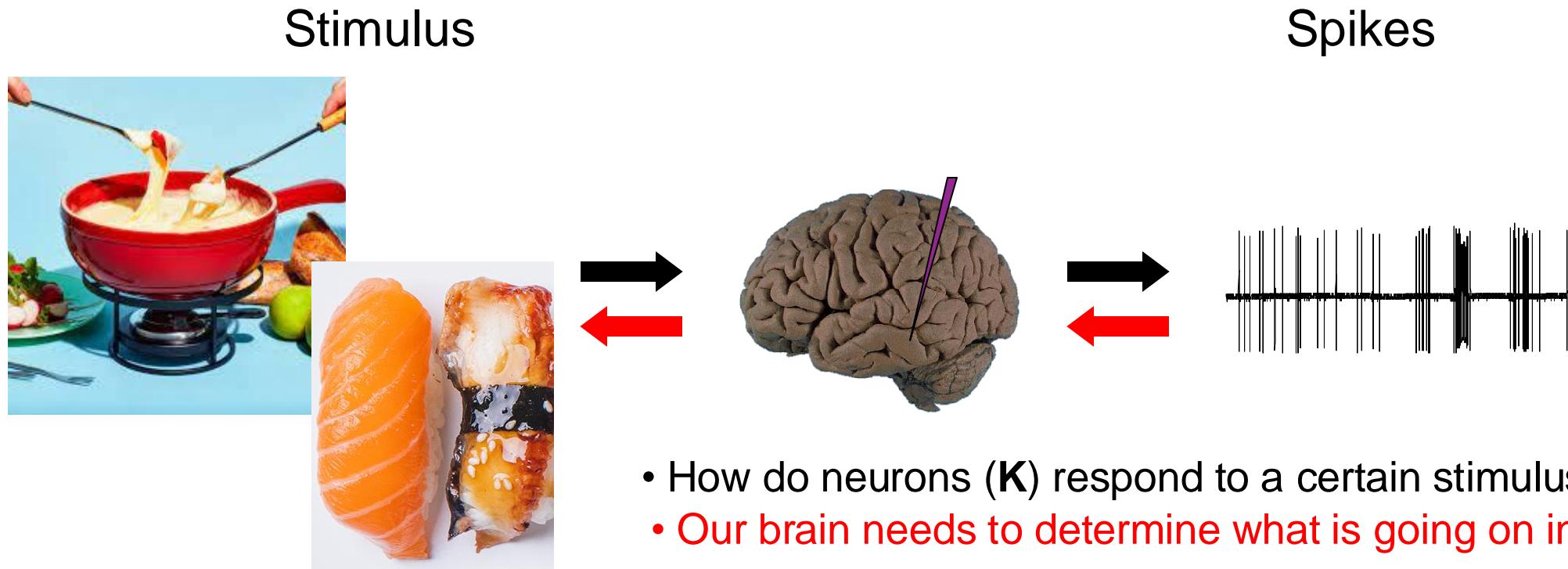
Keypoint tracking with DeepLabCut

CalmAn: CNN based feature extraction + deconvolution



Large-scale behavioral & neural recordings call for new methods to link neural dynamics and behavior

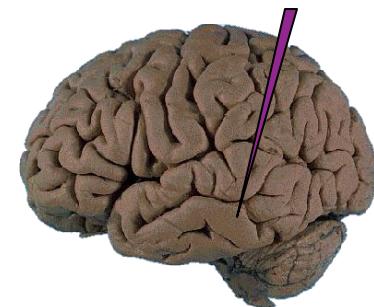
What information is our brain trying to encode & decode?



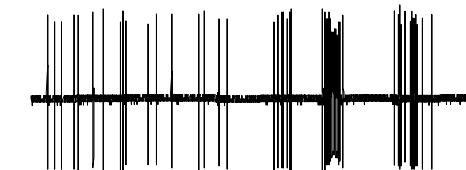
- We mathematically model this as $P(K|x)$, where the neural response of population **K** to a stimulus (or event) **x**.
- **K** is a vector representing the activity of N neurons, and each entry represents, e.g., the number of spikes in some time bin or the rate response of that particular neuron.

What information is our brain trying to encode & decode?

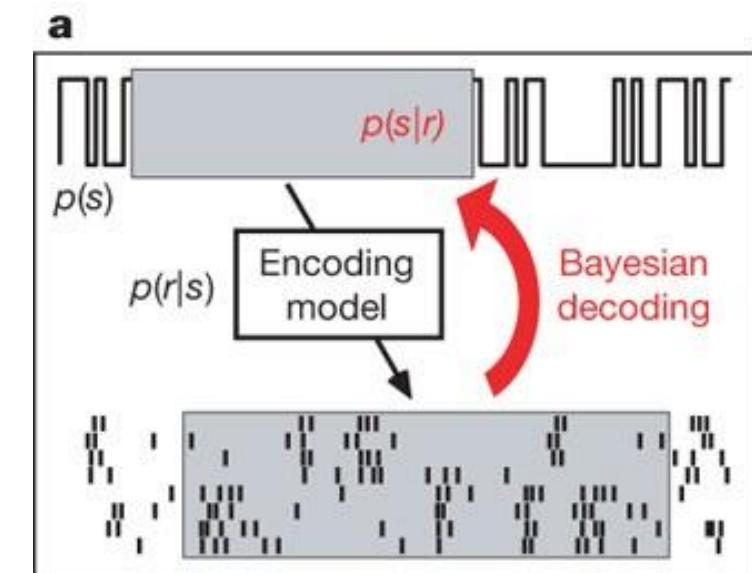
Stimulus



Spikes



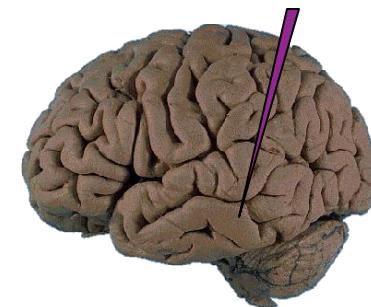
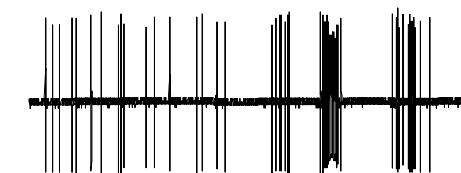
- Our brain needs to determine what is going on in the real world from patterns of spikes.



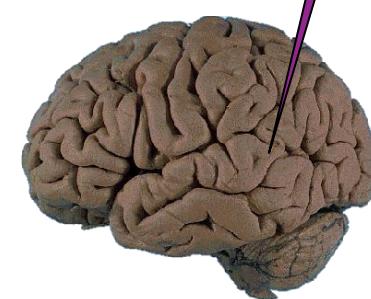
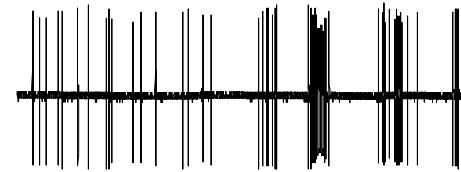
What information is our brain trying to encode?

Stimulus

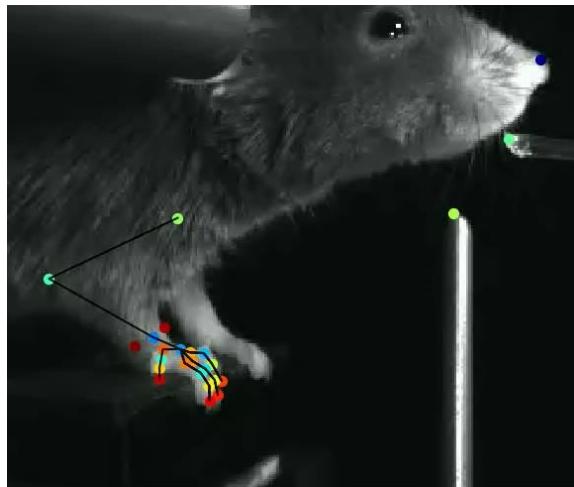
Spikes



- Pixels on a screen (Pillow et al. 2008)
- Events, like behavior: moving through an environment with arm or body
- other neurons!



Mapping behavioral actions to neural computations



behavioral monitoring

neural recordings in vivo

When recording from just 20 neurons, there are over one million possible instantaneous ON/OFF patterns of spiking (2^{20}) for a small time bin; this number grows to one billion for 30 neurons (2^{30})

In reality, this is much smaller due to neural connectivity constraints, but estimating all pattern frequencies reliably from typical recordings is impossible even for small populations!



Fully observed statistical models are tools that allow us to approximate the firing distribution with reasonable constraints ...

Computational methods for mapping (K) neural activity to a certain stimulus (x)

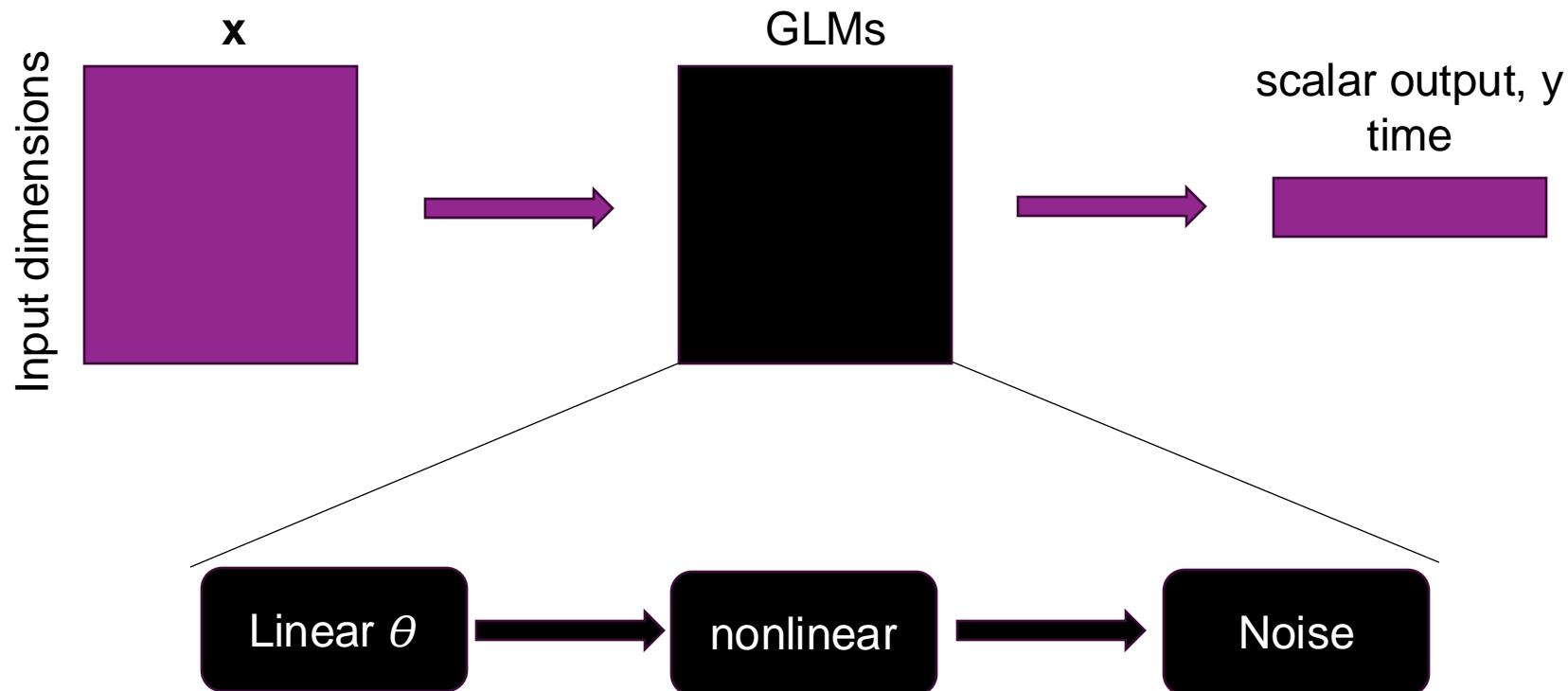
Table 1

Fully observed models: A table (adapted from the study by O'Donnell et al. [50]) characterizing model properties and limitations. Here, N is the number of neurons and D is the number of coefficients per interaction term, such as filter sizes for GLM or number of parameters for parametric copula families. Sampling is possible from all of these models.

Model	References	Number of parameters	Closed-form pattern probabilities?	Fit for large N ?
Dichotomized	Amari et al. [2]	$\sim N^2$	No	Yes
Gaussian	Macke et al. [42]			
Pairwise	Schneidman et al. [79]	$\sim N^2$	No ^a	Difficult
MaxEnt	Shlens et al. [82]			
Tractable	Tkačik et al. [87]	$\sim N^2$	Yes ^a	Yes
MaxEnt	Gardella et al. [24]			
	O'Donnell et al. [50]			
GLM	Pillow et al. [60]	$\sim DN^2$	No	Difficult
Vine	Aas et al. [1]	$\sim DN^2$	Yes	Yes
Copula	Onken and Panzeri [53]			

^a For a more detailed comparison of MaxEnt models, see Table 1 in Ref. [77].

Generalized Linear Models



Generalized Linear Models: many variants!

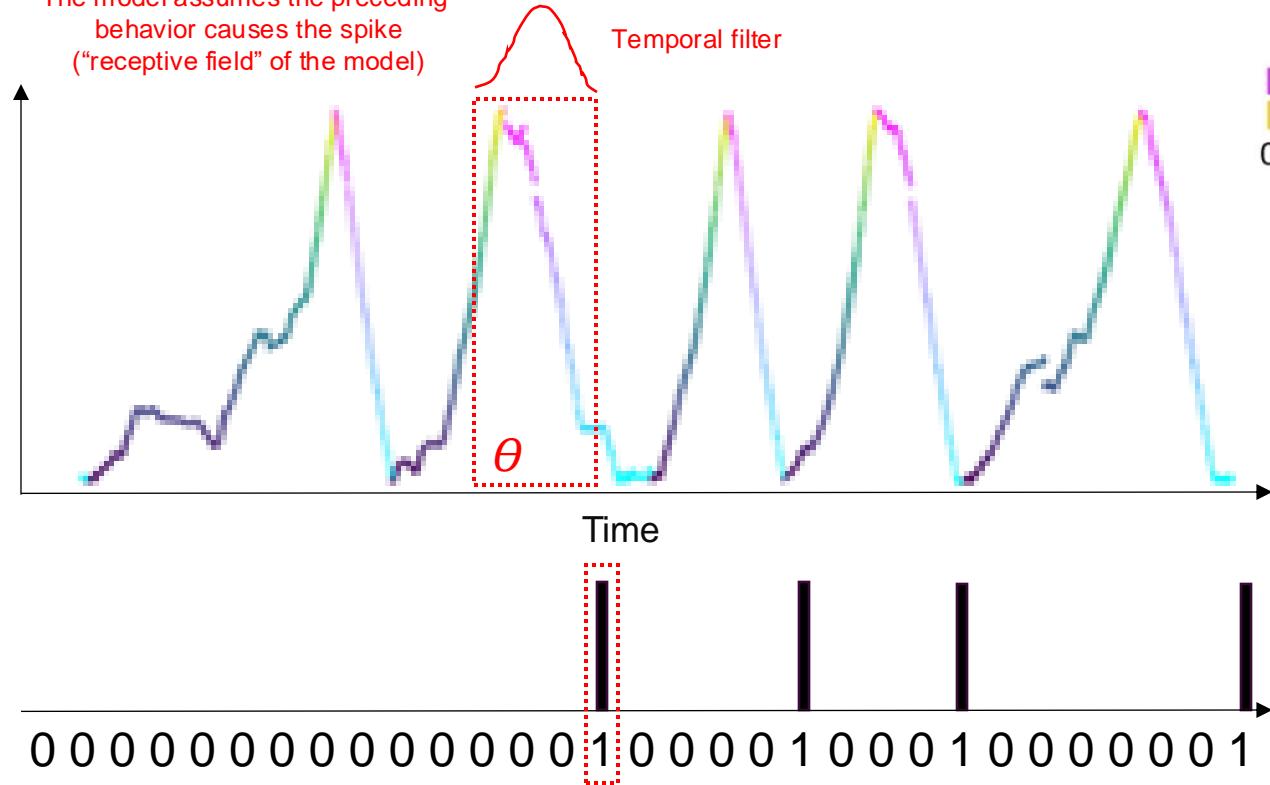
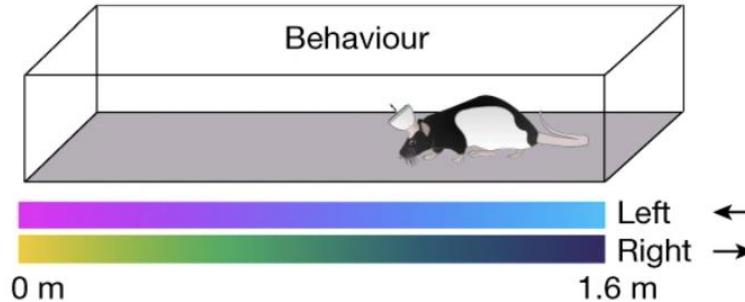
Model Name	Likelihood	Nonlinearity	Output type
Linear regression	Gaussian $P(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp -\frac{(y - \mu)^2}{2\sigma^2}$	identity $\mu = \boldsymbol{\theta}^\top \mathbf{x}$	real values
Poisson GLM	Poisson $P(y) = \frac{\lambda^y \exp(-\lambda)}{y!}$	exponential $\lambda = \exp(\boldsymbol{\theta}^\top \mathbf{x})$	discrete counts $0, 1, 2, 3\dots$
Logistic regression	Bernoulli $P(y) = p^y (1 - p)^{1-y}$	logistic $p = f(\boldsymbol{\theta}^\top \mathbf{x})$	binary $0, 1$

Logistic regression

Stimulus (**x**),
here behavior
of the animal

Position (m)

The model assumes the preceding behavior causes the spike (“receptive field” of the model)



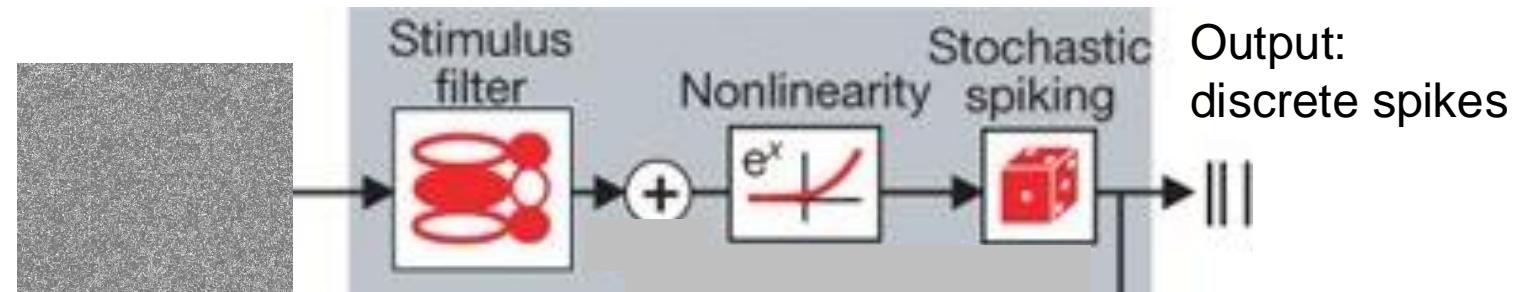
Data: Grosmark et al. 2016 Science

$$p_t = f \left(\sum_i \theta_i x_{t-i} \right)$$

Poisson GLM

 θ

$$P(y_t = y) = \frac{\lambda^y e^{-\lambda}}{y!}$$



- In the model, each neuron's input is described by a set of linear filters:
 - a stimulus filter, or spatial receptive field (θ)

$$p_t = \exp \left(\sum_i \theta_i x_{t-i} \right)$$

Details: Poisson GLM

Poisson Distribution: Single Event

- Probability of events y_t at time t

- Formula:

$$P(y_t = y) = \frac{\lambda^y e^{-\lambda}}{y!}$$

- λ : rate parameter (average number of events)
- $y!$: factorial of y (number of events)

Link Function and Predictors

- λ linked to predictors x_t
- Formula:

$$\lambda = \exp(\theta^T x_t)$$

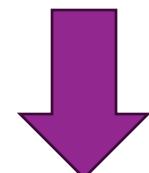
- θ : model parameters (as a vector)
- x_t : predictors vector

Likelihood: All Data Points

- Joint probability as the product of individual probabilities
- Formula

$$P(y_1 : T) = \prod_t P(y_t)$$

- Assumes independence between data points



Simplify!!

Log Likelihood

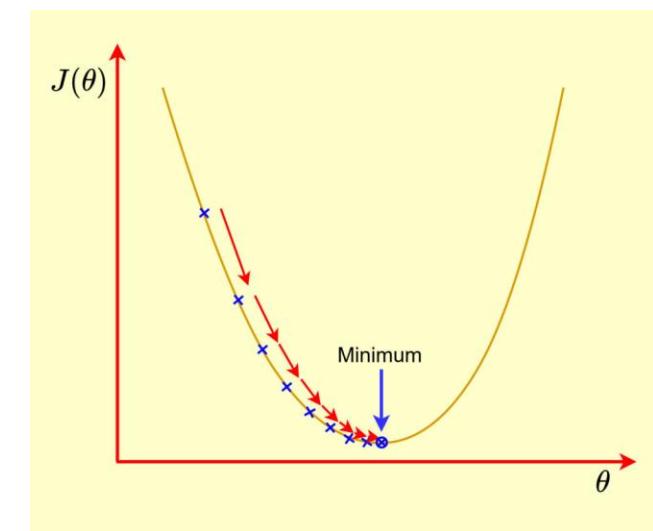
$$\log \mathcal{L} = \sum_t \log P(y_t)$$

Details: fitting the Poisson GLM

Fit the model to find parameters that maximize the log-likelihood:

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \log \mathcal{L}(\boldsymbol{\theta})$$

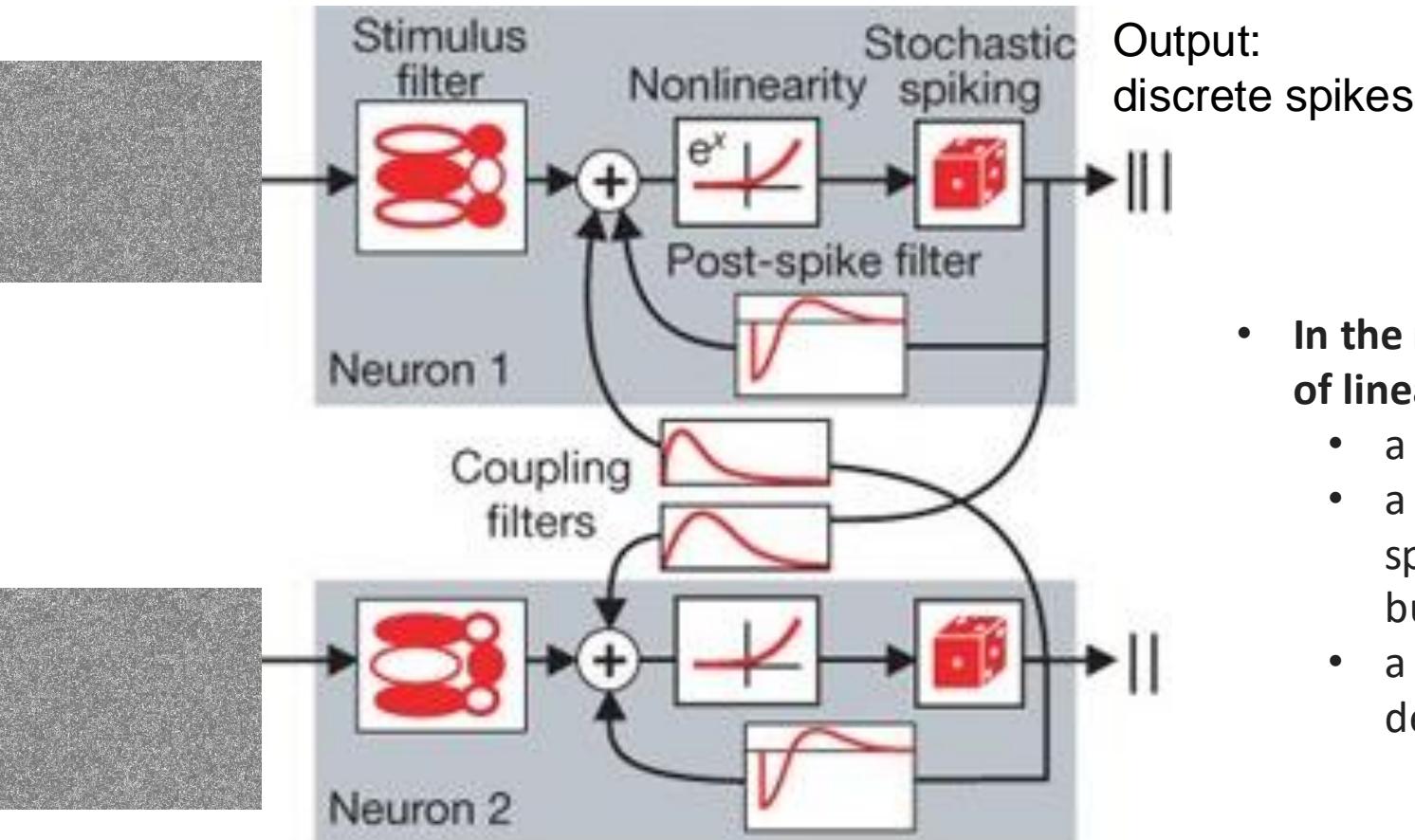
Since the space is concave (a nice feature), in practice, we invert it so we can use gradient descent



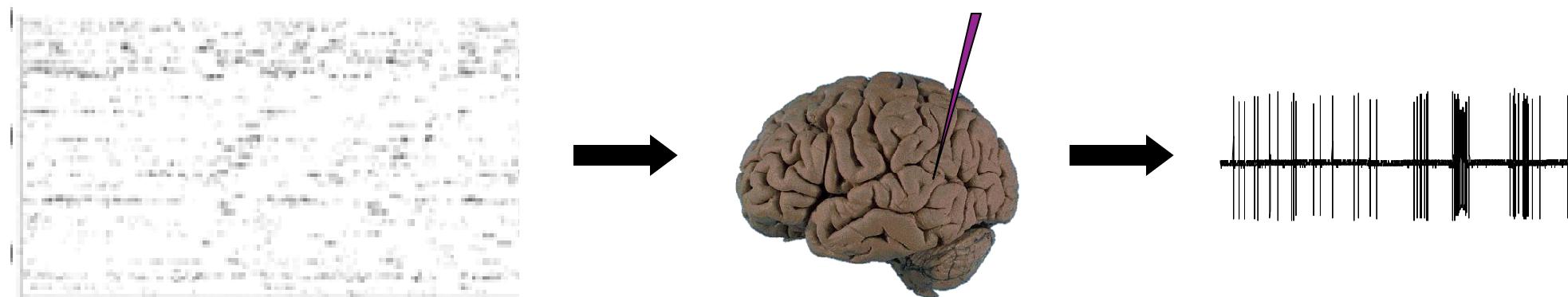
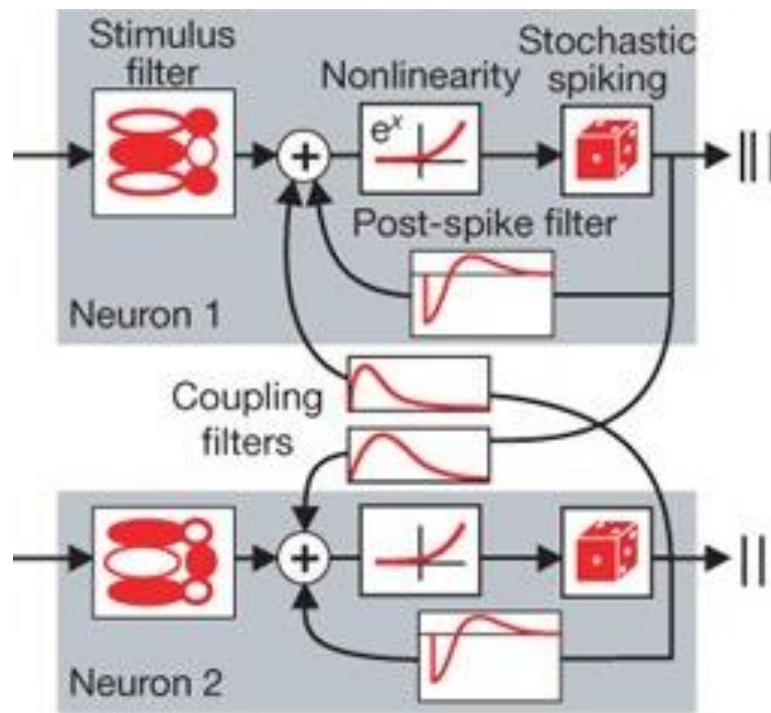
Poisson GLM

θ

$$P(y_t = y) = \frac{\lambda^y e^{-\lambda}}{y!}$$

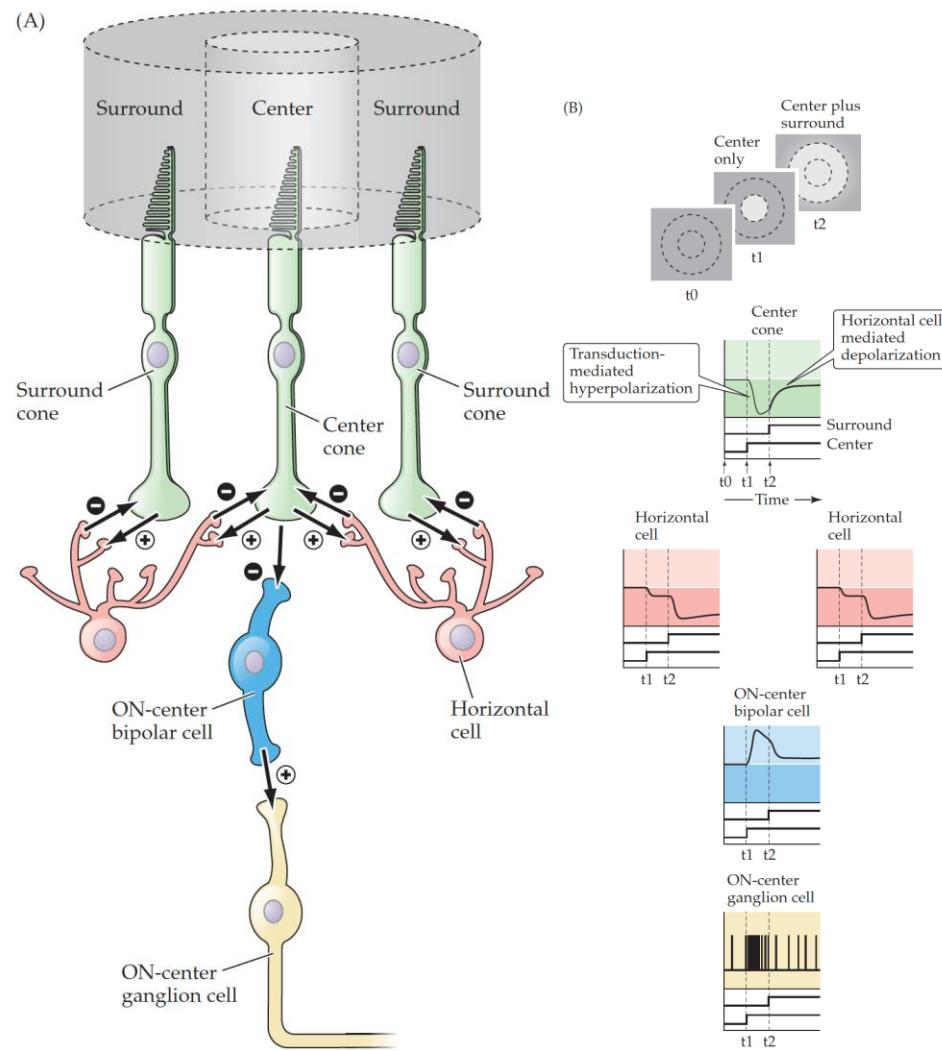


- In the model, each neuron's input is described by a set of linear filters:
 - a stimulus filter, or spatio-**temporal** receptive field;
 - a post-spike filter, which captures dependencies on spike-train history (for example, refractoriness, burstiness and adaptation);
 - a set of coupling filters, which capture dependencies on the recent spiking of other cells

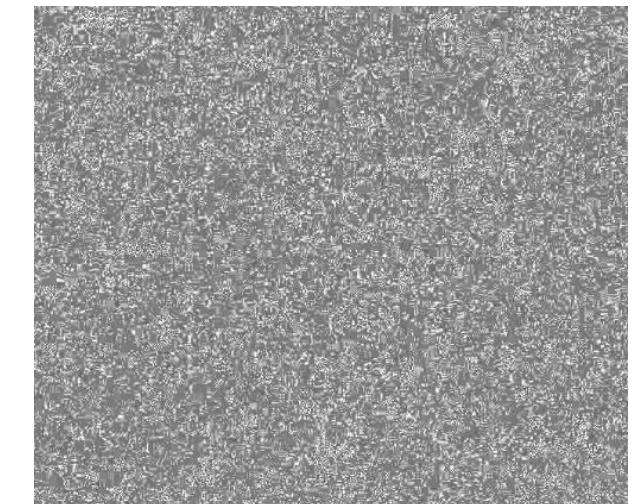
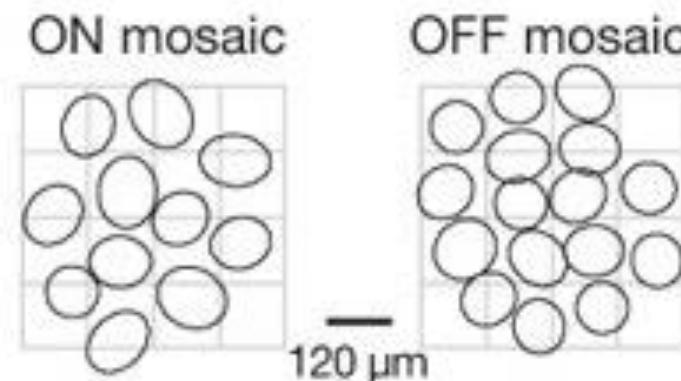


This model allows for accounting for
“other” neurons activity patterns

Experimental set up: the retina ganglion cell

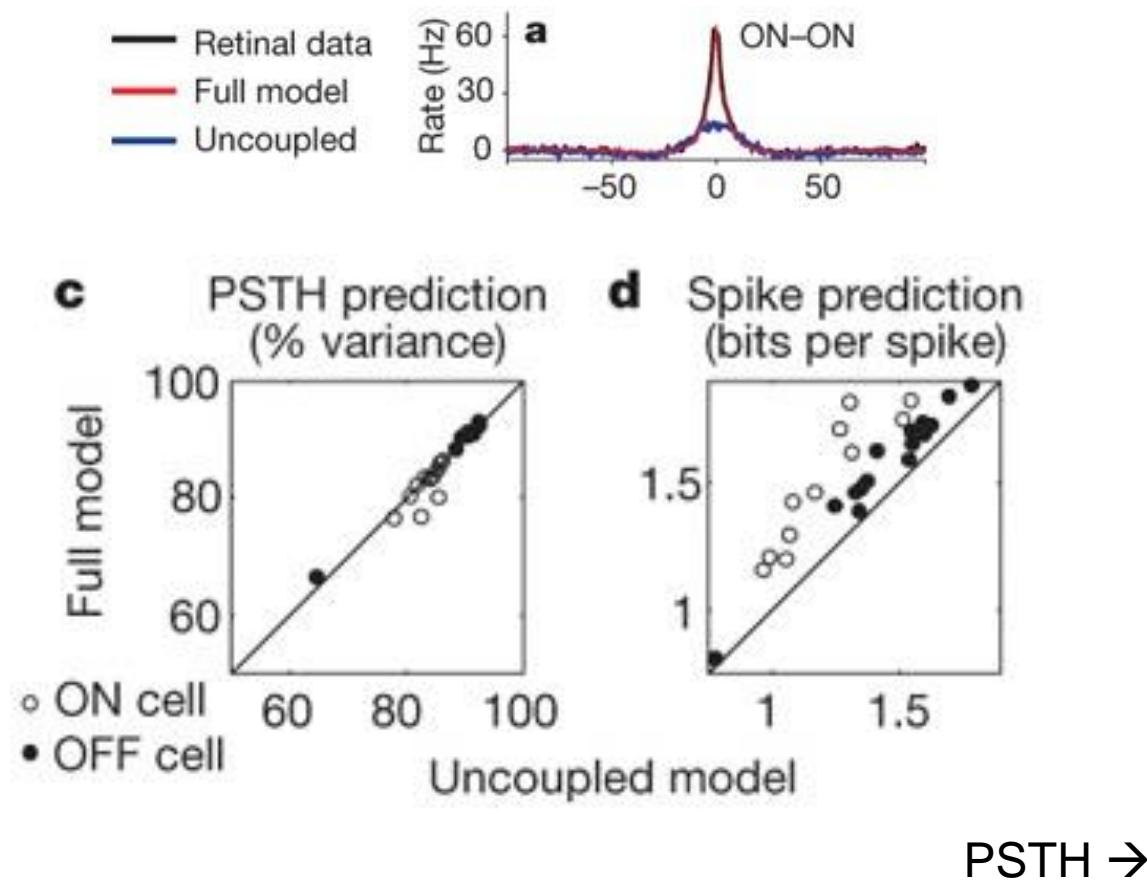


In Pillow et al 2008, they stimulate RGCs with white noise:

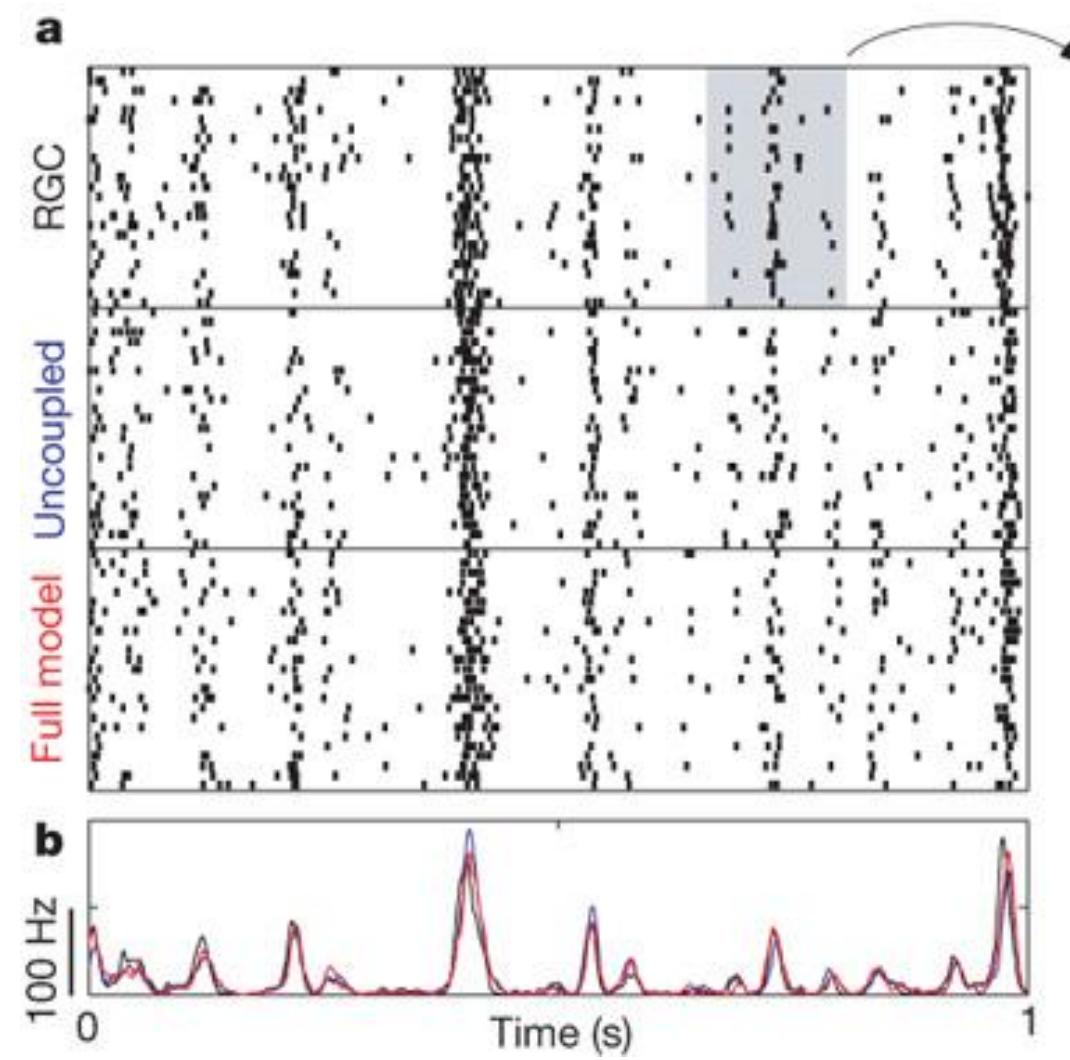


- Purves, Figure 11.21

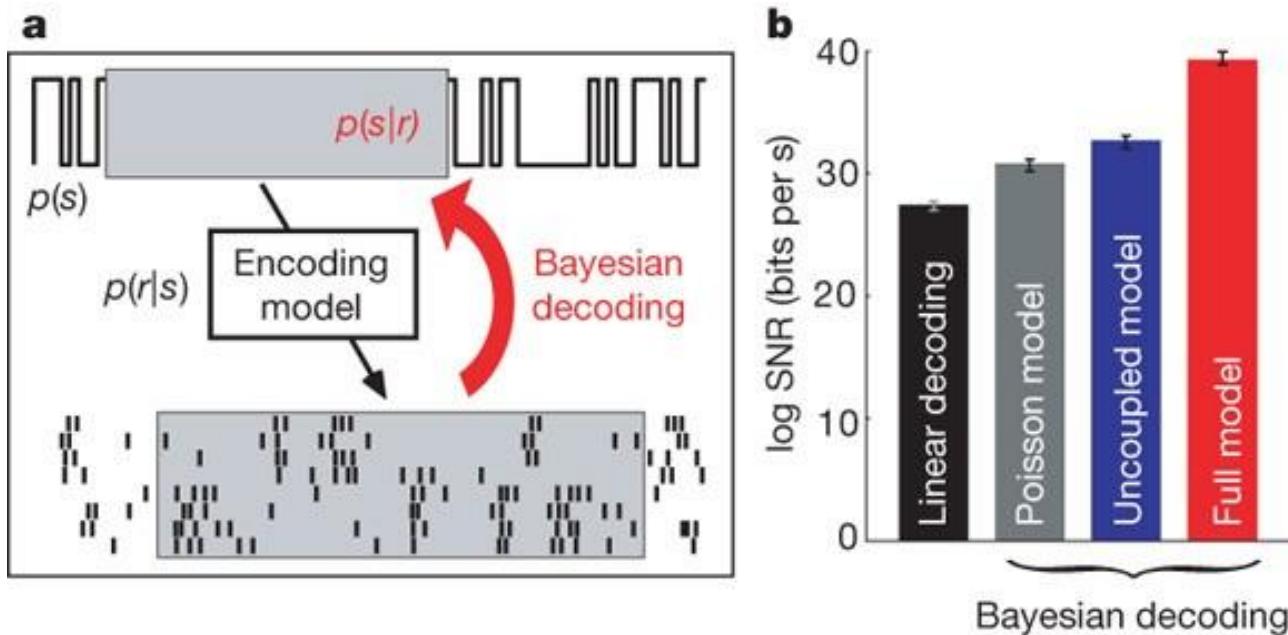
GLMs in action: Pillow et al. 2008



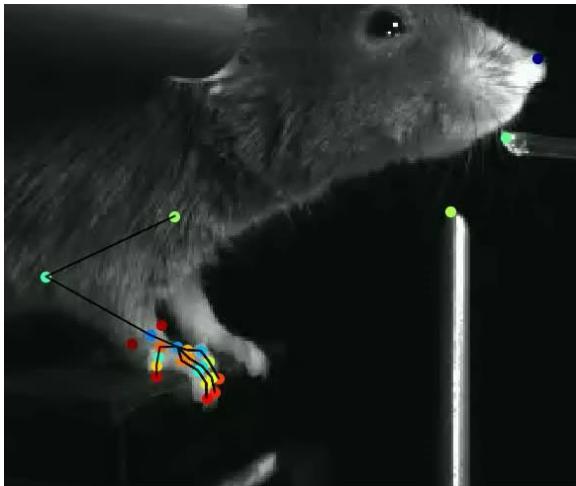
PSTH →



GLMs in action: Pillow et al. 2008

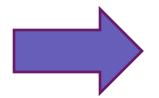


GLMs with coupling filters were shown to capture 40% more visual information from the retina than optimal linear decoding, indicating that GLMs can model additional details in the activity that are relevant for representing the stimulus!



Keypoint tracking with DeepLabCut

CalmAn: CNN based feature extraction + deconvolution



Large-scale behavioral & neural recordings call for new methods to link neural dynamics and behavior

Summary, part 1

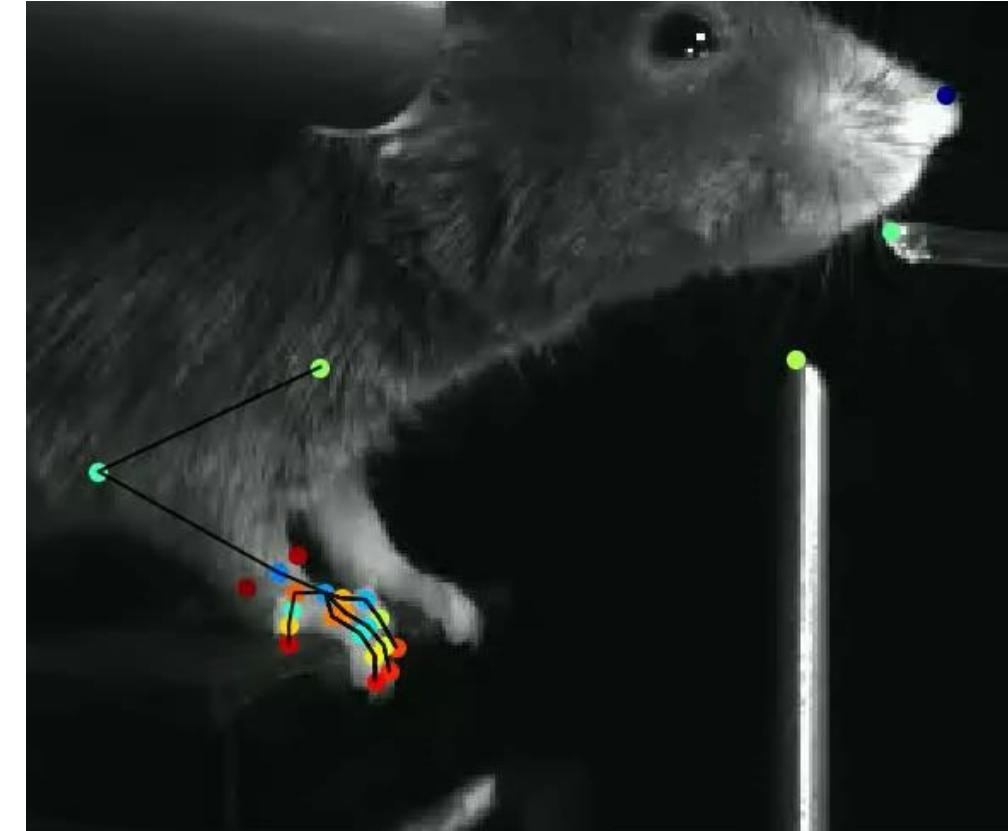
- **Neural encoding** and **neural decoding** are fundamental descriptions of neural (coding) processing and data analysis.
- A fundamental goal is: how much information does \mathbf{K} have about \mathbf{x}
- We mathematically model this as $P(\mathbf{K}|\mathbf{x})$, where the neural response of population \mathbf{K} to a stimulus (or event) \mathbf{x} . \mathbf{K} is a vector representing the activity of N neurons, and each entry represents, e.g., the number of spikes in some time bin or the rate response of that particular neuron.
- **Generalized Linear Models** (GLMs) are very attractive for both individual neurons and populations, yet assume **linear θ** dynamics (careful: despite having a nonlinear parameter).

From GLMs to more powerful models ...

- In P-GLMs, external inputs, inputs from other neurons, and each neuron's spiking history are weighted, summed up, and transformed by a rate function, which drives a stochastic process to model spiking activity.
- For typical rate functions, fitting P-GLMs is a convex optimization problem that can be solved efficiently
- **Despite their flexibility, GLMs cannot model networks with neurons that perform non-linear integration of multiple external inputs....**

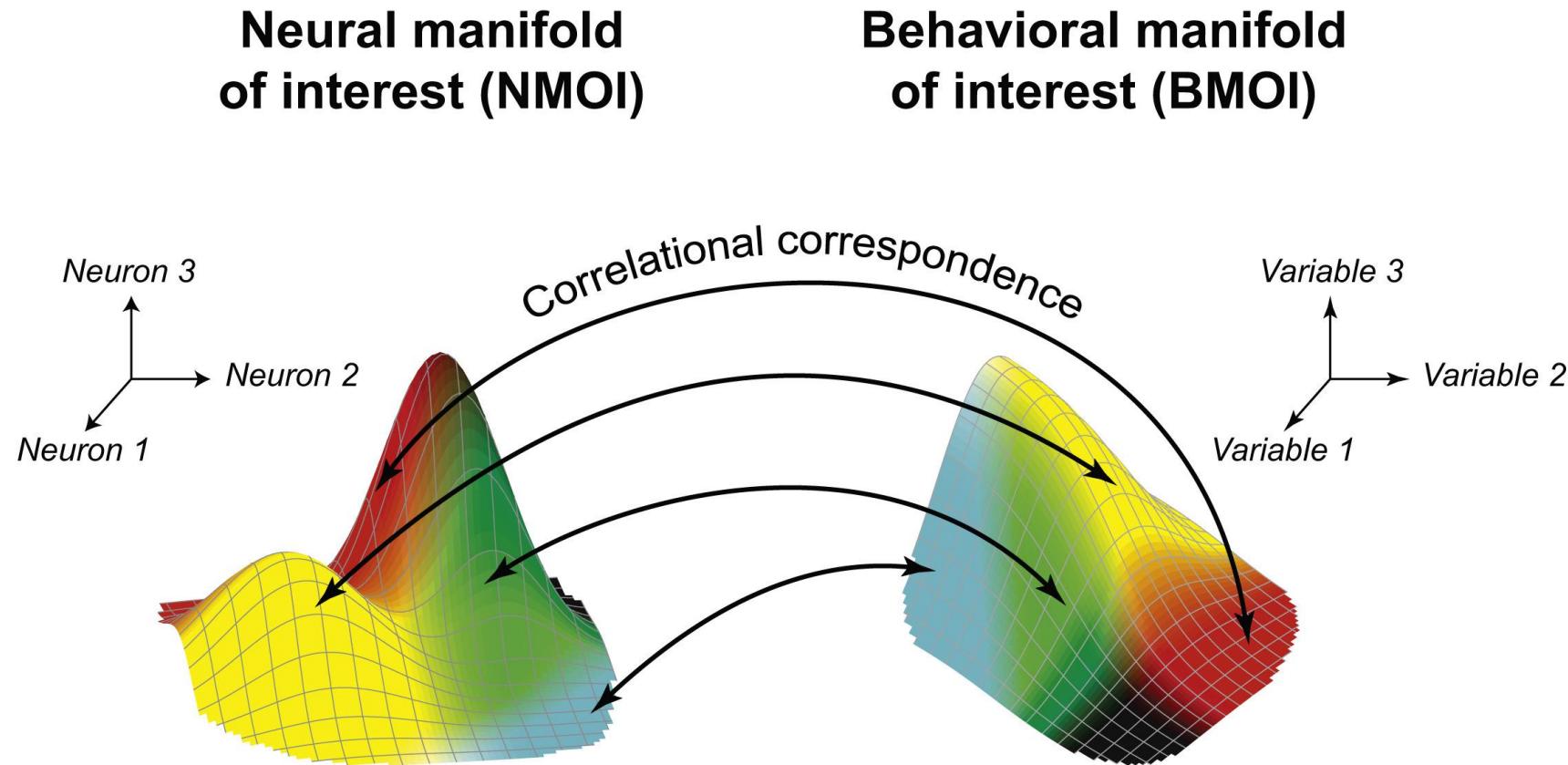
Mapping behavioral actions to (nonlinear) neural computations

CalmAn: CNN based feature extraction + deconvolution



Keypoint tracking with DeepLabCut

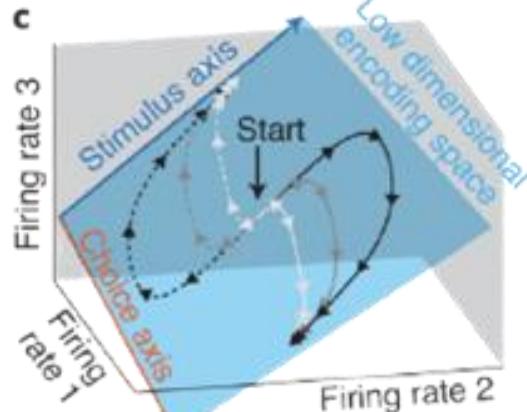
Manifolds (embeddings) for measuring neural trajectories



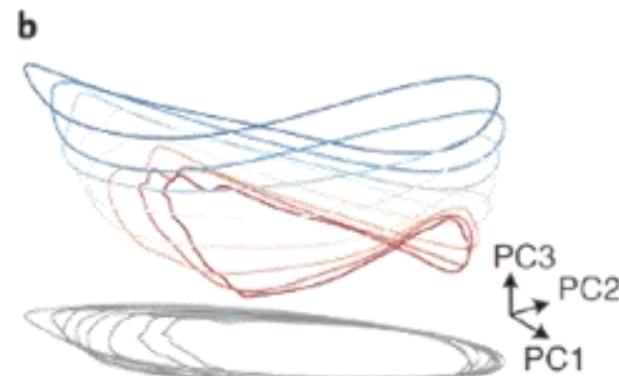
Mehrdad Jazayeri and Arash Afraz Neuron 2017

Population analysis can reveal core principles of neural coding

Urai et al Nat Neurosci 2022



Behaviorally relevant neural variance within a small number of dimensions



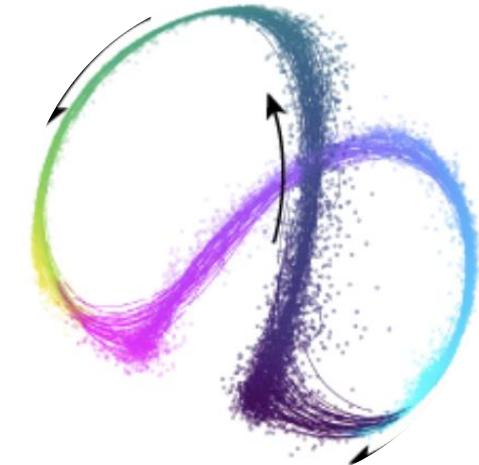
Neural computations at population dynamics but not in single-neuron firing rates

Chaudhuri, R. et al. Nat Neurosci 2019

Intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep

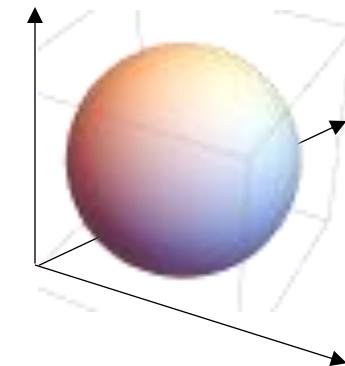
1

1



2

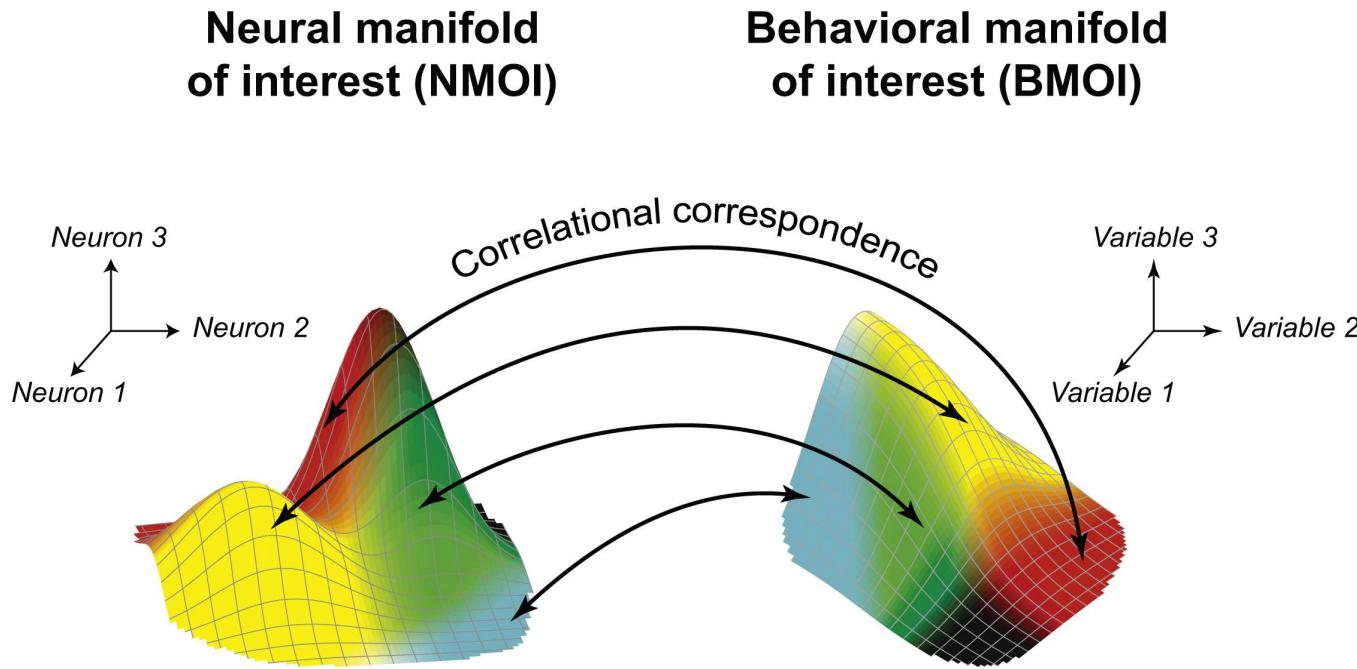
Intrinsic Dimension



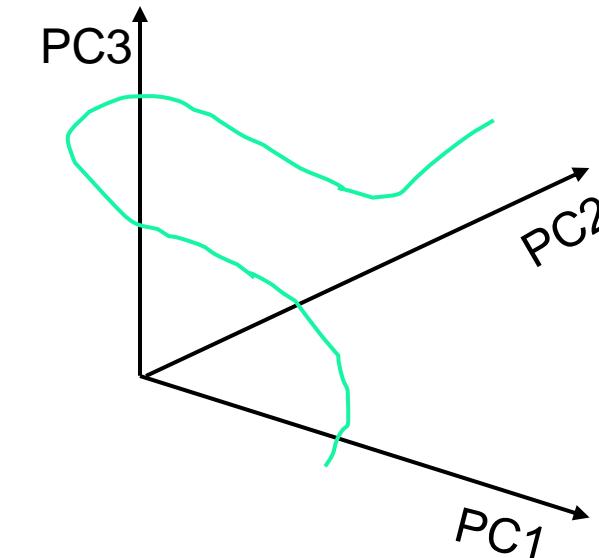
Inspired by Jazayeri & Ostojic
Current Opinion Neurobio 2021

Manifolds for measuring neural trajectories

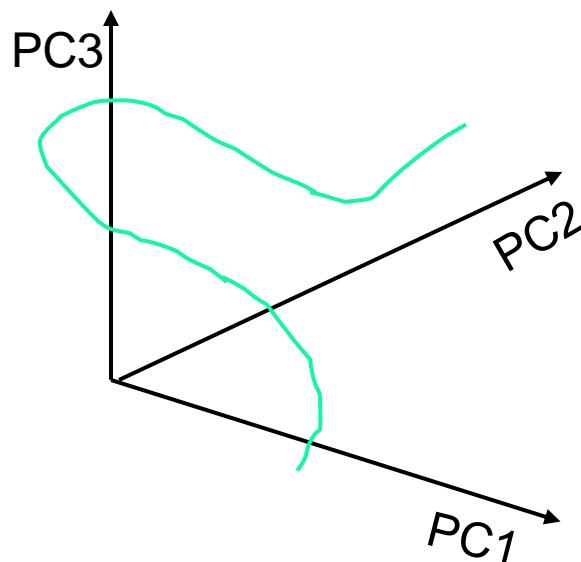
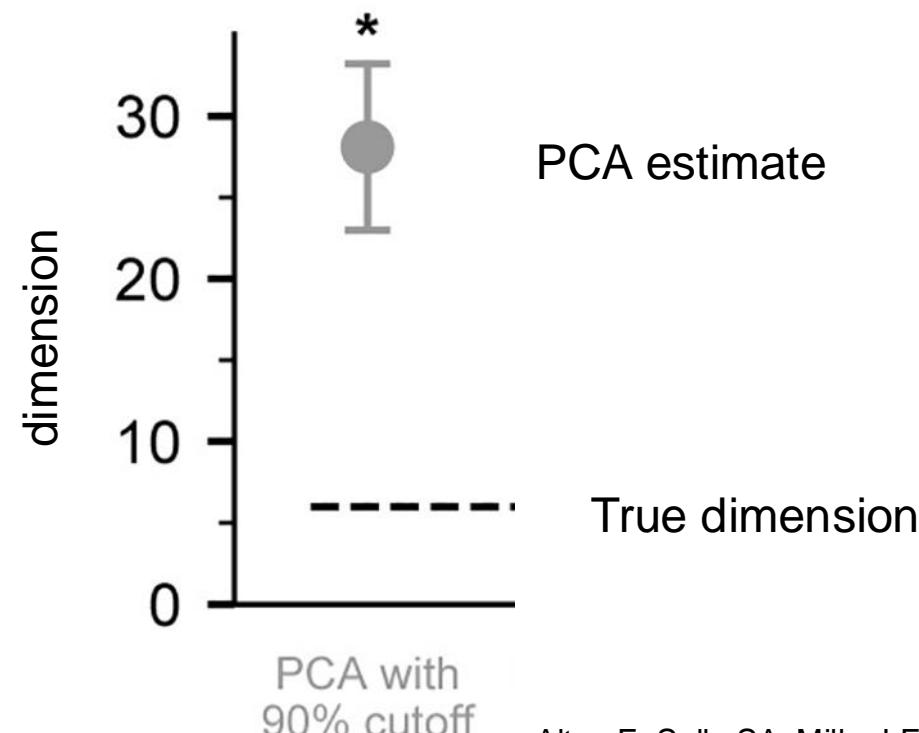
Linear (PCA) methods for measuring neural trajectories



Mehrdad Jazayeri and Arash Afraz Neuron 2017



Linear (PCA) methods for measuring neural trajectories



Altan E, Solla SA, Miller LE, Perreault
EJ. PLoS Comput Biol. 2021

Statistical models for capturing the statistical structure of large-scale neural populations

Dynamics

Model	Trajectories	Mapping Function ^a	Observation	Single-trial ^a
PCA/FA [68]	Static	Linear	Gaussian	No
dPCA [100]	Static	Linear	Gaussian	No
jPCA [13]	Linear ^b	Linear	Gaussian	No
LDS [84]	Linear	Linear	Gaussian	Yes
PLDS [43]	Linear	Linear	Poisson	Yes
PSID [75]	Linear	Linear	Gaussian ^c	Yes
PfLDS [23]	Linear	Neural Network	Poisson	Yes
SLDS [56]	Switching Linear	Linear	Gaussian	Yes
RSLDS [41,97]	Recurrent Switching Linear	Linear	Gaussian	Yes
PLRNN-SSM [101]	Piecewise-linear RNN	Linear	Gaussian	Yes
LFADS [55]	RNN	Linear	Poisson	Yes
GP-RNN [80]	RNN	GP	Poisson/Gaussian	Yes
GPFA [11]	GP	Linear	Gaussian	Yes
GPFADS [72]	GP ^d	Linear	Gaussian	Yes
vLGP [95]	GP	Linear	Poisson ^e	Yes
P-GPLVM [93]	GP	GP	Poisson	Yes
*	piVAE	GIN Flow	Non-linear	Poisson
*				Yes

■ ^a Mapping back to spikes

Adapted from C. Hurwitz 2021 Current Opinion Neuro

Nonlinear embeddings via linear dynamical system (LDS)

Dynamics of n neurons are modulated by LDS w/ m -dim latent state (z) that evolves:

$$\mathbf{z}_{r1} \sim \mathcal{N}(\mu_1, \mathbf{Q}_1)$$

$$\mathbf{z}_{r(t+1)} | \mathbf{z}_{rt} \sim \mathcal{N}(\mathbf{A}\mathbf{z}_{rt}, \mathbf{Q}),$$

Observation model:

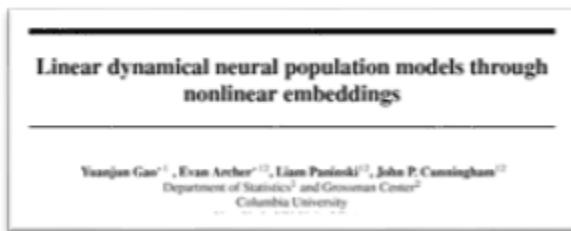
$$x_{rti} | \mathbf{z}_{rt} \sim \mathcal{P}_\lambda (\lambda_{rti} = [f(\mathbf{z}_{rt})]_i).$$

\mathbf{A} = linear dynamics matrix ($m \times m$)
 \mathbf{Q}_1 = covariance of initial states
 \mathbf{Q} = Gaussian noise

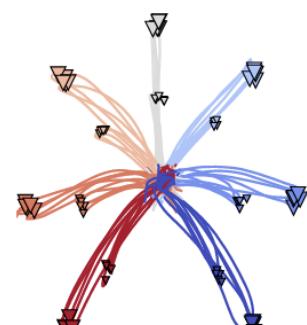
fLDS: exchange observation model such that each neuron as a separate nonlinear dep. on latent variable:

$$x_{rti} | \mathbf{z}_{rt} \sim \mathcal{P}_\lambda (\lambda_{rti} = [f_\psi(\mathbf{z}_{rt})]_i),$$

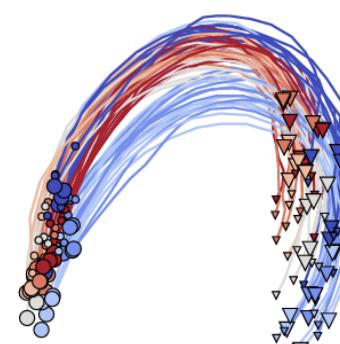
where $[f(\mathbf{z}_{rt})]_i$ is the i^{th} element of a deterministic “rate” function $f(\mathbf{z}_{rt}) : \mathbb{R}^m \rightarrow \mathbb{R}^n$, and $\mathcal{P}_\lambda(\lambda)$ is a noise model with parameter λ .



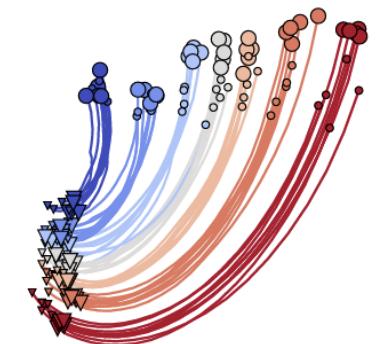
(a) Reaching trajectory



(b) PLDS

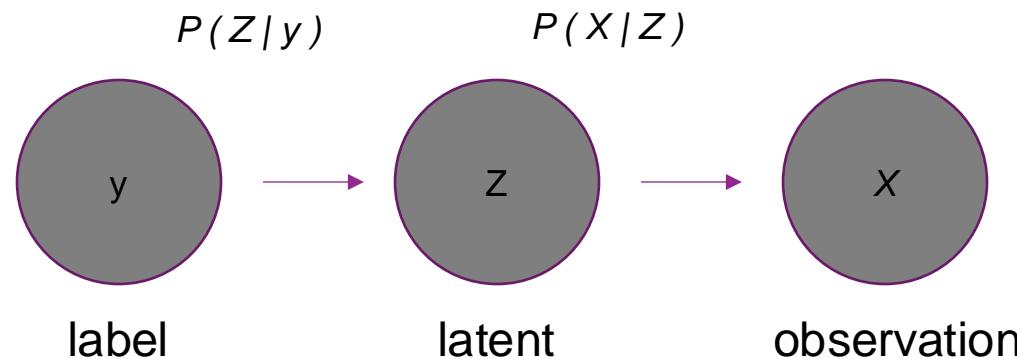


(c) PfLDS



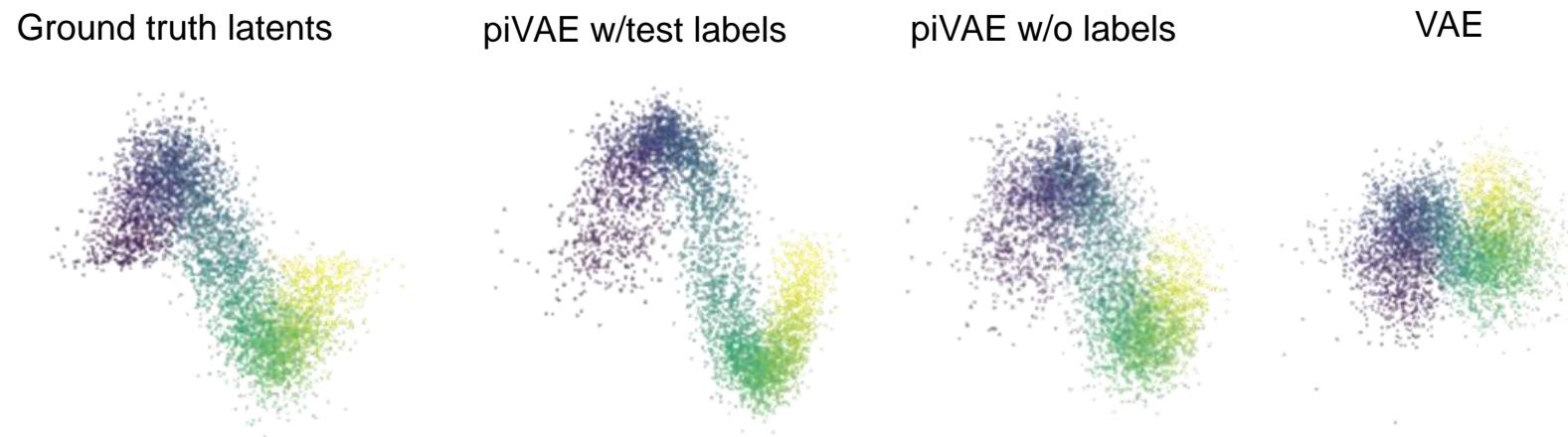
Better nonlinear embeddings by conditioning on the latent space

Label-based variational
auto encoder – piVAE: Zhou & Wei NeurIPS 2020



piVAE outperformed:

- LFADS (Pandarinath 2019)
- dPCA (Kobak 2016)
- PCA
- pfLDS (Gao 2016)



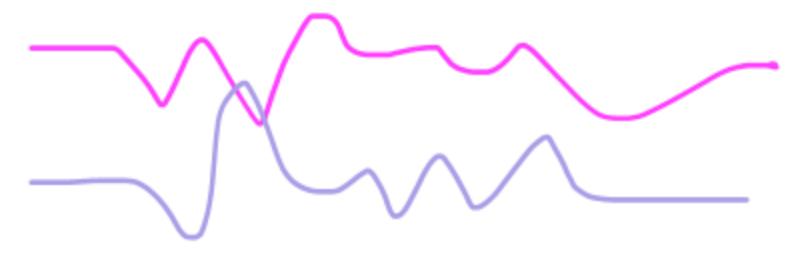
Limitations:

- **No identifiability guarantee***
- Restrictive assumptions on the generative model (Poisson)

*Not consistent across animals, cannot combine across datasets/can't separate the latents

Identifiable non-linear ICA: the problem setting....

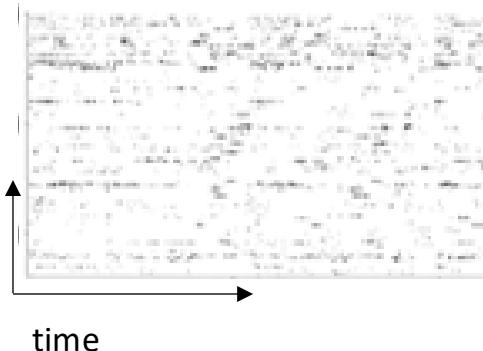
Latent (hidden) underlying
brain-state factors (z)



$z = (z_1, z_2, \dots, z_n)$

Observable neural data

$$X = (x_1, x_2, \dots, x_n)$$



z

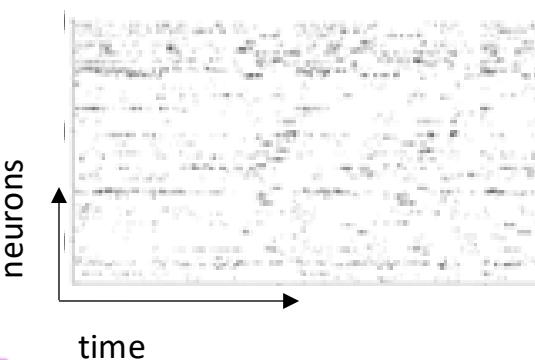
$$x = g(z)$$

Mixing function

- Non-linear ICA attempts to find non-linear components such that they correspond to a well-defined generative model (Hyvärinen et al., 2001; Jutten et al., 2010).
- The aim is to recover the inverse function g as well as the independent components z based on observations of x alone.

Latent (hidden) underlying
brain-state factors (z)

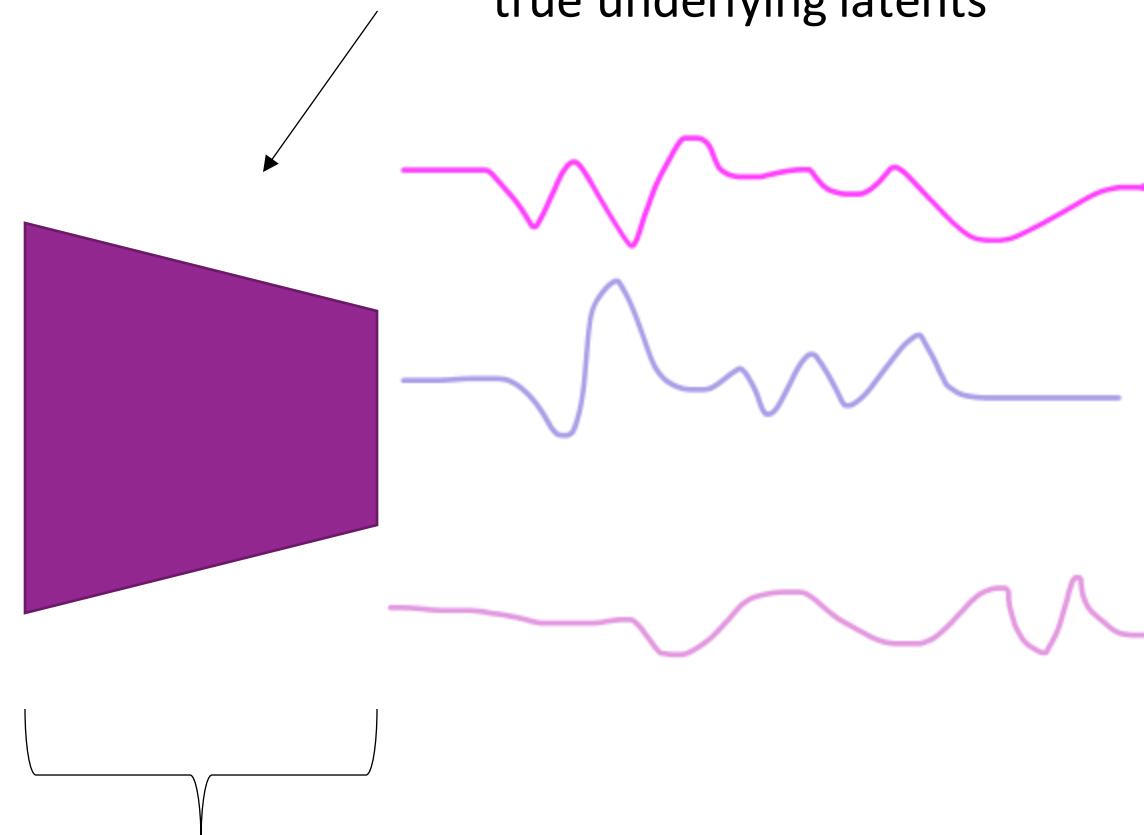
Observable neural data



z

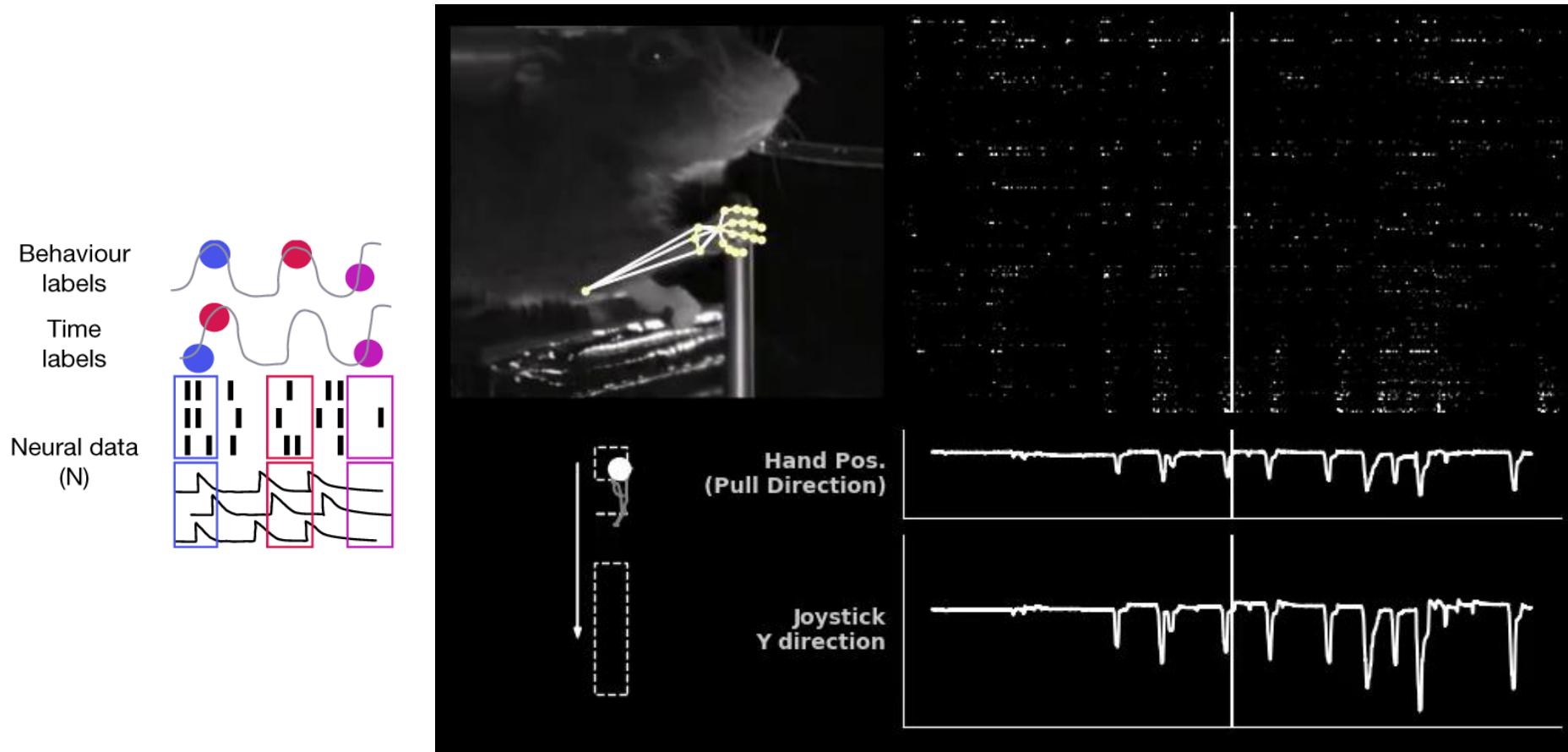
→
Mixing function

$x = g(z)$

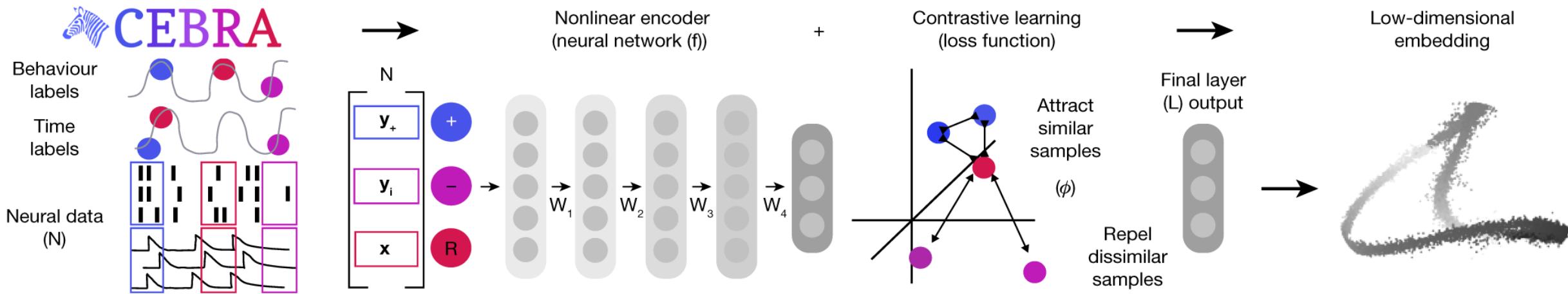


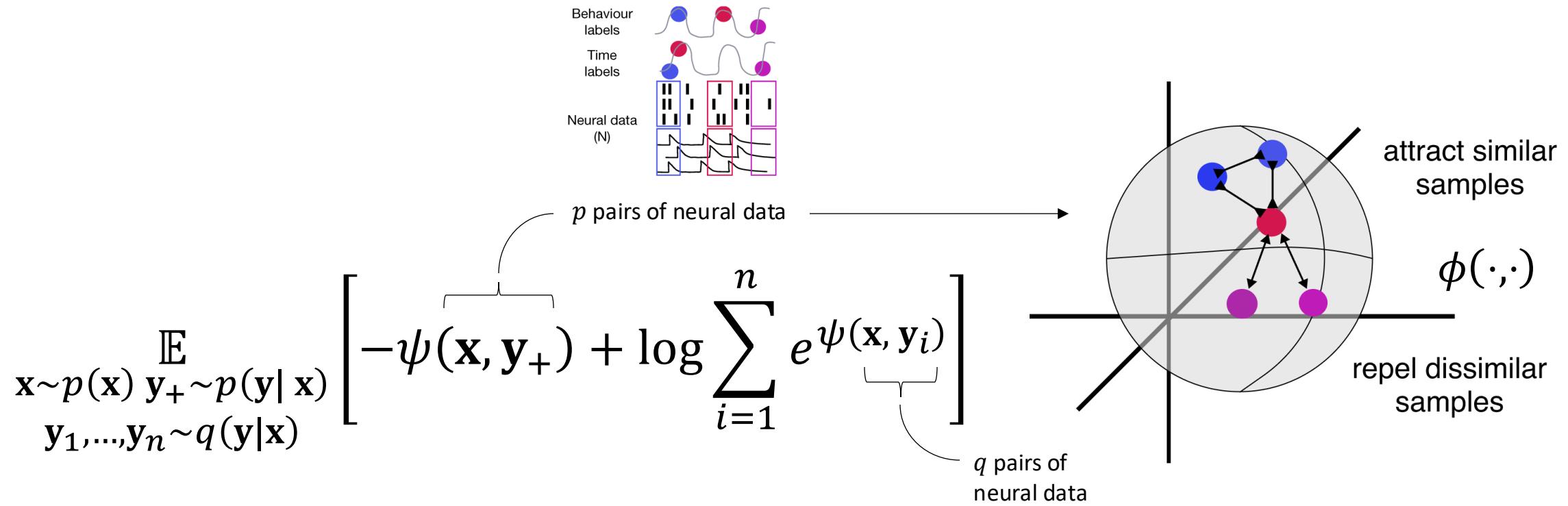
This can also be thought of as
dimensionality reduction

We can leverage paired behavior + neural data to learn latent embeddings



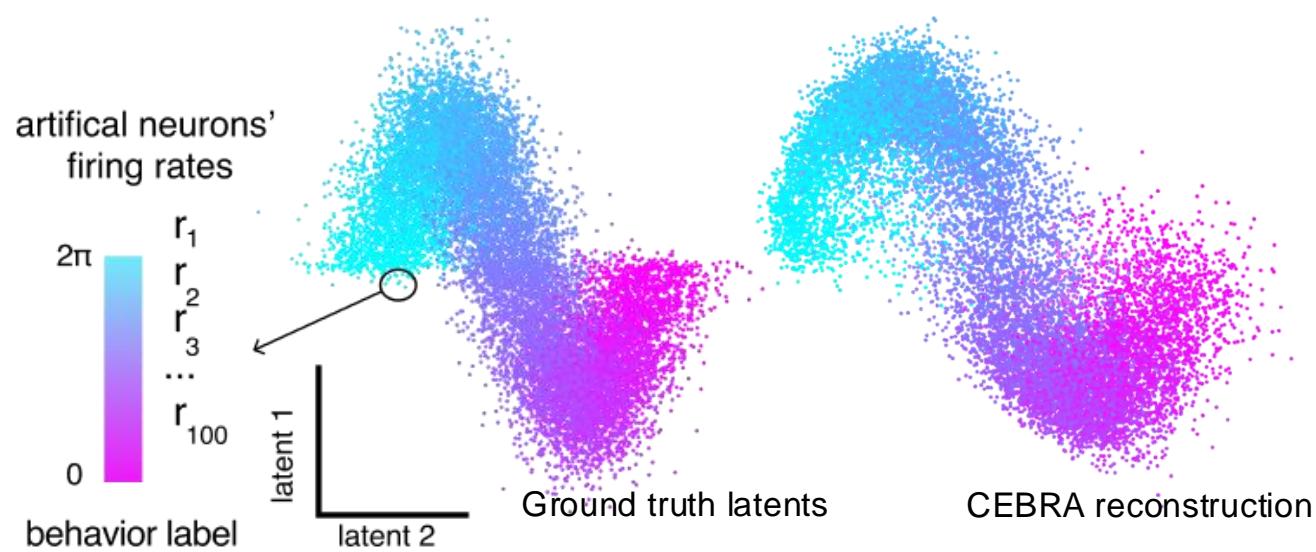
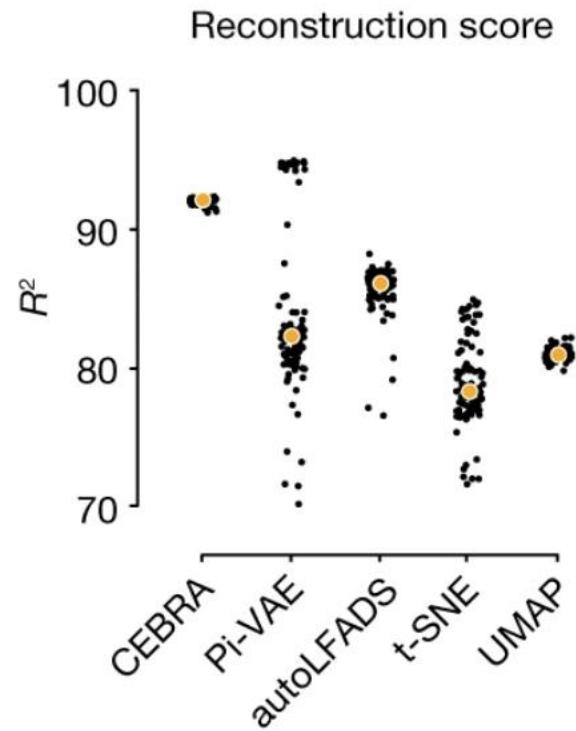
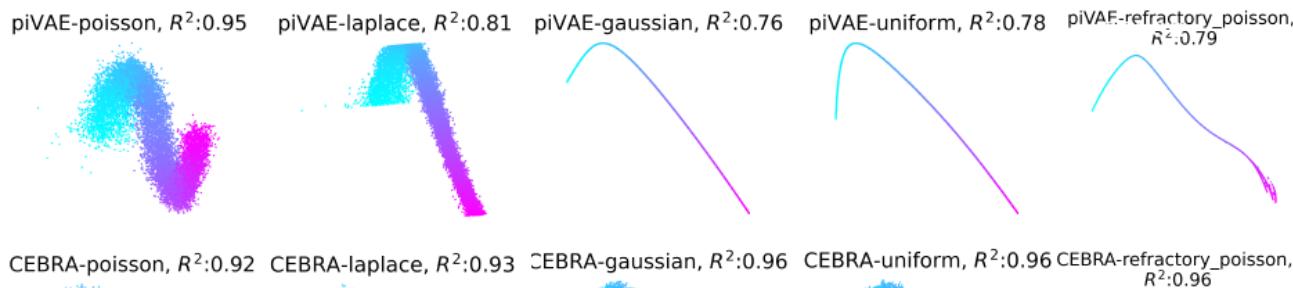
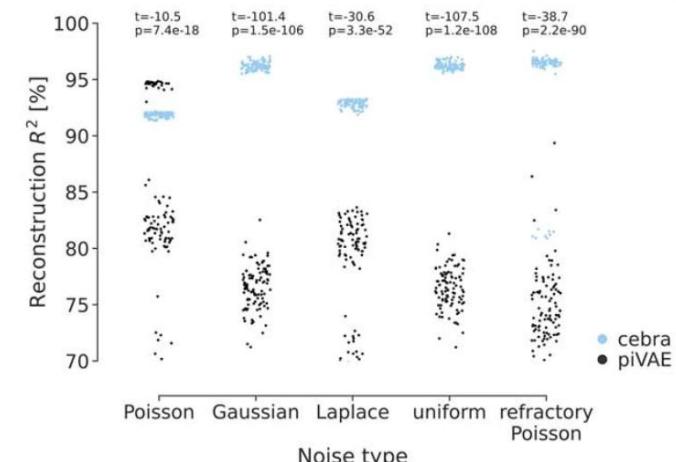
3D kinematics, reward, reward history, learning rate, trial timing, sensory inputs

 CEBRA : an algorithm for joint modeling of auxiliary & times series data**a**

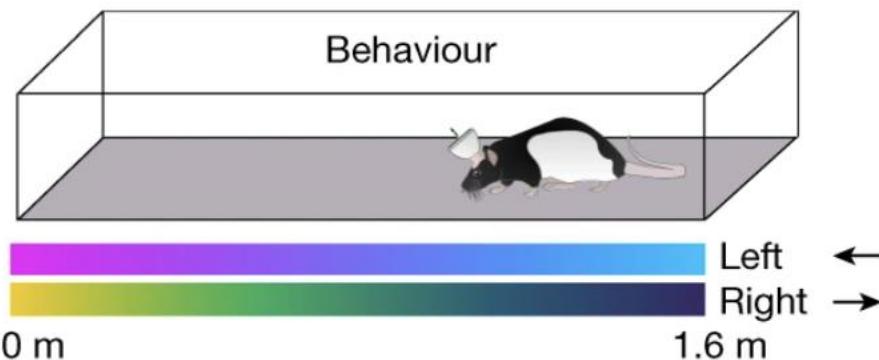
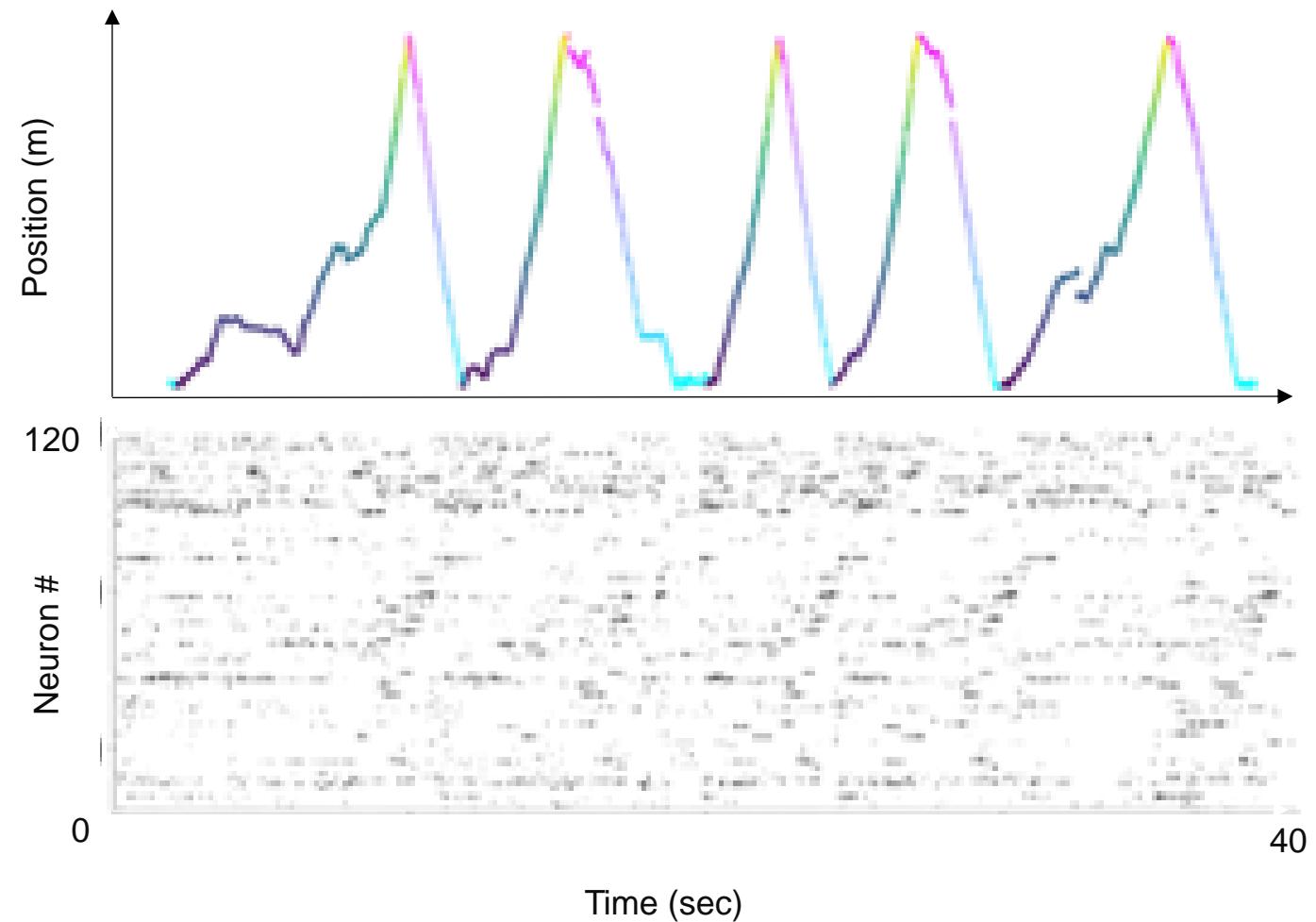
CEBRA : an algorithm for joint modeling of auxiliary & times series data


p = Positive distribution
 q = Negative distribution

CEBRA outperforms UMAP, tSNE, and generative models in an equivalent benchmarking setting



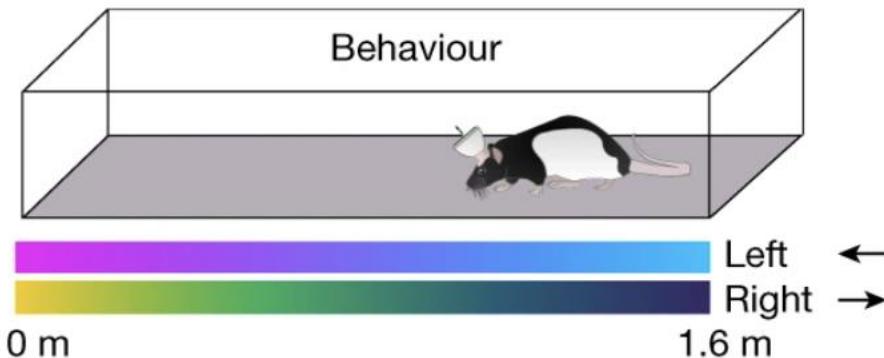
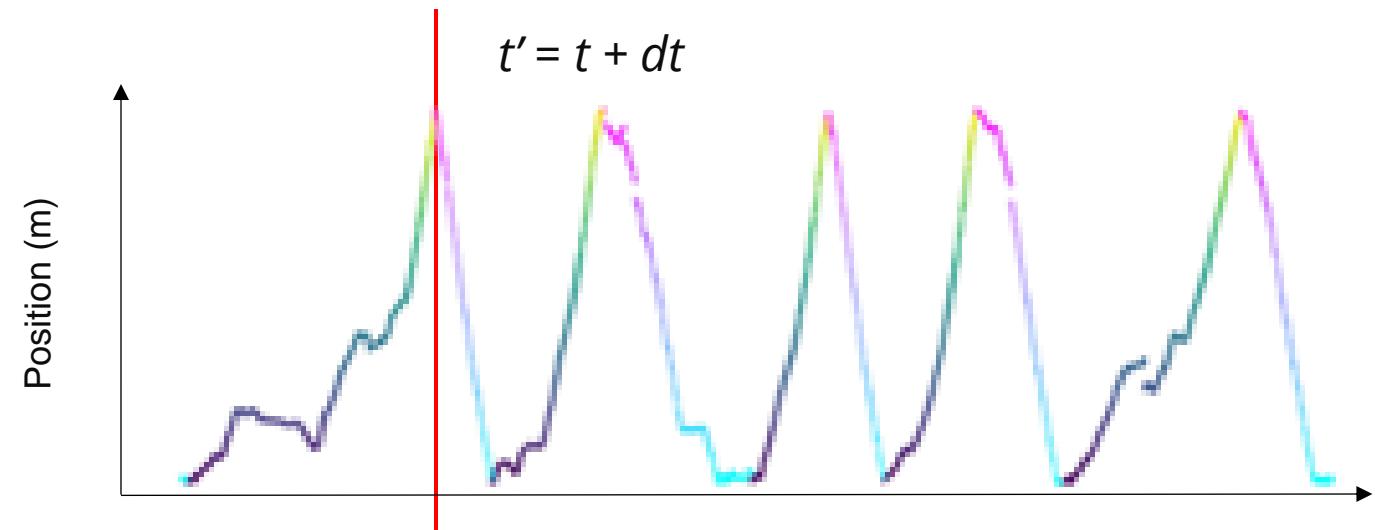
Highly consistent & high performance



- Data: Grosmark et al. 2016 Science

How to choose the positive/negative distributions to obtain embeddings?

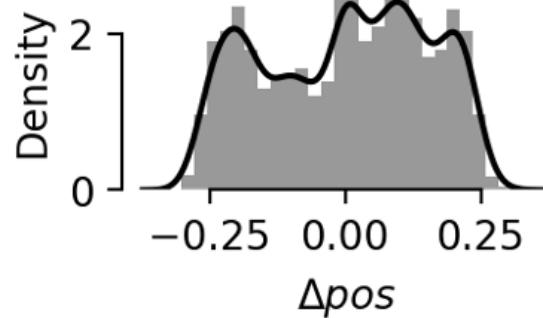
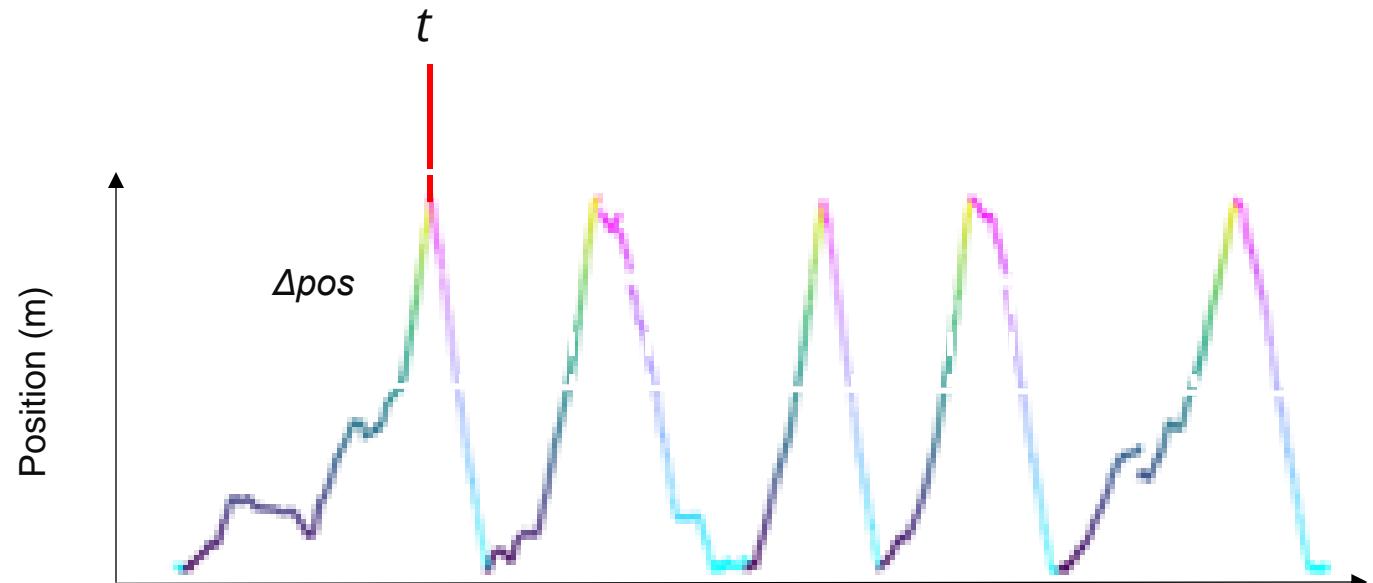
- Use time: nearby samples form a positive pair
 - Assumption: Interesting factors vary across time



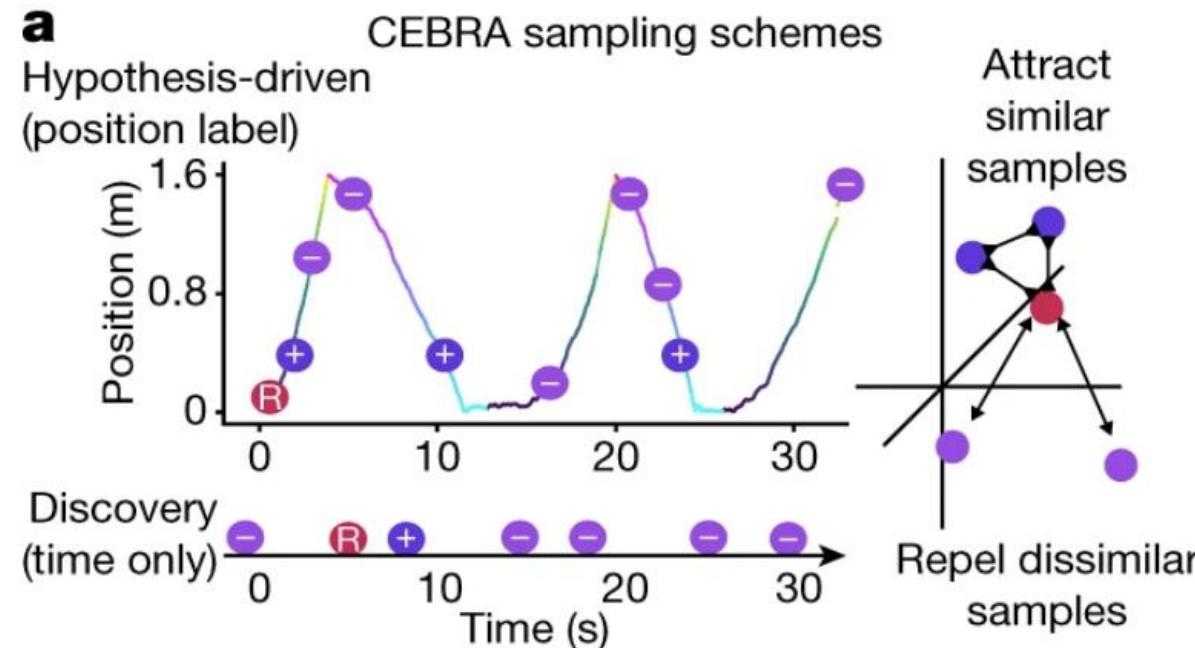
Self-supervised sampling based on time difference

How to choose the positive/negative distributions to obtain embeddings?

- **Build an empirical distribution of time differences**
→ *Behavior conditional distribution is independent of current location*

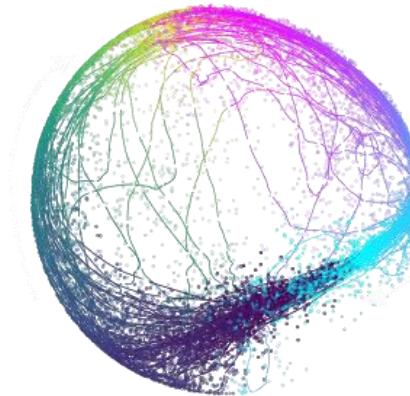


sampling based on empirical behavior differences



Erroneous: keep structure of neural data, behavior-label shuffled

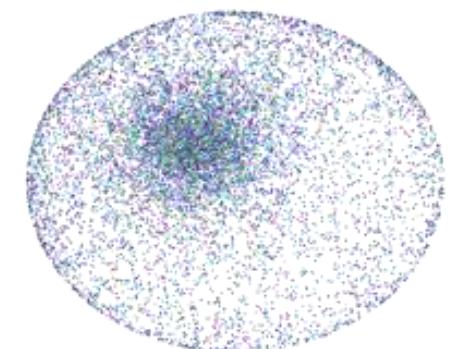
Discovery-driven SSL



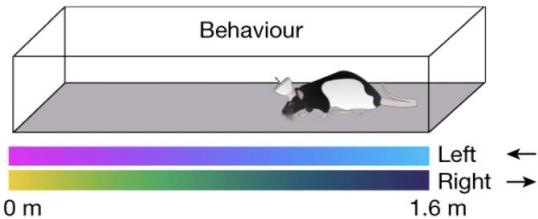
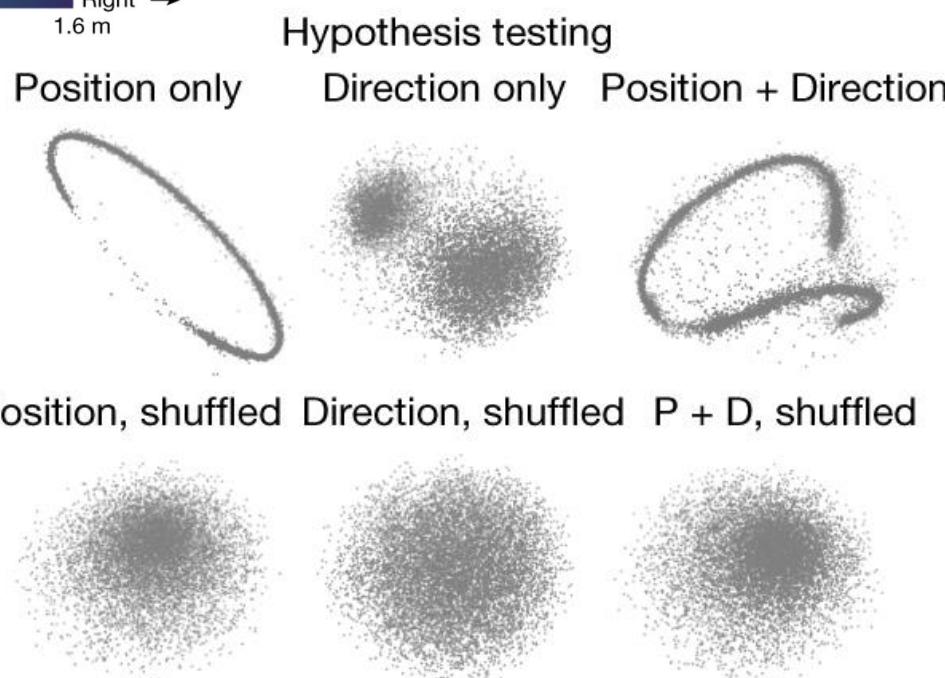
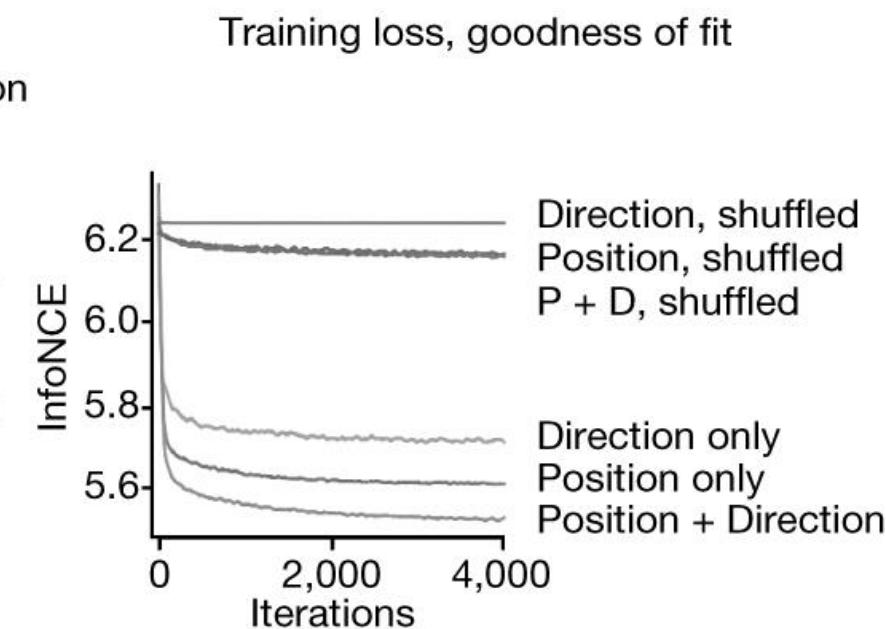
Hypothesis-guided SSL

Erroneous

Shuffle Control

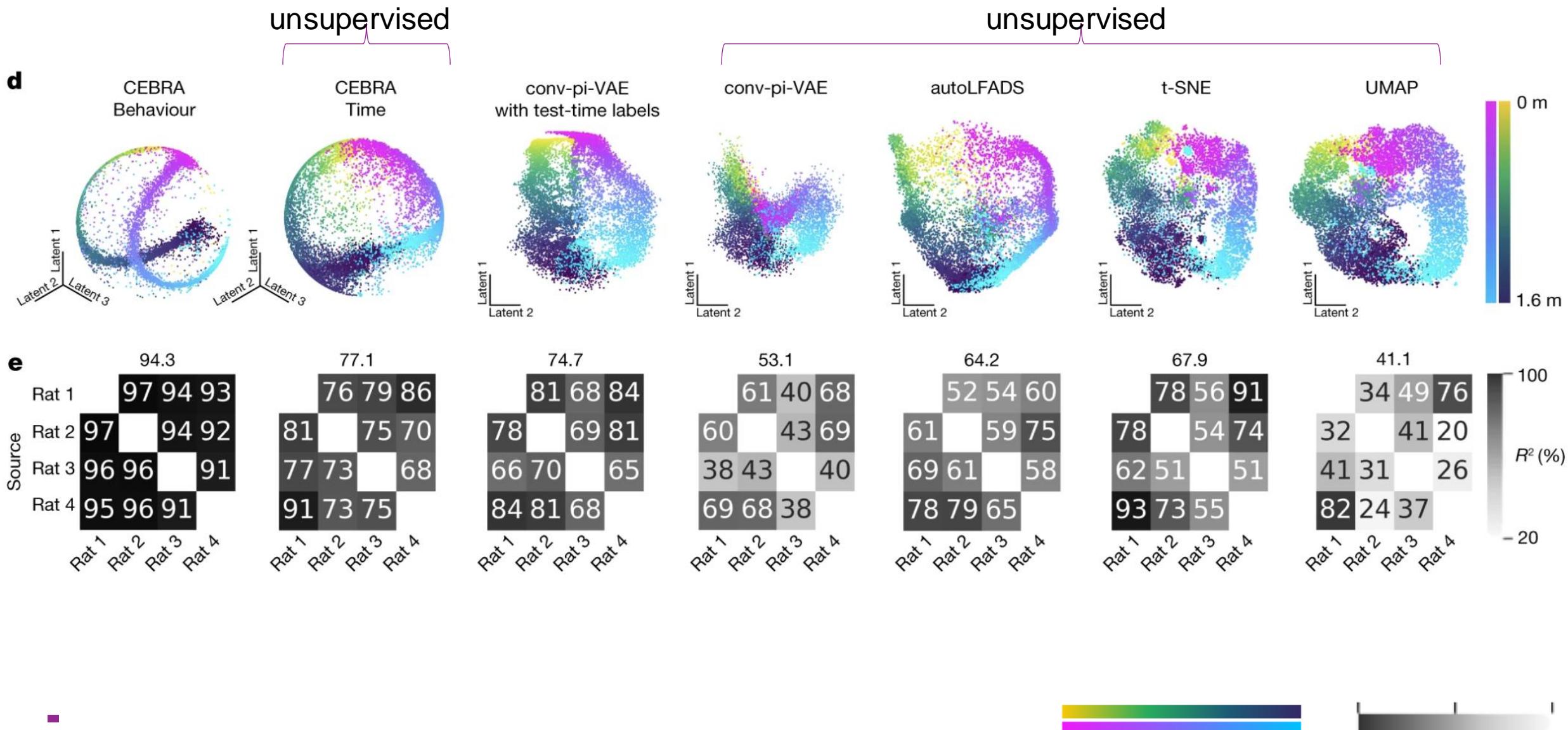


Hypothesis-guided latent embeddings

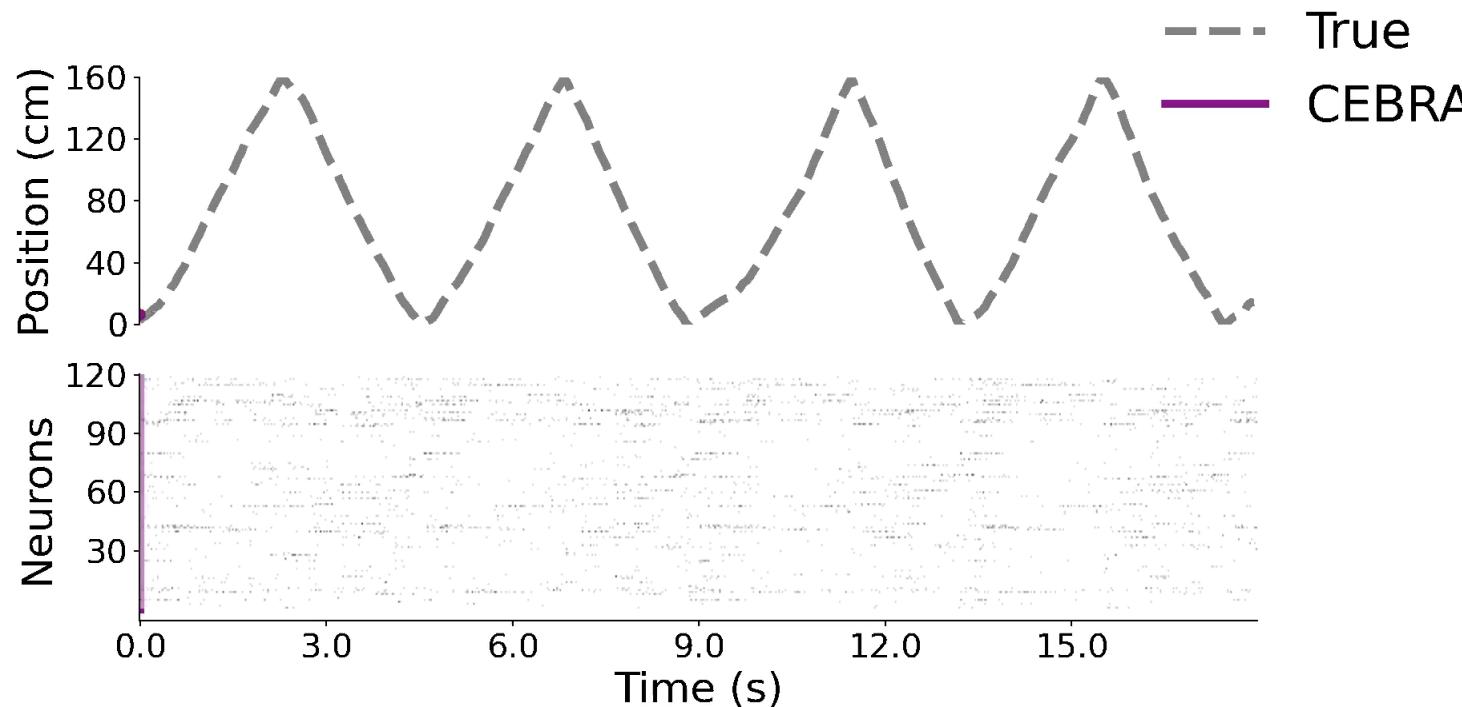
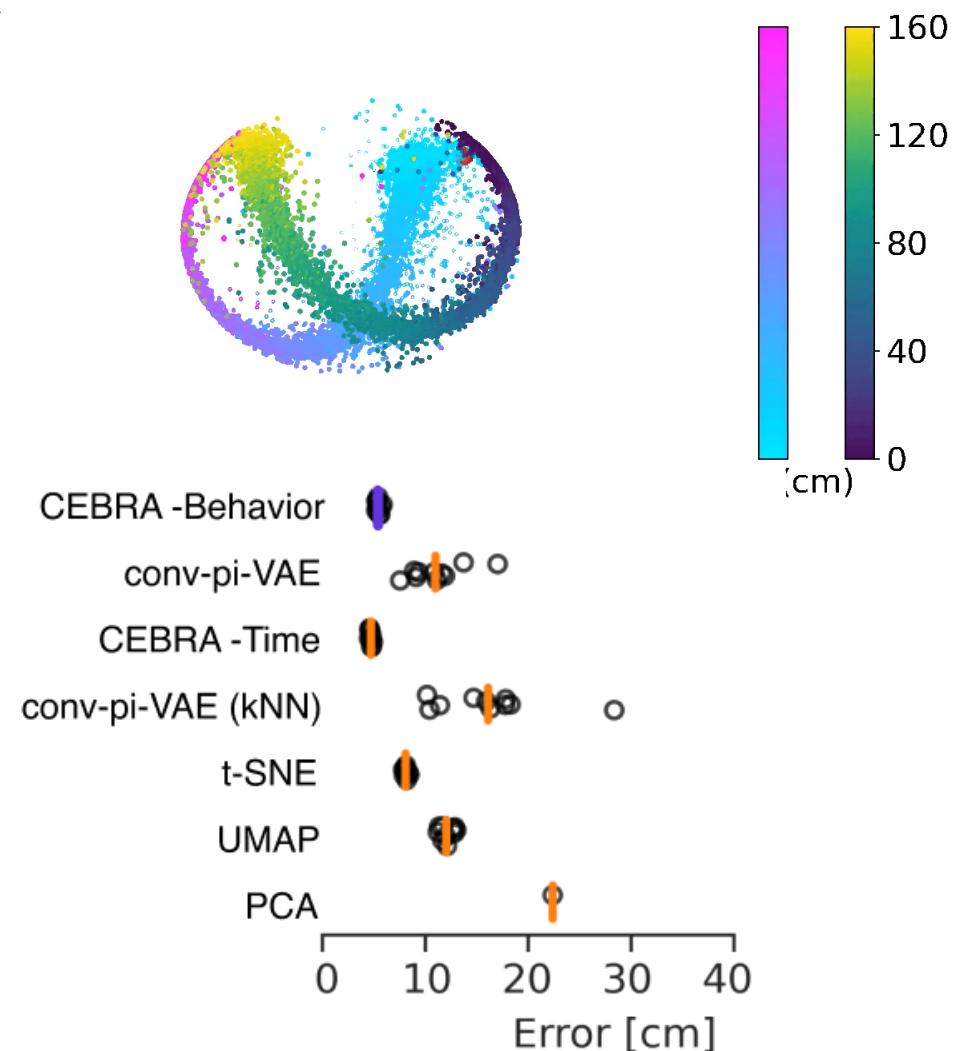


- goodness of fit is theoretically defined

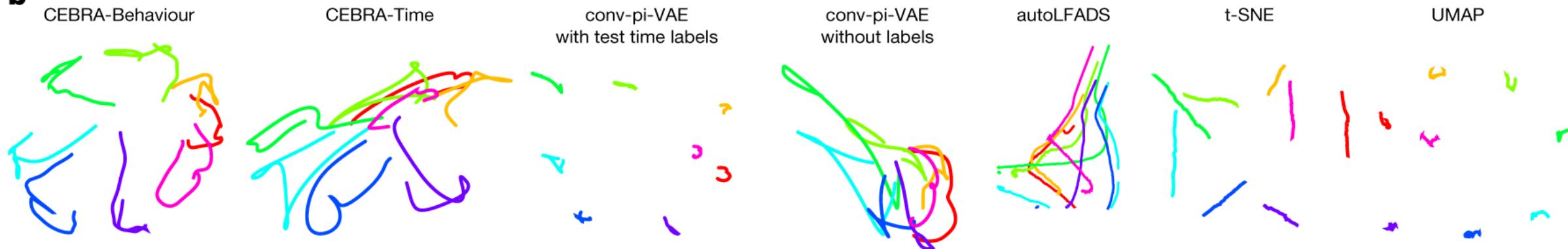
CEBRA yields highly consistent embeddings across different animals performing the same task



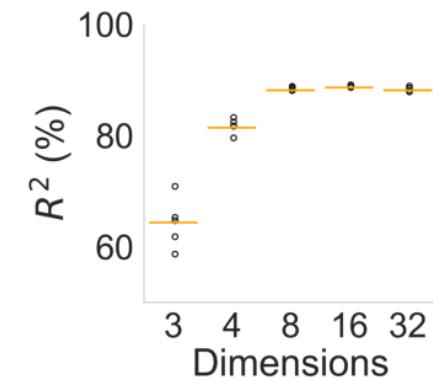
High performance decoding of space from hippocampus



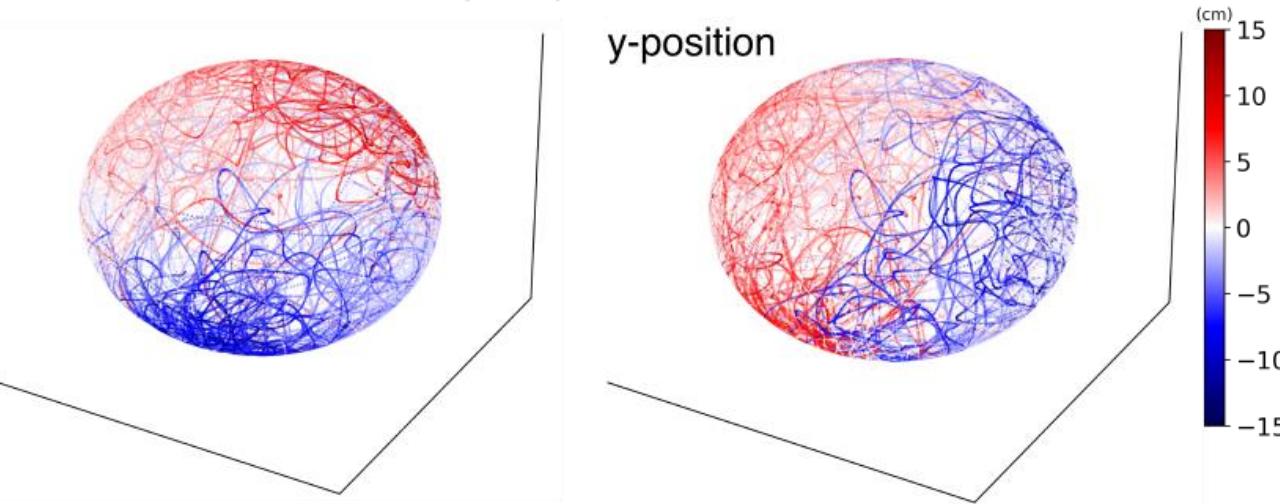
Somatosensory cortex: embeddings reveal positional and A vs. P dynamics

b

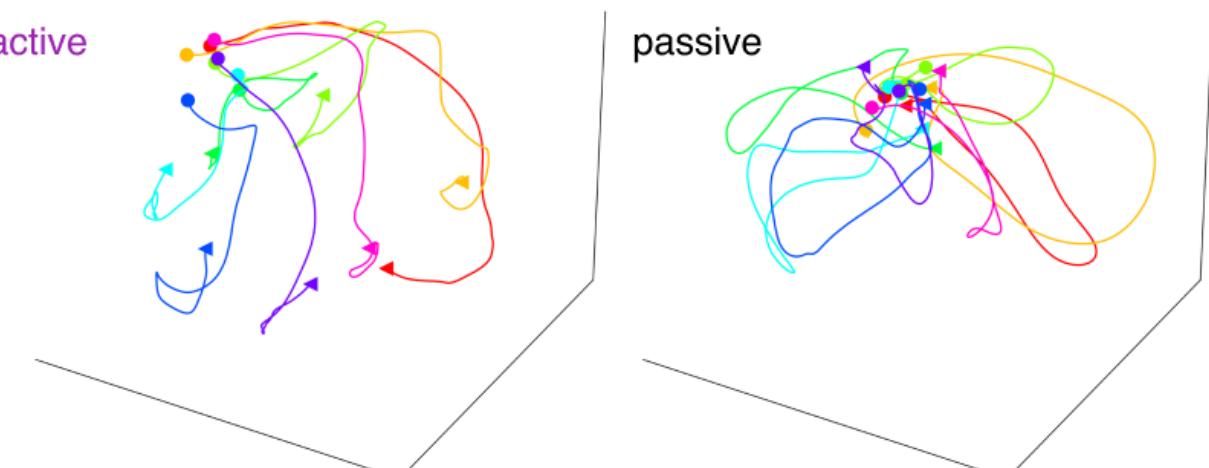
Somatosensory cortex: embeddings reveal positional and A vs. P dynamics



CEBRA-Time: no explicit positional information used

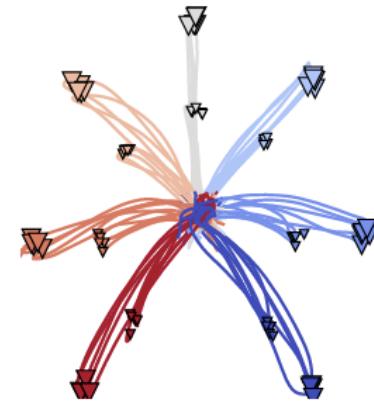


CEBRA-Behavior: labels are continuous position

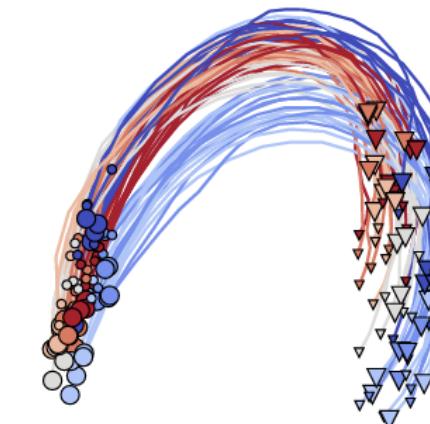


CEBRA can also provide an interpretable embedding space visualization of the data

(a) Reaching trajectory



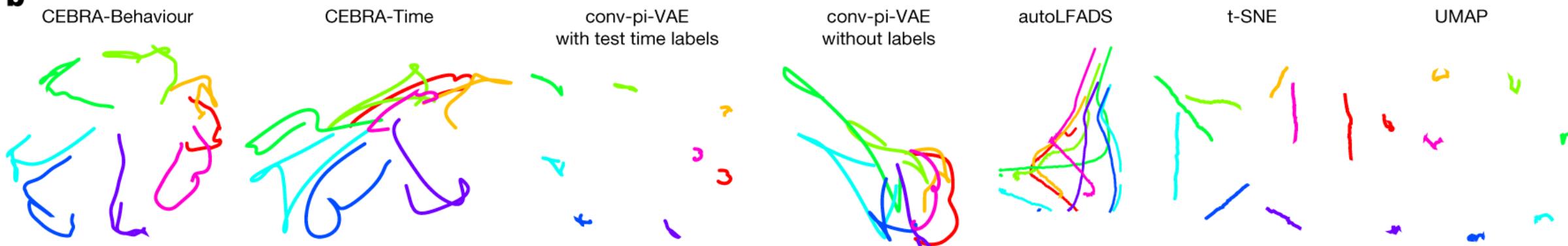
(b) PLDS



(c) PfLDS

pfLDS (Gao 2016)

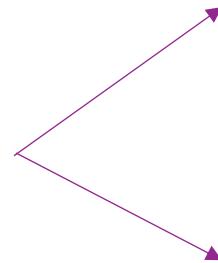
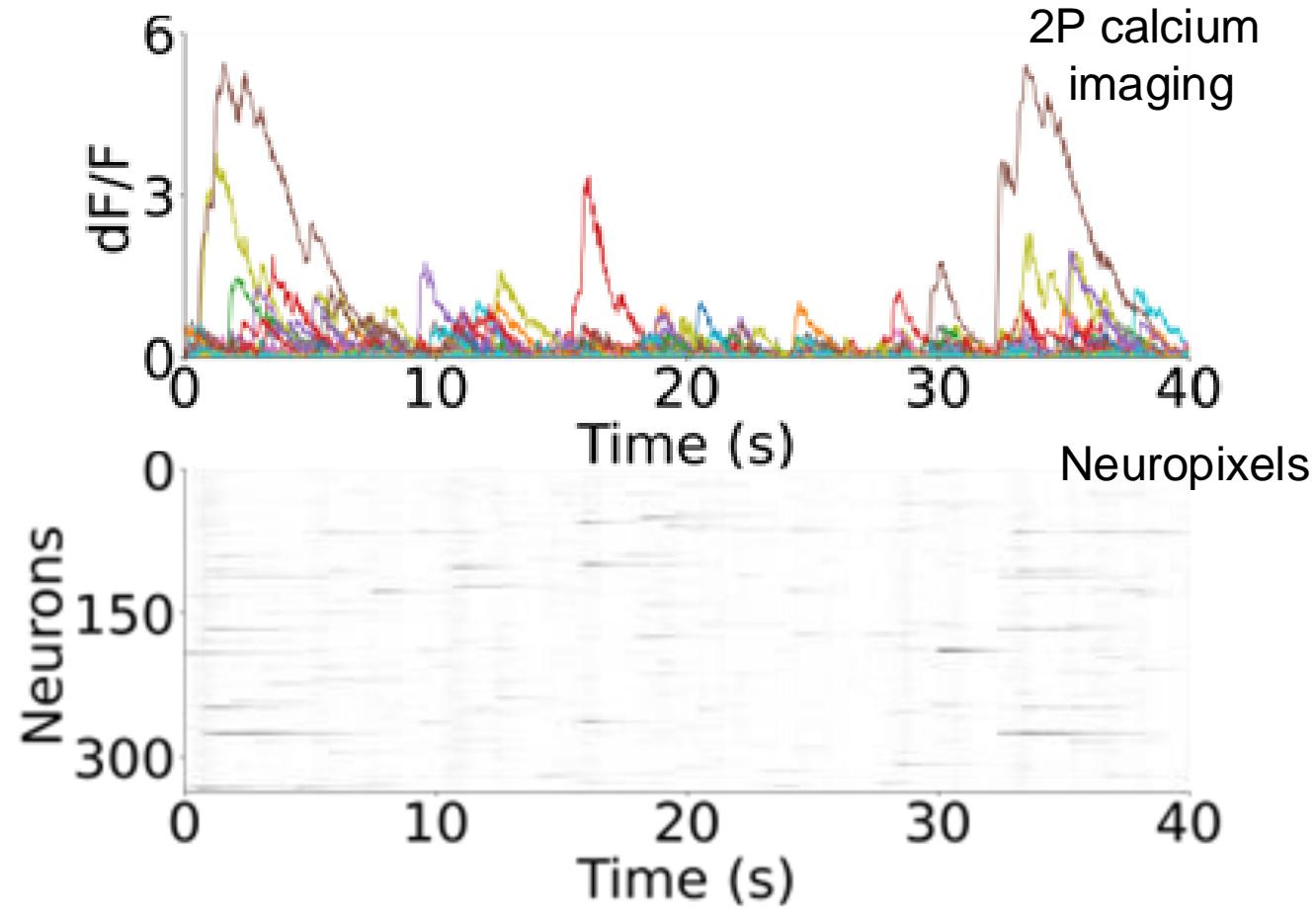
b



- CEBRA (Schneider, Lee, Mathis 2013)

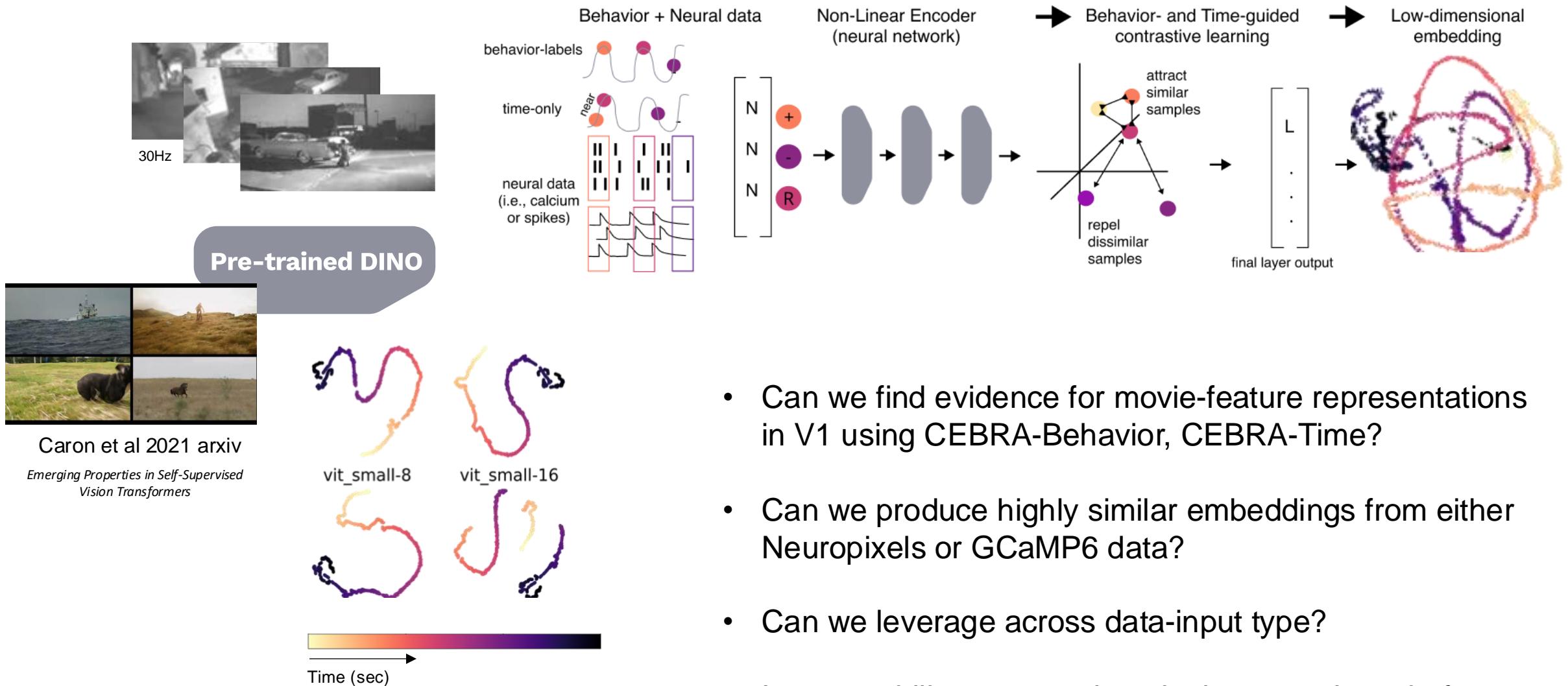
Using CEBRA to uncover differences in neural dynamics across the visual system

Learnable latent embeddings from V1: mapping naturalistic video to latent spaces across animals, sessions, modalities ...



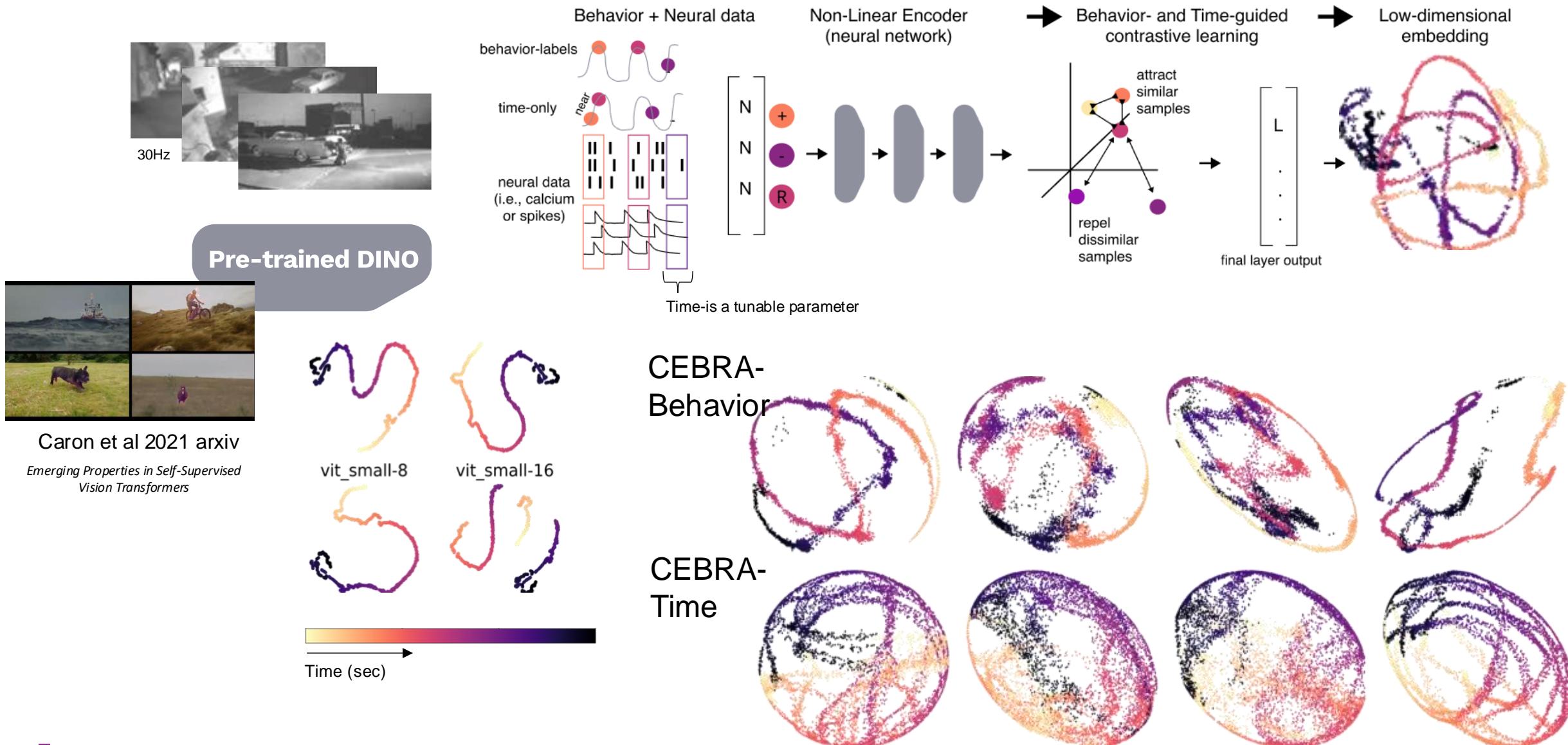
Data: de Vries et al. (2020)
Deitch, Rubin, and Ziv (2021)
■ Siegle et al. (2021)

Sensory input as “behavior” labels: leveraging visual latent features

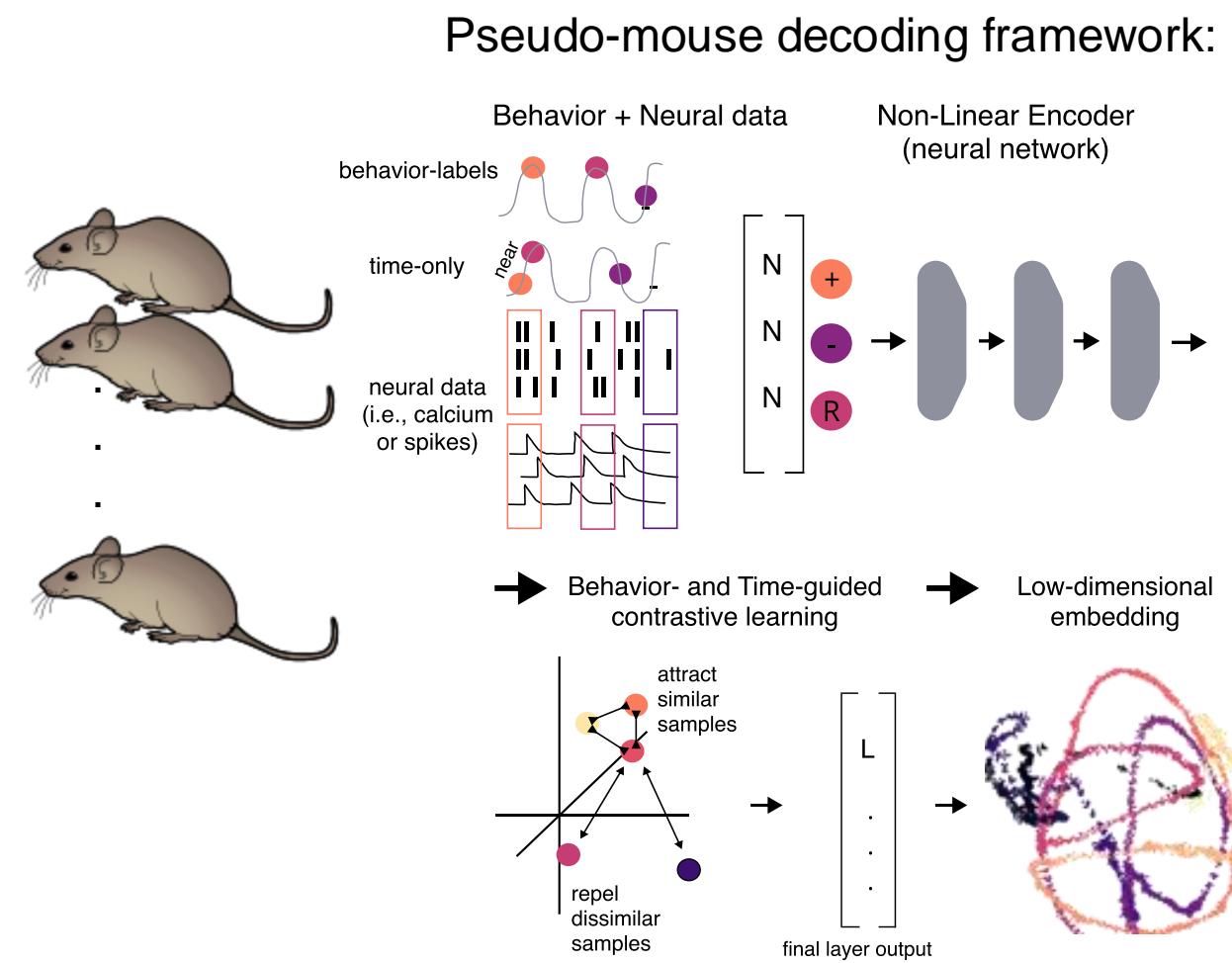
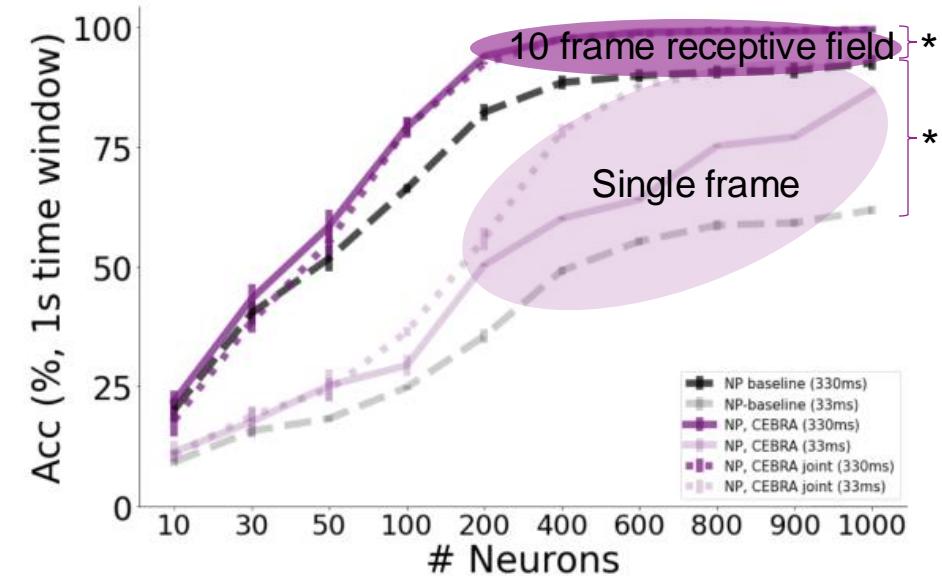
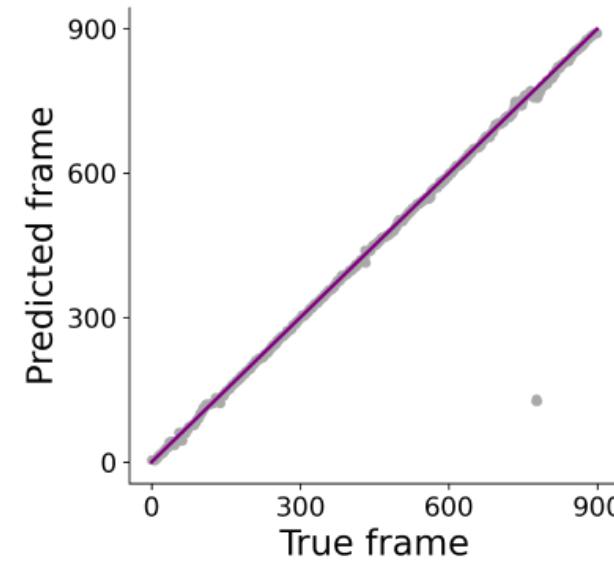


- Can we find evidence for movie-feature representations in V1 using CEBRA-Behavior, CEBRA-Time?
- Can we produce highly similar embeddings from either Neuropixels or GCaMP6 data?
- Can we leverage across data-input type?
- Interpretability: can we decode the natural movie frames from the neural latent embeddings?

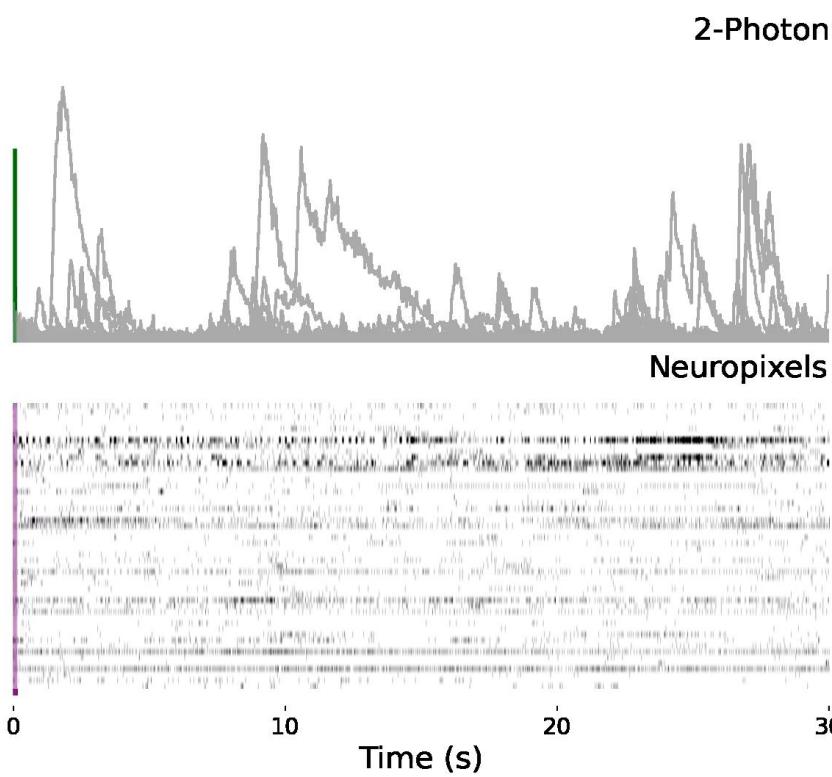
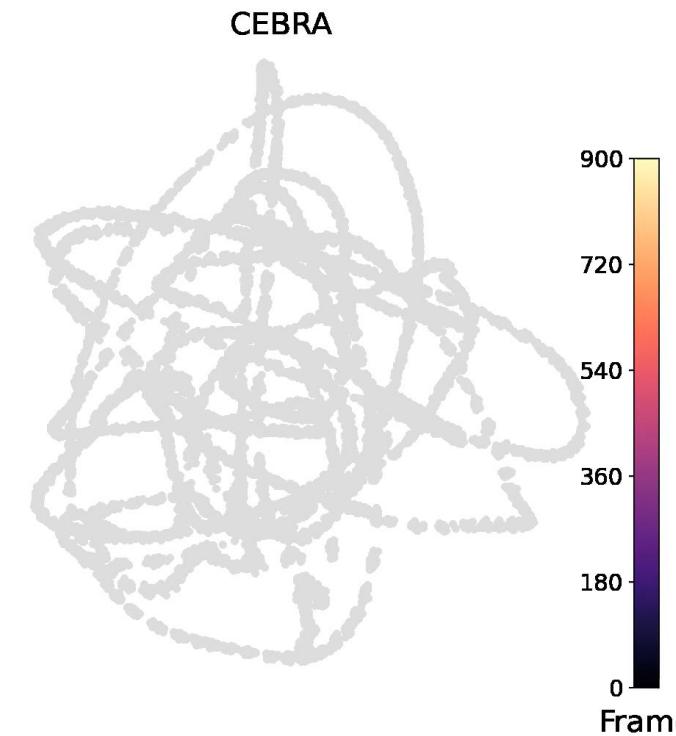
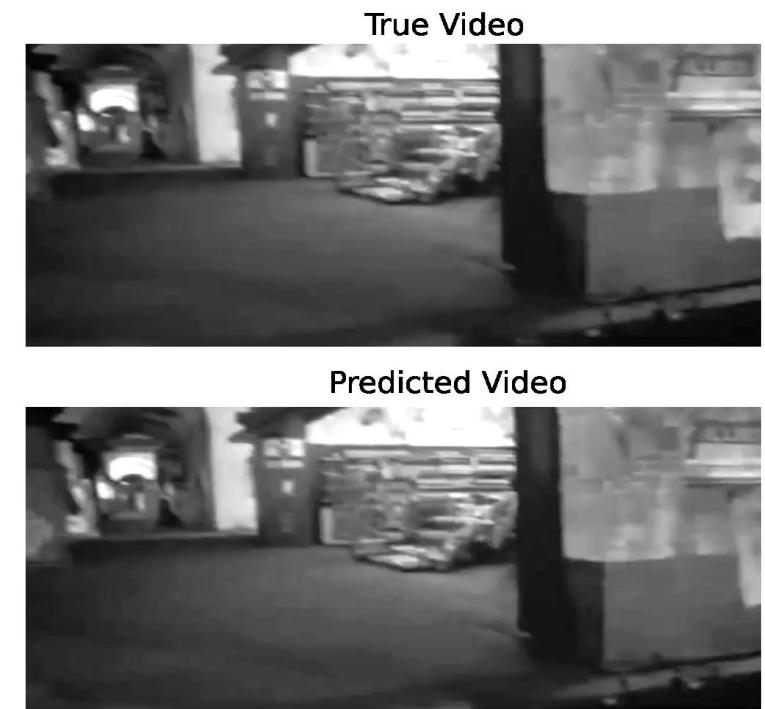
Sensory input as “behavior” labels: leveraging visual latent features



Improved decoding performance from CEBRA-based latent embedding



High performance decoding with CEBRA



Summary

- **Neural encoding** and **neural decoding** are fundamental descriptions of neural (coding) processing and data analysis.
- A fundamental goal is: how much information does \mathbf{K} have about \mathbf{x}
- We mathematically model this as $P(\mathbf{K}|\mathbf{x})$, where the neural response of population \mathbf{K} to a stimulus (or event) \mathbf{x} . \mathbf{K} is a vector representing the activity of N neurons, and each entry represents, e.g., the number of spikes in some time bin or the rate response of that particular neuron.
- **Generalized Linear Models** (GLMs) are very attractive for both individual neurons and populations, yet assume **linear θ** dynamics (careful: despite having a nonlinear parameter).
- Modern hardware advances continue to push the upper limit on the # of neurons we can record, and therefore we need new mathematical tools for understanding neural coding.
- Manifold of behavioral and neural data hypothesis comes into play...
- Two large classes of approaching modeling a system: data-driven or hypothesis (task)--driven
- Modern methods for mapping the statistical properties of neurons to a stimulus/behavior are fully-observable models and latent variable models.
- Latent variable models infer hidden (i.e., latent) variables that capture the underlying structure of the observed data through a joint probability distribution.
- VAEs and contrastive learning approach to neural analysis; contrastive learning (CEBRA) has highly attractive properties like combining across datasets and producing consistent latent embeddings.