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Neural data analysis 
Mackenzie Mathis, PhD



From genes to behavior through the lens 

of systems neuroscience

”At this level of analysis, neuroscientists 

study how different neural circuits analyze 

sensory information, form perceptions of the 

external world, make decisions, and execute 

movements.”
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How can we study this?



Hausmann et al. Current Opinion in Neurobiology 2021

Modeling adaptive behavior
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Data-driven modeling Task-driven modelling

GLMs
.
.
.
ANNs

Joint models that describe
neural variance & representations

Constrain ANN based on  
behavioral task to test 

hypotheses about a system

NN models that describe
neural variance & computationally 

constrain system 

Record from neural data 
during a behavioral task

A. Mathis Lab (Marin Vargas et al. in press Cell)

Sandbrink et al. 2023 eLife
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We are now able to 
record thousands of 

neurons 
simultaneously

Stevenson and Kording (2011), updated in 2022

http://www.nature.com/neuro/journal/v14/n2/full/nn.2731.html


CaImAn: CNN based feature extraction + deconvolution

Keypoint tracking with DeepLabCut

Large-scale behavioral & neural 

recordings call for new methods to 

link neural dynamics and behavior
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What information is our brain trying to encode & decode?

Stimulus Spikes

• How do neurons (K) respond to a certain stimulus (x)? 
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• We mathematically model this as P(K|x), where the neural response of population K to a 

stimulus (or event) x. 

• K is a vector representing the activity of N neurons, and each entry represents, e.g., the 

number of spikes in some time bin or the rate response of that particular neuron.

• Our brain needs to determine what is going on in the 

real world from patterns of spikes. 



What information is our brain trying to encode & decode?

Stimulus Spikes
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• Our brain needs to 

determine what is 

going on in the real 

world from patterns of 

spikes. 



What information is our brain trying to encode?

Stimulus Spikes
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- Pixels on a screen (Pillow et al. 2008)

- Events, like behavior: moving through an environment with arm or body

- other neurons!
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neural recordings in vivo

behavioral monitoring

When recording from just 20 neurons, there are over 

one million possible instantaneous ON/OFF patterns of 

spiking (220) for a small time bin; this number grows to 

one billion for 30 neurons (230)

In reality, this is much smaller due to neural 

connectivity constrains, but estimating all pattern 

frequencies reliably from typical recordings is 

impossible even for small populations!

Fully observed statistical models are tools that 

allow us to approximate the firing distribution with 

reasonable constraints …

Mapping behavioral actions to neural computations

Adapted from C. Hurwitz 2021 Current Opinion Neuro
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Adapted from C. Hurwitz 2021 Current Opinion Neuro

Computational methods for mapping (K) neural activity to a certain stimulus (x) 
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Generalized Linear Models

GLMsx
scalar output, y
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Generalized Linear Models:  many variants! 

Adapted from Dr. Cristina Savin

and neuromatch academy

Output typeLikelihood NonlinearityModel Name
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Logistic regression
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) Data: Grosmark et al. 2016 Science
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Neuron response

Stimulus (x), 

here behavior

of the animal

The model assumes the preceding 

behavior causes the spike

(“receptive field” of the model)
Temporal filter

𝛳 𝑝𝑡 = 𝑓 ෍

𝑖

𝜃𝑖 𝑥𝑡−𝑖
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Poisson GLM

image adapted from JW Pillow et al. Nature, 1-5 (2008) doi:10.1038/nature07140

• In the model, each neuron’s input is described by a set of linear filters: 
• a stimulus filter, or spatial receptive field (𝛳)

Output: 

discrete spikes

𝛳

𝑝𝑡 = 𝑒𝑥𝑝 ෍

𝑖

𝜃𝑖 𝑥𝑡−𝑖



Likelihood: All Data Points

•Joint probability as the product of individual probabilities

•Formula

•Assumes independence between data points
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Details: Poisson GLM

Poisson Distribution: Single Event

Simplify!!

Log Likelihood
Link Function and Predictors

• λ linked to predictors xt

• Formula: 

•𝛳 : model parameters ( as a vector)

• xt ​: predictors vector

•Probability of  events 𝑦𝑡 at time t

•Formula: 

•λ: rate parameter (average number of events)

•y!: factorial of y (number of events)
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Details: fitting the Poisson GLM

Fit the model to find parameters that 

maximize the log-likelihood:

Since the space is concave (a nice feature), in 

practice, we invert it so we can use gradient 

descent

Images from: https://machinelearningspace.com/a-

comprehensive-guide-to-gradient-descent-algorithm/
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Poisson GLM

JW Pillow et al. Nature, 1-5 (2008) doi:10.1038/nature07140

• In the model, each neuron’s input is described by a set 
of linear filters: 

• a stimulus filter, or spatio-temporal receptive field; 
• a post-spike filter, which captures dependencies on 

spike-train history (for example, refractoriness, 
burstiness and adaptation); 

• a set of coupling filters, which capture 
dependencies on the recent spiking of other cells

Output: 

discrete spikes

𝛳
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This model allows for accounting for 

“other” neurons activity patterns
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Purves, Figure 11.21

Experimental set up: the retina ganglion cell

In Pillow et al 2008, they stimulate 

RGCs with white noise:
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GLMs in action: Pillow et al. 2008

PSTH → 
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GLMs in action: Pillow et al. 2008

GLMs with coupling filters were 

shown to capture 40% more visual 

information from the retina than 

optimal linear decoding, indicating that 

GLMs can model additional details in the 
activity that are relevant for representing 

the stimulus!



CaImAn: CNN based feature extraction + deconvolution

Keypoint tracking with DeepLabCut

Large-scale behavioral & neural 

recordings call for new methods to 

link neural dynamics and behavior
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Summary, part 1

• Neural encoding and neural decoding are fundamental descriptions of neural (coding) 

processing and data analysis. 

• A fundamental goal is: how much information does K have about x

• We mathematically model this as P(K|x), where the neural response of population K to a 

stimulus (or event) x. K is a vector representing the activity of N neurons, and each entry 

represents, e.g., the number of spikes in some time bin or the rate response of that 

particular neuron.

• Generalized Linear Models (GLMs) are very attractive for both individual neurons and 

populations, yet assume linear 𝛳 dynamics (careful: despite having a nonlinear 

parameter).
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• In P-GLMs, external inputs, inputs from other neurons, and each neuron’s 

spiking history are weighted, summed up, and transformed by a rate 

function, which drives a stochastic process to model spiking activity. 

• For typical rate functions, fitting P-GLMs is a convex optimization problem 
that can be solved efficiently

• Despite their flexibility, GLMs cannot model networks with neurons 

that perform non-linear integration of multiple external inputs….

From GLMs to more powerful models …



Mathis Lab Data

Mapping behavioral actions to (nonlinear) neural computations

CaImAn: CNN based feature extraction + deconvolution Keypoint tracking with DeepLabCut
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Mehrdad Jazayeri and Arash Afraz Neuron 2017

Manifolds (embeddings) for measuring neural trajectories
28



Neural computations at population 
dynamics but not in 

single-neuron firing rates

Behaviorally relevant neural
 variance within a small 
number of dimensions

See also: Mante et al Nature (2013), Churchland et al Nature (2012), Sadtler et al Nature (2014), Elsayed & Cunningham Nat Neurosci (2017)

Urai et al Nat Neurosci 2022

Population analysis can reveal core 

principles of neural coding

Intrinsic 

Dimension

1

1

2

Inspired by Jazayeri & Ostojic 

Current Opinion Neurobio 2021

Chaudhuri, R. et al. Nat Neurosci  2019

Intrinsic attractor manifold 
and population dynamics of 
a canonical cognitive circuit 

across waking and sleep
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Mehrdad Jazayeri and Arash Afraz Neuron 2017

Manifolds for measuring 

neural trajectories

Linear (PCA) methods for 

measuring neural trajectories 

PC3

30



Linear (PCA) methods for 

measuring neural trajectories 

PC3

Altan E, Solla SA, Miller LE, Perreault 

EJ. PLoS Comput Biol. 2021

True dimension

PCA estimate
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Statistical models for capturing  the statistical structure 

of large-scale neural populations 

Adapted from C. Hurwitz 2021 Current Opinion Neuro

Dynamics

piVAE GIN Flow Non-linear Poisson Yes

^ Mapping back to spikes
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Dynamics of n neurons are modulated by LDS

w/ m-dim latent state (z) that evolves:

Nonlinear embeddings via linear dynamical system (LDS) 

A = linear dynamics matrix (m x m)

Q1 = covariance of initial states

Q = Gaussian noise

Observation model:

fLDS: exchange observation model 

such that each neuron as a separate 

nonlinear dep. on latent variable: 



Better nonlinear embeddings by conditioning on the latent space

Ground truth latents piVAE w/test labels piVAE w/o labels VAE

piVAE outperformed:

- LFADS (Pandarinath 2019)

- dPCA (Kobak 2016)

- PCA

- pfLDS (Gao 2016)

Limitations:

- No identifiably guarantee*

- Restrictive assumptions on 

the generative model 

(Poisson)

 
*Not consistent across animals, 
cannot combine across datasets/can’t 

separate the latents

Label-based variational
 auto encoder – piVAE: Zhou & Wei NeurIPS 2020

Z X

observationlatent

P ( X | Z )

y

label

P ( Z | y )
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Identifiable: “the sources can be separated”- Aapo Hyvärinen

Identifiable non-linear ICA: the problem setting….

• Non-linear ICA attempts to find non-

linear components such that they 

correspond to a well-defined generative 
model (Hyvärinen et al., 2001; Jutten et 

al., 2010).

Latent (hidden) underlying 
brain-state factors (z)

Observable neural data

. . .

z x = g(z) 
Mixing function

time

n
eu

ro
ns

X = (x1, x2, ….xn)

Z = (z1, z2, ….zn)

• The aim is to recover the inverse 

function g as well as the 

independent components z based 

on observations of x alone.
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Latent (hidden) underlying 
brain-state factors (z)

Observable neural data

. . .

What we want: to learn the
 true underlying latents

z x = g(z) 
Mixing function

time

n
eu

ro
ns

This can also be thought of as 

dimensionality reduction
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We can leverage paired behavior + neural data to learn latent embeddings

3D kinematics, reward, reward history, learning rate, trial timing, sensory inputs ….  
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: an algorithm for joint modeling of auxiliary & times series data
38

Schneider, Lee, Mathis Nature 2023



𝔼
𝐱∼𝑝 𝐱 𝐲+∼𝑝 𝐲| 𝐱

𝐲1,…,𝐲𝑛∼𝑞 𝐲|𝐱

−𝜓 𝐱, 𝐲+ + log ෍

𝑖=1

𝑛

𝑒𝜓 𝐱, 𝐲𝑖

: an algorithm for joint modeling of auxiliary & times series data

𝑝 = Positive distribution
𝑞 = Negative distribution

𝜙 ⋅,⋅

𝑝 pairs of neural data

𝑞 pairs of 
neural data
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Ground truth latents CEBRA reconstruction

R2 of linear regression between 

true and reconstructed

Highly consistent 

& high performance

CEBRA outperforms UMAP, tSNE, and generative models
in an equivalent  benchmarking setting
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High performance and consistent latent embeddings: test-case, the CA1 map of space….
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Data: Grosmark et al. 2016 Science
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- Use time: nearby samples form a positive pair
- Assumption: Interesting factors vary across time

t’ = t + dt

Self-supervised sampling based on time difference

How to choose the positive/negative distributions to obtain embeddings?
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- Build an empirical distribution of time differences
→ Behavior conditional distribution is independent of current location

t

sampling based on empirical behavior differences

Δpos

How to choose the positive/negative distributions to obtain embeddings?
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Discover-driven and hypothesis-based embeddings

Erroneous: keep structure of neural data, behavior-label shuffled

44

Discovery-driven SSL

Hypothesis-guided SSL Shuffle Control



Hypothesis-guided latent embeddings
45

- goodness of fit is theoretically defined



CEBRA yields highly consistent embeddings across different animals performing the same task

46

unsupervisedunsupervised



High performance decoding of space from hippocampus



Somatosensory cortex: embeddings reveal positional and A vs. P dynamics

Data:Chowdhury 

et al 2020 eLife



Somatosensory cortex: embeddings reveal positional and A vs. P dynamics

Data:Chowdhury 

et al 2020 eLife

8)” trained concurrently 
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pfLDS (Gao 2016)

CEBRA (Schneider, Lee, Mathis 2013)

CEBRA can also provide an interpretable embedding space visualization of the data



Using CEBRA to unover differences in neural 

dynamics across the visual system
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Learnable latent embeddings from V1: mapping naturalistic video to latent spaces across 
animals, sessions, modalities … 

Neuropixels

2P calcium

 imaging

Data: de Vries et al. (2020)

Deitch, Rubin, and Ziv (2021)

Siegle et al. (2021)



Emerging Properties in Self-Supervised 
Vision Transformers

Caron et al 2021 arxiv

Time (sec) 

Sensory input as “behavior” labels: leveraging visual latent features

• Can we find evidence for movie-feature representations 

in V1 using CEBRA-Behavior, CEBRA-Time?

• Can we produce highly similar embeddings from either 

Neuropixels or GCaMP6 data?

• Can we leverage across data-input type?

• Interpretability: can we decode the natural movie frames 

from the neural latent embeddings?

30Hz



Emerging Properties in Self-Supervised 
Vision Transformers

Caron et al 2021 arxiv

Time (sec) 

Sensory input as “behavior” labels: leveraging visual latent features

Time-is a tunable parameter

30Hz

CEBRA-

Time

CEBRA-

Behavior



Improved decoding performance from CEBRA-based latent embedding

*

*
Single frame

10 frame receptive field

.

.

.

Pseudo-mouse decoding framework:
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High performance decoding with CEBRA



57

Summary

• Neural encoding and neural decoding are fundamental descriptions of neural (coding) processing 

and data analysis. 

• A fundamental goal is: how much information does K have about x

• We mathematically model this as P(K|x), where the neural response of population K to a stimulus (or 
event) x. K is a vector representing the activity of N neurons, and each entry represents, e.g., the 

number of spikes in some time bin or the rate response of that particular neuron.

• Generalized Linear Models (GLMs) are very attractive for both individual neurons and populations, 

yet assume linear 𝛳 dynamics (careful: despite having a nonlinear parameter).

• Modern hardware advances continue to push the upper limit on the # of neurons we can record, and 
therefore we need new mathematical tools for understanding neural coding.

• Manifold of behavioral and neural data hypothesis comes into play…

• Two large classes of approaching modeling a system: data-driven or hypothesis (task)--driven

• Modern methods for mapping the statistical properties of neurons to a stimulus/behavior are fully-

observable models and latent variable models.
• Latent variable models infer hidden (i.e., latent) variables that capture the underlying structure of the 

observed data through a joint probability distribution.

• VAEs and contrastive learning approach to neural analysis; contrastive learning (CEBRA) has highly 

attractive properties like combining across datasets and producing consistent latent embeddings.
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