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SUMMARY

It has been proposed that the nervous system has the capacity to generate a wide variety of movements
because it reuses some invariant code. Previous work has identified that dynamics of neural
population activity are similar during different movements, where dynamics refer to how the instanta-
neous spatial pattern of population activity changes in time. Here, we test whether invariant dynamics
of neural populations are actually used to issue the commands that direct movement. Using a brain-ma-
chine interface (BMI) that transforms rhesus macaques’ motor-cortex activity into commands for a neuro-
prosthetic cursor, we discovered that the same command is issued with different neural-activity patterns
in different movements. However, these different patterns were predictable, as we found that the
transitions between activity patterns are governed by the same dynamics across movements. These
invariant dynamics are low dimensional, and critically, they align with the BMI, so that they predict the
specific component of neural activity that actually issues the next command. We introduce a model of
optimal feedback control (OFC) that shows that invariant dynamics can help transform movement feed-
back into commands, reducing the input that the neural population needs to control movement. Alto-
gether our results demonstrate that invariant dynamics drive commands to control a variety of move-
ments and show how feedback can be integrated with invariant dynamics to issue generalizable
commands.

INTRODUCTION

The human brain can generate a vast variety of movements. It is
believed that the brain would not have such capacity if it used
separate populations of neurons to control each movement.
Thus, it has been proposed that the brain’s capacity to produce
different movements relies on reusing the dynamics of a specific
neural population’s activity.'™ While theoretical work shows
how dynamics emerge from neural activity transmitted through
recurrent connectivity,**~ it has been elusive to identify whether
the brain reuses dynamics to actually control movements.
Recent work on the motor cortex, a region that controls move-
ment through direct projections to the spinal cord” and other
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motor centers,®>'° has found that population dynamics are
similar across different movements. Specifically, the spatial
pattern of population activity at a given time point (i.e., the instan-
taneous firing rate of each neuron in the population) systemati-
cally influences what spatial pattern occurs next. Models of dy-
namics h that are invariant across movements® can predict the
transition from the current population activity pattern x; to the

subsequent pattern x,1:
Xt1 = h(X;) + input; + noisey, (Equation 1)

where external input (input;) and noise (noise;) are typically un-
measured. Recent work'' has provided the intuition that
invariant dynamics bias neural activity to avoid “tangling,” which
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occurs when the same activity pattern undergoes different tran-
sitions in different movements. These dynamic models have ex-
plained features of neural activity that were unexpected from
behavior,' """ such as oscillations,'? and have predicted neural
activity during different movements on single trials,’®'® for
single neurons’ spiking,'® for local field potential features,'®*°
and over many days.'®?' These models also help predict
behavior, '6-18:19:22

While past work characterized the statistical relationship
between invariant dynamics and behavior, it remains
untested if invariant dynamics are actually used to issue com-
mands for movement. This test requires identifying the causal
transformation from neural activity to command, where the
“command” is the instantaneous influence of the nervous
system on movement. This is a longstanding challenge in
understanding motor control. While past work has modeled
this transformation,”>° ongoing research reveals its
complexity,®~'0-26-28

We addressed this challenge with a brain-machine interface
(BMI)?°*2 in which the transformation from neural activity
to command was known exactly and determined by the
experimenter. We trained rhesus monkeys to use motor-cor-
tex population activity to move a two-dimensional computer
cursor on a screen through a BMI. The BMI transformed neu-
ral activity into a force-like command to update the cursor’s
velocity, analogous to muscular force on the skeleton. Thus,
an individual movement was produced by a series of com-
mands, where each command acted on the cursor at an
instant in time.

We discovered that the same command is issued with
different neural-activity patterns in different movements. Criti-
cally, these different patterns transition according to low-dimen-
sional, invariant dynamics to patterns that issue the next
command, even when the next command differs across move-
ments. Thus, our results demonstrate that invariant dynamics
drive commands to control different movements.

While past work has presented a view of how dynamics
operate in a feedforward manner, propagating an initial
state of activity”®>**** to produce movement, it has been un-
clear how feedback®**°=" integrates with invariant dynamics.
Given that the motor cortex is interconnected to larger motor-
control circuits including cortical®®**" and cortico-basal
ganglia-thalamic circuits,>%****> we introduce a hierarchical
model** of optimal feedback control (OFC) in which the
brain (i.e., larger motor-control circuitry) uses feedback to
control the motor-cortex population which controls move-
ment.*>*® Our model reveals that invariant dynamics can
help transform feedback into commands, as they reduce the
input that a population needs to issue commands. Altogether,
our results demonstrate that invariant neural dynamics are
both used and useful for issuing commands across different
movements.

RESULTS

BMI to study neural population control of movement

We used a BMI*"™* to study the dynamics of population activity
as it issued commands for movement of a two-dimensional com-
puter cursor (Figure 1A). Population activity (20-151 units) was
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recorded using chronically implanted microwire-electrode ar-
rays spanning the bilateral dorsal premotor cortex and primary
motor cortex. Each unit’s spiking rate at time t (computed as
the number of spikes in a temporal bin) was stacked into a vector
of population activity x;, and the BMI used a “decoder” given by
matrix K to linearly transform population activity into a two-
dimensional command:

command; = Kx;. (Equation 2)
The command linearly updated the two-dimensional velocity
vector of the computer cursor:

velocity, = command; + « * velocity, _, + offset. (Equation 3)

We note that the BMI was not identical across the two sub-
jects, as neural activity was modeled with different statistical dis-
tributions (Gaussian for monkey G and a point process*’:*®
for monkey J; see STAR Methods section neuroprosthetic
decoding).

The decoder was initialized as subjects passively watched
cursor movement, calibrated as subjects used the BMI in closed
loops*® without performing trained overt movement and then
fixed for the experiment (Figure 1B). Critically, the decoder was
not fit during trained overt movement, as was done previously, '®
so it did not demand neural dynamics associated with overt
movement.

To study control of diverse movements, we trained monkeys
to perform two different tasks (Figures 1C and 1D). Monkeys per-
formed a center-out task in which they moved the cursor from
the center of the workspace to one of eight radial targets, and
they performed an obstacle-avoidance task in which they
avoided an obstacle blocking the straight path to the target.
Our tasks elicited up to 24 conditions of movement (with an
average of 16—17 conditions per session), where each condition
is defined as the task performed (“co” = center-out task; “cw”/
“ccw” = clockwise/counterclockwise movement around the
obstacle in the obstacle-avoidance task) and the target achieved
(numbered 0-7).

Importantly, the BMI enabled us to identify when neural activity
issued the same command in different conditions (Figures 1E, 1F,
and S1). We considered two-dimensional, continuously valued
commands as the same if they fell within the same discrete
bin for analysis. We categorized commands into 32 bins
(8 angular x 4 magnitude) based on percentiles of the continu-
ously valued distribution (Figure S1A; STAR Methods section
command discretization for analysis). In each session, a com-
mand (of the 32 discretized bins) was analyzed if it was used in
a condition 15 or more times (Figure S1B), for more than one con-
dition. Each individual command was used with regularity during
multiple conditions (average ~7 conditions) (Figure S1B), within
distinct local “subtrajectories” (Figures 1F and S1; STAR
Methods section cursor and command trajectory visualization).

Using the BMI to test whether invariant dynamics are
used to control different movements

The BMI enabled us to test whether the pattern of neural
activity systematically influences the subsequent pattern
and command. We can visualize an activity pattern x; as a
point in high-dimensional activity space, where each neuron’s

Current Biology 33, 2962-2976, July 24, 2023 2963




¢? CellPress

OPEN ACCESS

Current Biology

A
population activity decoder command (2D) cursor (2D) At
X K KX, velocity (V,) position (p,) (passive observation)
K)(t pt
Vi Closed-loop
Z > decoder calibration
VA
Vv
- Pey Experiment
@ BMI neurons (20-151) v, = Kxtvgta po=p A (fixed decoder)
C Center-Out Task Obstacle-Avoidance Task D
Y °
) ]
3 $ ; °
g 3 oz I o ¢
5,18
o ? °
g 8
c 1
0
co obs co obs
Monkey G J
E Example command X position subtrajectory
AR NN
= ccw 0 time: t-5 10t t+1 t+5
==co1 & —
cow 1 V2 2 2N T BN 2 B A4
~co2 | P
cw? ] RS I
=-co 3
“ccw 3 A
== CCW 4 N
w5 ‘\\\\3*5\\\\‘

> v a8 7 >

( '\"\E\E

-500 ms

Figure 1. BMI to study neural population control of movement
(A) Schematic of the BMI system.

(B) Schematic of decoder calibration.

(C) Single trials of BMI control.

(D) Average target-acquisition time per session.

500 ms

Oms

(E) Example of the same command (black arrow) being issued during single trials under different conditions. The example command was in the —45° direction and

the smallest magnitude bin of analysis.

(F) Left: the average command subtrajectory from —500 to 500 ms. Right: the average position subtrajectory from —500 to 500 ms.

See Figure S1 for analysis of subtrajectories.

activity is one dimension, and visualize the transition between
two patterns x; and x;.1 as an arrow (Figure 2A). Then, dy-
namics can be visualized as a flow field in activity space.
This flow field is invariant because the predicted transition
for a given neural-activity pattern (i.e., its arrow) does not

2964 Current Biology 33, 2962-2976, July 24, 2023

change, regardless of the current command or condition.
Because there are more neurons than dimensions of the com-
mand, different activity patterns can issue the same com-
mand®*°? (Figure 2B), as is believed to be true in the natural
motor system.?*?4°C The BMI decoder defined the “decoder
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difference between two neurons’ instantaneous
activity x»(t) — x1(t), symbolized with orange ar-
rows (top right) indicating the command’s magni-
tude and sign.

(C) A trajectory of commands (orange arrows) pro-
duces one whole movement. Movements 1 (blue)
and 2 (green) are driven by the same commands in
different temporal orders.

(D) Neural activity that follows invariant dynamics h
in order to issue the commands for movement.
See Figure S3D for another example of invariant
dynamics (decaying dynamics).
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conditions, we constructed shuffled da-
tasets where we identified all observa-
tions of neural activity issuing a given
command and shuffled their condition-la-
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X, - Neuron 2 Firing Rate (Hz)

’ ’

puBWwWOod

bels, for all commands (STAR Methods
section behavior-preserving shuffle of ac-
tivity). In this scenario, the distance is ex-
pected to be greater than zero simply
because average activity is estimated
from limited samples and thus is subject
to variability.

Overall, neural activity issuing a given
command significantly deviated across
conditions relative to the shuffle distribu-

X, - Neuron 1 Firing Rate (Hz)

space” as the dimensions of neural activity that determine the
command and the “decoder-null space” as the orthogonal di-
mensions, which have no consequence on the decoder. The
BMI allowed us to observe the precise temporal order of com-
mands (Figure 2C) and test whether activity trajectories fol-
lowed the flow of invariant dynamics to issue these commands
for movements (Figure 2D).

The same command is issued by different neural-
activity patterns in different movements

First, we tested whether the same command is issued by
different neural-activity patterns in different movements, as
would be expected if the current pattern influences the subse-
quent pattern and command (Figure 3A). The BMI enabled
this analysis with its concrete definition of the command for
movement. We calculated the distance between (1) the
average neural activity for a given command and condition
and (2) the average neural activity for the given command
pooled over conditions. We then tested if this distance is
larger than expected simply due to the variability of noisy neu-
ral activity. To emulate the scenario in which neural activity for
a given command has the same distribution across

X, - Neuron 1 Firing Rate (Hz)

tion (Figures 3B-3E). Distances averaged
within sessions ranged from 10% to
200% larger than shuffle distance
(Figure 3D; see also Figure S2 for additional distributions). Dis-
tances were significantly larger than shuffle distances for a large
fraction of individual command/condition tuples (~30% for mon-
key G, ~70% for monkey J), individual commands (~65% for G,
~90% for J) when aggregating over conditions, and individual
neurons (~40% for G, ~80% for J) when aggregating
over all command/condition tuples (Figure 3E). Further, these
deviations reflected the behavior; the distance between two pat-
terns issuing the same command correlated with the distance
between the command subtrajectories (Figures S6E-S6H).

Invariant dynamics predict the different neural-activity
patterns used to issue the same command
Given that a command was not issued with the same activity
pattern across conditions, we next constructed a model of
invariant dynamics. We used single-trial neural activity x; from all
conditions to estimate dynamics with a linear model (Figure 4A):
Xps1 = AX¢+b. (Equation 4)
We found that the dynamics A were low-dimensional (~4 di-
mensions) (Figures 5D and S3B) and decaying to a fixed point
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Figure 3. The same command is issued by different neural-activity patterns in different movements

(A) The same command (orange upward arrow) is issued in different conditions with different activity patterns (blue and green dots). These patterns deviate from
the condition-pooled average activity pattern for the command (black dot).

(B) Left: example neuron’s average firing rate (colored dots) for the example command and conditions from Figure 1F (position subtrajectories plotted at right
legend), as well as the condition-pooled average activity (dashed black line labeled “condition-pool”). The condition-shuffled distributions of average activity are
shown with gray boxplots indicating the 2.5™, 25™, 50, 75", and 97.5'" percentiles. Asterisk indicates the distance for the command/condition/neuron exceeded
the shuffle distance (p < 0.05); 5/9 or 62.5% of the examples were significant. Distance was significantly greater than shuffle distance aggregating over all
command/condition/neuron tuples: for monkeys G and J, p < 0.001 for 9/9 and 4/4 sessions, respectively; p < 0.001 for pooled sessions. Right: population
distance normalized to the shuffle mean (colored dots); 7/9 or 78% of examples were significant. Figure S2A shows population distances for all command/
condition tuples in this session.

(C) The distribution of normalized population distances across command/condition tuples. Colored ticks indicate distances in (B, right). See Figures S2B and S2C
for additional distance distributions.

(D) Normalized population distance averaged across command/condition tuples, for monkeys G and J: n = 9 and 4 sessions, respectively. Bars indicate the
average across sessions. Population distance was significantly greater than shuffle distances, aggregating over all command/condition tuples; for monkeys G
and J, p < 0.001 for 9/9 and 4/4 sessions, respectively; p < 0.001 for pooled sessions.

(E) Left: fraction of command/condition tuples with distance significantly greater than shuffle distance. Middle: fraction of commands with distance significantly
greater than shuffle distance, aggregating over conditions. Right: fraction of neurons with distance significantly greater than shuffle distance, calculated for each
command/condition separately and aggregating over all command/condition tuples for statistics. Dashed line indicates chance level (fraction equal to 0.05
significantly deviating from shuffle distance), and data points are each of 9 and 4 sessions for monkey G and J, respectively. See Figures SGE—S6H for the
relationship between population distance and command subtrajectories across pairs of conditions.

See Table S1 for statistical details.

rotational
| 12,13,16,22,51

(Figures S3A-S3C), contrasting with dynamics
observed during natural motor contro See Fig-

Concretely, we predicted the activity pattern given the command
it issued and its previous activity (Figure 4A; STAR Methods sec-

ure S3D for an illustration of how decaying invariant dynamics
can control different movements. Notably, a nonlinear-model
(a recurrently switching linear dynamical system®?) did not
outperform these simple linear dynamics (Figures S5C-S5F).
We asked whether invariant dynamics predict the different
activity patterns observed to issue the same command.
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tion invariant dynamics model predictions), combining the dy-
namics model (Equation 4) with the decoder (Equation 2). This
analyzed whether the model could predict the component of
the activity pattern that can vary when a given command is is-
sued, i.e., the component in the decoder-null space. For com-
parison, we also computed the prediction of neural activity
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Figure 4. Invariant dynamics predict the different neural activity patterns used to issue the same command
(A) A linear-dynamics model predicts the different activity patterns (cyan-outlined dots) that issue a given command (orange arrow) based on previous activity.
See Figure S6 for predictions of the relationship between activity patterns across pairs of conditions.

(legend continued on next page)
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only when given the command it issued (in the absence of a dy-
namics model). Further, we tested whether the invariant-dy-
namics model generalized to new commands and conditions.
Dynamics models were fit on neural activity specifically
excluding individual commands or conditions, and these models
were used to predict the neural activity for the left-out com-
mands or conditions (Figures 4B and S4; STAR Methods section
invariant-dynamics models).

We tested whether the dynamics model’s accuracy ex-
ceeded a dynamics model fit on the shuffled datasets that pre-
served the temporal order of commands while shuffling the
neural activity issuing the commands (STAR Methods section
behavior-preserving shuffle of activity). The shuffle-dynamics
model captured the expected predictability in neural activity
due to the predictability of commands in the performed
movements.

On the level of single time points in individual trials, we found
that the dynamics model significantly exceeded shuffle dynamics
in predicting the activity pattern issuing a given command based
on the previous pattern. Importantly, it generalized across “left-
out” commands and conditions (Figure 4C) and even when
much larger subsets of commands and conditions were left out
(Figure S4). We confirmed that the result was not driven by neural
activity simply representing behavioral variables (cursor kine-
matics, target location, and condition) in addition to the command
(Figures S5A and S5B), consistent with previous work.>*

The invariant-dynamics model also predicted the different
average activity patterns for each command and condition
(Figures 4D-4G) significantly better than shuffle dynamics. It
predicted 20%-40% of the condition-specific component of
neural activity (i.e., the difference between average activity for
a command/condition and the prediction of that activity based

Current Biology

on the command alone) (Figure 4F; STAR Methods section
invariant dynamics model predictions). The model predicted
neural activity for the vast majority of commands, conditions,
and neurons (Figure 4G), revealing that dynamics were indeed
invariant.

Finally, the dynamics model preserved structure of neural ac-
tivity across pairs of conditions (Figures S6A-S6D) and
predicted that the distance between two activity patterns
issuing the same command would be correlated with the dis-
tance between the corresponding command subtrajectories
(Figures S6E-S6I). Altogether, these results show that invariant
dynamics contribute to what activity pattern was used to issue
a command, generalizing across commands and conditions.

Invariant dynamics align with the decoder, propagating
neural activity to issue the next command
We next asked whether invariant dynamics were actually used
to transition between commands. Concretely, we used the dy-
namics model (Equation 4) to predict the transition from the
current activity pattern to the next pattern, and then we
applied the BMI decoder to this prediction of next pattern in
order to predict the next command (i.e., its continuous value)
(Figure 5A). We used the same dynamics model fit in Figure 4,
except here we did not combine the model with given informa-
tion about the command. This tests whether invariant dy-
namics predict the component of neural activity in the decoder
space, which actually drives the BMI. The BMI enabled this
analysis as it defines the transformation from neural activity
to command, which has not been measurable during natural
motor control.

We emphasize that one possibility is that invariant dynamics
accompany commands without actually driving them, i.e.,

(B) Models were tested on neural activity for a command (left, magenta) or condition (right, purple) left-out of training the model. See Figure S4 for elaboration on
invariant dynamics generalization.

(C) The coefficient of determination (R?) of models predicting neural activity given the command it issues and previous activity, evaluated on test data not used for
model fitting, for monkeys G and J, n = 9 and 4 sessions, respectively. See Figure S3 for properties of the models. Inset shows raw R2, where “shuffle” is the 95
percentile of the shuffle distribution of R2. Main panel shows R? normalized to shuffle. Full dynamics, command left-out dynamics, and condition left-out dy-
namics all predicted neural activity significantly better than shuffle dynamics. For each model, for monkeys G and J, p < 0.001 for 9/9 and 4/4 sessions,
respectively; p < 0.001 for sessions pooled. Figure S5 shows models with behavior variables and nonlinear dynamics.

(D) Left: average activity for the example neuron, command, and conditions from Figure 3B, left. Right: prediction of the activity in left panel by the full-dynamics
model (stars), the shuffle-dynamics model (black boxplot distribution), and the model predicting neural activity only using the command (gray triangle); 8/9
(88.9%) of these examples were predicted significantly better than shuffle dynamics. The full-dynamics model predicted individual neuron activity better than
shuffle dynamics, aggregating over all command/condition/neuron) tuples (for monkeys G and J, p < 0.001 for 9/9 and 4/4 sessions, respectively; p < 0.001 for
pooled sessions).

(E) Left: average population activity for the example command and conditions from Figure 3B right, visualized along the activity dimension that captured the most
variance (the first principal component, labeled “PC1,” of condition-specific average population activity). Right: prediction of activity in left panel by the full-
dynamics model (stars), the shuffle-dynamics model (black boxplot distribution), and the model predicting neural activity only using the command (gray triangle);
9/9 (100.0%) of these examples were predicted with significantly lower error than shuffle dynamics (prediction was calculated using full population activity, not
just PC1). The full-dynamics model predicted population activity with lower error than shuffle dynamics, aggregating over all command/condition/neuron tuples
(for monkeys G and J, p < 0.001 for 9/9 and 4/4 sessions, respectively; p < 0.001 for pooled sessions).

(F) Model R? from predicting the component of average neural activity for a given command that is specific to a condition, comparing the full-dynamics model
(dark gray bar and filled dots) with the mean of the shuffle-dynamics model (light bar and empty dots) (for monkeys G and J, n = 9 and 4 sessions, respectively).
The full-dynamics model predicted significantly more variance than shuffle dynamics (for monkeys G and J, p < 0.001 for 9/9 and 4/4 sessions, respectively;
p < 0.001 for pooled sessions).

(G) Left: fraction of command/condition tuples where full dynamics predicts average population activity significantly better than shuffle dynamics. Center: fraction
of commands where full dynamics predicts average population activity significantly better than shuffle dynamics, calculated for each condition separately and
then aggregated over all conditions for statistics. Right: fraction of neurons where full dynamics predicts the neuron’s average activity significantly better than
shuffle dynamics, calculated for each command/condition separately and then aggregated over all command/condition tuples for statistics. Dashed line in-
dicates chance level (fraction equal to 0.05 significantly better than shuffle), and data points are each of 9 and 4 sessions for monkey G and monkey J,
respectively.

See Table S1 for statistical details.
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Figure 5. Invariant dynamics align with the decoder, propagating neural activity to issue the next command

(A) A linear-dynamics model predicts the transition from current neural activity (colored rings) to next neural activity (cyan-outlined dots) and next commands
(orange symboils) (i.e., the component of neural activity in the decoder space).

(B) If invariant dynamics are low-dimensional and only occupy the decoder-null space (pink plane), then they do not predict the next command (i.e., the
component of neural activity in the decoder space).

(C) The coefficient of determination (R?) of models predicting next neural activity given current neural activity, evaluated on test data not used for model fitting (for
monkeys G and J, n =9 and 4 sessions, respectively). Inset shows raw R2, where shuffle is the 95" percentile of the shuffle distribution of R2. Main panel shows R?
normalized to shuffle. All models predicted next neural activity significantly better than shuffle dynamics. For each model, monkey G and monkey J. p < 0.001 for
9/9 and 4/4 sessions, respectively; p < 0.001 for sessions pooled.

(D) R? of full model for each neural activity dimension (dynamics eigenvector), sorted by R?.

(legend continued on next page)
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without predicting the component of neural activity in the
decoder space (Figure 5B). Invariant dynamics that are low-
dimensional might only occupy dimensions that are orthogonal
to the decoder, such that they only predict the component of
neural activity in the decoder-null space. To assess this possibil-
ity, we fit an invariant-dynamics model on the component of neu-
ral activity in the decoder-null space (“decoder-null dynamics”)
(STAR Methods section invariant dynamics models). While this
model was restricted to the decoder-null space, it maintained
similar dimensionality and eigenvalues to the full-dynamics
model (Figures S3B and S3C).

Both the full dynamics and the decoder-null-dynamics
model predicted next neural activity significantly better than
shuffle dynamics (Figure 5C) on the level of single time points
in individual trials. This reveals that invariant dynamics occu-
pied decoder-null dimensions. Given that the full-dynamics
model was low-dimensional (Figure S3B) and predicted ~4 di-
mensions more accurately than the rest of neural activity (Fig-
ure 5D), we next tested whether the dynamics aligned with the
decoder. Critically, the full-dynamics model predicted the next
command (Figure 5E) better than shuffle dynamics, while
decoder-null dynamics provided absolutely no prediction for
the next command, as expected by construction. The dy-
namics were invariant, as the full-dynamics model generalized
across commands and conditions that were omitted from
model fitting (Figure 5E) and predicted the next command
for the majority of (command, condition) tuples (Figure 5F).
These predictions preserved structure across pairs of condi-
tions, such that invariant dynamics indicated how similar
the next command would be across pairs of conditions
(Figures S6I-S6K).

Notably, invariant dynamics could predict the turn that the
next command would take following a given command in a spe-
cific condition relative to the average next command (averaged
across conditions for the given current command) (Figures 5G
and 5H). Specifically, the dynamics model predicted whether
the turn would be clockwise or counterclockwise (Figure 5H,
left) and the angle of turn (Figure 5H, right) better than shuffle dy-
namics. Altogether, these results show that invariant dynamics
align with the decoder and are used to transition between
commands.

Current Biology

An OFC model reveals that invariant dynamics reduce
the input that a neural population needs to issue
commands based on feedback

We observe that the invariant-dynamics model did not perfectly
predict transitions between commands. Throughout movement
there were substantial residuals (Figures S3E-S3G), consistent
with ongoing movement feedback driving neural activity in addi-
tion to invariant dynamics. However, it has been unclear how the
brain can integrate feedback with invariant dynamics to control
movement. Thus, we constructed a model of OFC that incorpo-
rates invariant neural dynamics.

We introduce a hierarchical model in which the brain (i.e., larger
motor-control circuitry) controls the neural population, which con-
trols movement of the BMI cursor (Figure 6A; Equation 5). Popu-
lation activity x; issues commands for movement and is driven by
three terms: invariant dynamics (which we hypothesize are
intrinsic to some connectivity of the neural population), input,
and noise. The brain transforms ongoing cursor state and popu-
lation activity into the input to the population, which is necessary
to achieve successful movement. Concretely, the brain acts as an
optimal linear feedback controller with knowledge of the neural
population’s invariant dynamics, the BMI decoder, and the condi-
tion of movement. In this formulation, the brain’s objective is to
achieve the target while using the smallest possible input to the
population. This objective minimizes the communication from
the brain to the population, which we can think of as minimizing
the specific synaptic input to the neural population that would
not be predicted based on the current state of the population’s
firing rates. Importantly, this incentivized the OFC model to opti-
mize input in order to use invariant dynamics to control move-
ment, rather than relying solely on input to issue commands.
Consistent with this formulation, experiments show that thalamic
input into motor cortex is optimized during motor learning.”*

Xts1 = AX¢ + b +input; + noise;
input; = %% (x,, cursor;, condition) .
cursor;,4 = BMI(cursor;, x;)

(Equation 5)

We used this model to address whether observed invariant dy-
namics could be used for feedback control; future work will be
needed to compare actual synaptic input to predicted input from

(E) Same as (C), except prediction of next command given current neural activity (monkey G [J]: n = 9 [4] sessions). All models except decoder-null dynamics
predicted next command significantly better than shuffle dynamics. For condition left-out dynamics (purple), monkey G and monkey J, p < 0.001 for 9/9 and 2/4
sessions, and p < 0.05 for 9/9 and 3/4 sessions, respectively; p = n.s. for 0/0 and 1/4 sessions, respectively; p < 0.001 for sessions pooled. For full dynamics and
command left-out dynamics, monkey G and monkey J, p < 0.001 for 9/9 and 4/4 sessions, respectively; p < 0.001 for sessions pooled.

(F) Analyses how well the next command is predicted for individual command/condition tuples. The full-dynamics model predicted condition-specific next
command better than shuffle dynamics, aggregating over all command/condition tuples (for monkeys G and J, p < 0.001 for 9/9 and 4/4 sessions, respectively;
p < 0.001 for pooled sessions). Left: fraction of command/condition tuples where full dynamics predicts the next command significantly better than shuffle
dynamics (monkeys G and J, n =9 and 4 sessions, respectively). Right: fraction of commands where full dynamics predicts the next command significantly better
than shuffle dynamics, calculated for each condition separately and then aggregated over all conditions for statistics (monkeys G and J, n = 9 and 4 sessions,
respectively). Dashed line indicates chance level (fraction equal to 0.05 significantly better than shuffle).

(G) Visualization of the command angle (left) (i.e., the direction that the command points) for the example command and conditions (right) from Figure 3B. For each
condition (each row): visualization shows the average current command angle (first column); the average next command angle (second column); and the pre-
diction of the average next command angle by the full-dynamics model (third column).

(H) For each command/condition tuple, prediction of the angle between the next command and the condition-pooled average next command. Left: fraction of
command/condition tuples for which the sign of the angle is accurately predicted (positive, turn counterclockwise; negative, turn clockwise). Full-dynamics
predictions are significantly more accurate than shuffle dynamics (for monkeys G and J, p < 0.001 for 9/9 and 4/4 sessions, respectively; p < 0.001 for pooled
sessions. Right: error in predicted angle. Full dynamics predictions are significantly more accurate than shuffle dynamics (for monkeys G and J, p < 0.001 for 9/9
4/4 sessions, respectively; p < 0.001 for pooled sessions).

See Table S1 for statistical details. See also Figure S5 for models with behavior variables and nonlinear dynamics.
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Figure 6. An OFC model reveals that invariant dynamics reduce the input that a neural population needs to issue commands based on feed-
back

(A) A model of OFC for movement that incorporates invariant neural dynamics.

(B) Three simulated trials for each condition (center-out [co], counterclockwise [ccw], and clockwise [cw] movements to 8 targets resulting in 24 conditions). Top:
full-dynamics model that uses invariant dynamics fit on experimental data. Bottom: no-dynamics model that uses dynamics matrix A set to 0.

(C) Input magnitude as a percentage of the no-dynamics model (for monkeys G and J, n = 9 and 4 sessions, respectively). The population required significantly
less input to control movement under the full-dynamics model (D, cyan) as compared with the no-dynamics model (ND, black). Un-normalized data were pooled
across sessions and compared with a linear mixed effect (LME) model between input magnitude and model category with session modeled as random effect (for
monkeys G and J, p < 0.001). Individual sessions were analyzed with a Wilcoxon signed-rank test that paired conditions across the models (monkeys G and J,
p < 0.05 for 9/9 and 4/4 sessions, respectively).

(D) Same as (C) but for decoder-null dynamics. There was no significant difference in input magnitude between decoder-null dynamics (D, pink) and no dynamics
(ND, black) when pooling across sessions (for monkeys G and J, p > 0.05) and on individual sessions (monkeys G and J, p < 0.05 for 0/9 and 0/4 sessions,
respectively).

(E) The same command is issued across conditions in both the full-dynamics model and no-dynamics model. Average position subtrajectories are shown locked
to an example command across conditions.

(F) Distance between average population activity for a command/condition and the average activity for the command pooling across conditions, normalized by
the mean distance of the shuffle distribution (gray boxplots showing mean, 0™, 25", 75™, and 95" percentile). Left: data from full-dynamics model. Right: data
from the no-dynamics model. Asterisk indicates that distance is greater than shuffle (p < 0.05).

(G) Same as (F), but each point is an individual session pooling over command/condition tuples (monkeys G and J, n = 9 and 4 sessions, respectively). Population
distances for the full-dynamics model were greater than shuffle. Data were pooled over sessions using a LME with session modeled as random effect (for both
monkeys, p < 0.001), and individual sessions were analyzed with a Mann-Whitney U test (p < 0.05 for monkeys G and J on 9/9 and 4/4 sessions, respectively). No
difference was detected in population distances between the no-dynamics model and shuffle when pooling across sessions (monkey G [J]: p > 0.05) and on
individual sessions (p < 0.05 for monkey G [J] on 0/9 [0/4] sessions).

(H) Same as (G), but for the decoder-null-dynamics model (D, pink). No difference was detected in population distances between the decoder-null-dynamics
model and shuffle when pooling across sessions (for both monkeys, p > 0.05) and on individual sessions (p < 0.05 for monkeys G and J on 0/9 and 0/4 sessions,
respectively). Also, no difference was detected in population distances between the no-dynamics model and shuffle when pooling across sessions (for monkeys
G and J, p > 0.05) and on individual sessions (p < 0.05 for monkeys G and J on 0/9 and 0/4 sessions, respectively).

See Table S2 for statistical details. See also Figures S3E—S3G for experimental data consistent with the model’s view that invariant dynamics interact with
ongoing input to control movement.

a feedback control model. For our question, the model needed to
produce task movements, but these movements did not need to

minimal input to a population that followed the invariant dynamics
we observed experimentally. In the no-dynamics model, the min-

resemble experimentally observed movements. We simulated
the model performing center-out and obstacle-avoidance move-
ments with the decoders that were used in BMI experiments
(STAR Methods section optimal feedback control model and
simulation). In the full-dynamics model, the brain computed the

imal input was computed to a neural population that had no
invariant dynamics (i.e., the A matrix was set to zero). To facilitate
comparison, we designed the models to receive the same noise
magnitude and to produce behavior with equal success and
target-acquisition time (Figure 6B).
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These simulations revealed that the population required signif-
icantly less input in the full-dynamics model than in the no-dy-
namics model (Figure 6C). This effect was erased in the
decoder-null-dynamics model (Figure 6D), in which the OFC
model’s invariant dynamics were restricted to the decoder-null
space. These results show that invariant dynamics that specif-
ically align with the decoder, as experimentally observed, can
help the brain perform feedback control, reducing the input
that the population needs to issue commands based on
feedback.

Finally, we confirmed the principle that feedback control with
invariant dynamics makes use of distinct activity patterns to
issue a particular command. As in Figure 3, we compared the
OFC models’ neural activity against shuffled activity that pre-
served the temporal order of commands. The population activity
distances for command/condition tuples were significantly
larger than shuffle in the full-dynamics model but not in the no-
dynamics model (Figures 6F and 6G). Further, this effect de-
pended on alignment between invariant dynamics and the
decoder, as we detected no difference between the decoder-
null-dynamics model and shuffle (Figure 6H). Thus, the OFC
model used different neural activity patterns to issue the same
command only when the invariant dynamics were useful for
feedback control.

DISCUSSION

Theoretical work shows that recurrent connectivity can give rise
to neural population dynamics for motor control’*> and endow
the brain with the capacity to generate diverse physical move-
ments.® Experimental work has found that population activity
in the motor cortex follows similar and predictable dynamics
across different movements.'"'%' But it has been untested
whether dynamics that are invariant across movements
are used to actually control movement, as the transformation
from neural activity to motor command has been challenging
to measure®®?” and model.?*?° Here, we use a BMI to perform
that test.

We discovered that different neural-activity patterns are used
to issue the same command in different movements. The activity
patterns issuing the same command vary systemically depend-
ing on the past pattern, and critically, they transition according to
low-dimensional, invariant dynamics toward activity patterns
that causally drive the subsequent command. Our results’ focus
on the command provides a conceptual advance beyond previ-
ous work that characterized properties of dynamics during
behavior, '>'%1%6 revealing that invariant dynamics are actually
used to control movement.

Further, it has been unclear how the brain could integrate
invariant dynamics with feedback®*>>~*" to control movement.
We introduce a hierarchical model** of OFC, in which the brain
uses feedback to control a neural population that controls
movement. Optimal-control theory reveals that invariant dy-
namics that are aligned to the decoder can help the brain
perform feedback control of movement, reducing the input
that a population needs to issue the appropriate commands.
The model verified that when invariant dynamics are used for
feedback control, the same command is issued with different
neural-activity patterns across movements. Altogether, these
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findings form a basis for future studies on what connectivity
and neural populations throughout the brain give rise to
invariant dynamics, whether the brain sends inputs to a neural
population to take advantage of invariant dynamics and
whether invariant dynamics actually drive muscles during phys-
ical movement.

These results provide strong evidence against one traditional
view that the brain reuses the same neural population activity
patterns to issue a particular command. This perspective is pre-
sent in classic studies that describe neurons as representing
movement parameters.®>°° It is still debated what movement
parameters are updated by motor cortex neurons,’®°"° as
population activity encodes movement position,®°? distance,®*
velocity,®'%? speed,®* acceleration,®® and direction of move-
ment,®*%5% as well as muscle-related parameters such as
force/torque,®* " muscle synergies,”"’> muscle activa-
tion,”*~"® and even activation of motor units.’” Regardless of
how commands from the motor cortex update physical move-
ment, our findings using a BMI strongly suggest that the motor
cortex does not use the same neural-activity pattern to issue a
specific motor command. Our findings instead support the
recent proposal that neural activity in the motor cortex avoids
tangling’" while issuing commands.

We found that invariant dynamics do not perfectly determine
the neural population’s next command. We propose that, as
the brain sends input to the neural population, it performs feed-
back control on the state of the neural population’s invariant dy-
namics in order to produce movement. This proposal expands
the number of behaviors for which invariant dynamics are useful.
This is because invariant dynamics do not need to define the pre-
cise neural trajectories'?** that produce movement; they only
need to provide useful transitions of neural activity that inputs
can harness to control movement. In our data, simple dynamics
(decaying dynamics with different time constants) in a low-
dimensional activity space (~4 dimensions) were used to control
many conditions of movement (~20 conditions). We find that
invariant dynamics constrain neural activity in dimensions which
do not directly matter for issuing current commands,*° so that in-
puts in these dimensions can produce future commands (Fig-
ure 6C). This mechanism refutes a simplistic interpretation of
the minimal intervention principle’® in which neural activity
should only be controlled in the few dimensions that directly
drive commands. This also accords with the finding that motor
cortex responses to feedback are initially in the decoder-null
space before transitioning to neural activity that issues correc-
tive commands.?*

There is almost surely a limitation to the behaviors that partic-
ular invariant dynamics are useful for. Motor-cortex activity oc-
cupies orthogonal dimensions and shows a different influence
on muscle activation during walking and trained forelimb move-
ment”® and follows different dynamics for reach and grasp
movements.”” Notably, our finding of decaying dynamics for
BMI control contrasts with rotational dynamics observed during
natural arm movement.'?'%%22 We speculate this could be
because controlling the BMI relied more on feedback control
than a well-trained physical movement, because controlling
the BMI did not require the temporal structure of commands
needed to control muscles for movement” and/or because con-
trolling the BMI did not involve proprioceptive feedback of



Current Biology

physical movement.*®> Recent theoretical work shows that cor-
tico-basal ganglia-thalamic loops can switch between different
cortical dynamics useful for different temporal patterns of
commands.*®

The use of invariant dynamics to issue commands has implica-
tions for how the brain learns new behavior,’”"® enabling the
brain to leverage pre-existing dynamics for initial learning®>"-%°
and to develop new dynamics through gradual reinforce-
ment.?"®? This learning, which modifies dynamics, relies on
plasticity in cortico-basal ganglia circuits®*®* and permits the
brain to reliably access a particular neural-activity pattern for a
given command and movement,*? even if the same neural-activ-
ity pattern is not used to issue the same command across
different movements.

Modeling invariant dynamics can inform the design of new
neuroprosthetics that can generalize commands to new behav-
iors'® and classify entire movement trajectories.®® We expect
that as new behaviors are performed, distinct neural-activity pat-
terns will be used to issue the same command, but that invariant
dynamics can predict and thus recognize these distinct neural
patterns as signals for the BMI rather than noise. In addition,
our results inform the design of rehabilitative therapies to
restore dynamics following brain injury or stroke to recover
movement.%87

Overall, this study put the output of a neural population into
focus, revealing how rules for neural dynamics are used to issue
commands and produce different movements. This was achieved
by studying the brain as it controlled the very neural activity we re-
corded. BMI,*?%%°" especially when combined with technical ad-
vances in measuring, modeling, and manipulating activity from
defined populations, provides a powerful technique to test
emerging hypotheses about how neural circuits generate activity
to control behavior.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Neural and behavioral datasets This paper https://doi.org/10.48324/dandi.000404/0.
230605.2024

Experimental models: Organisms/strains

Rhesus macaque (macaca mulatta) California National Primate Center, Davis, CA N/A

Software and algorithms

Python 2.7, 3.6 Python Software Foundation https://www.python.org

ssm - for fitting switching LDS model Linderman et al.>? https://github.com/lindermanlab/ssm

Analysis code This paper https://doi.org/10.5281/zenodo.8006653;
https://github.com/pkhannai04/
bmi_dynamics_code

Other

128-channel microwire electrode arrays Innovative Neurophysiology https://inphysiology.com/

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Vivek R.
Athalye (va237@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

® Monkey BMI data (binned spike counts, cursor trajectories, condition parameters, decoder parameters, and task parameters)
has been deposited in the DANDI Archive (https://doi.org/10.48324/dandi.000404/0.230605.2024) and is publicly available as
of the date of publication.

@ All original code has been deposited at Zenodo (https://doi.org/10.5281/zenodo.8006653) and at GitHub (https://github.com/
pkhanna104/bmi_dynamics_code) and is publicly available as of the date of publication.

o Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All training, surgery, and experimental procedures were conducted in accordance with the NIH Guide for the Care and Use of Lab-
oratory Animals and were approved by the University of California Berkeley Institutional Animal Care and Use Committee (IACUC).
Two adult male rhesus macaque monkeys (7 years old, monkey G and 10 years old, monkey J) (Macaca mulatta, RRID: NCBI-
Taxon:9544) were used as subjects in this study. Prior to this study, Monkeys G and J were trained at arm reaching tasks and
spike-based 2D neuroprosthetic cursor tasks for 1.5 years. All animals were housed in pairs.

METHOD DETAILS

Electrophysiology and experimental setup

Two male rhesus macaques were bilaterally, chronically implanted with 16 x 8 arrays of Teflon-coated tungsten microwire electrodes
(35 mm in diameter, 500 mm separation between microwires, 6.5 mm length, Innovative Neurophysiology, Durham, NC) in the upper
arm area of primary motor cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target areas was performed using
stereotactic coordinates from a neuroanatomical atlas of the rhesus brain.?® Implant depth was chosen to target layer 5 pyramidal
tract neurons and was typically 2.5 - 3 mm, guided by stereotactic coordinates.
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During behavioral sessions, neural activity was recorded, filtered, and thresholded using the 128-channel Multichannel Acquisition
Processor (Plexon, Dallas, TX) (Monkey J) or the 256-channel Omniplex D Neural Acquisition System (Plexon) (Monkey G). Channel
thresholds were manually set at the beginning of each session based on 1-2 min of neural activity recorded as the animal sat quietly
(i.e. not performing a behavioral task). Single-unit and multi-unit activity were sorted online after setting channel thresholds. Decoder
units were manually selected based on a combination of waveform amplitude, variance, and stability over time.

Neuroprosthetic decoding
Subjects’ neural activity controlled a two-dimensional (2D) neuroprosthetic cursor in real-time to perform center-out and obstacle-
avoidance tasks. The neuroprosthetic decoder consists of two models:

1) A cursor dynamics model capturing the physics of the cursor’s position and velocity.
2) A neural observation model capturing the statistical relationship between neural activity and the cursor.

The neuroprosthetic decoder combines the models optimally to estimate the subjects’ intent for the cursor and to correspondingly
update the cursor.
Decoder algorithm and calibration - Monkey G
Monkey G used a velocity Kalman filter (KF)%'94 that uses the following models for cursor state ¢; and observed neural activity x;:

Ct = AC{,1 + Wi, Wi ~ N(O, W)

Xt = Cci+qr,qr ~ N(0,Q)

In the cursor dynamics model, the cursor state c; € R® was a 5-by-1 vector [posy, pox,vely, vel,, 1]T,A e R®® captures the physics
of cursor position and velocity, and w; is additive Gaussian noise with covariance W e R%® capturing cursor state variance that is not
explained by A.

In the neural observation model, neural observation x; € RN was a vector corresponding to spike counts from N units binned at
10 Hz, or 100ms bins. C models a linear relationship between the subjects’ neural activity and intended cursor state. The decoder
only modeled the statistical relationship between neural activity and intended cursor velocity, so only the columns corresponding
to cursor state velocity and the offset (columns 3-5) in C were non-zero. Q is additive Gaussian noise capturing variation in neural
activity that is not explained by Cc;. For Monkey G, 35-151 units were used in the decoder (median 48 units).

In summary, the KF is parameterized by matrices {A € R*®,W e R®®,C e RN*®*,Q € RMV}. The KF equations used to update the
cursor based on observations of neural activity are defined as in Wu et al.*

The KF parameters were defined as follows. For the cursor dynamics model, the A and W matrices were fixed as in previous
studies.® Specifically, they were:

1001 0 O 0 0O0OTO O
01 0 01 0 0 0O0OTP O
A=|0 0 08 0 Of,W=|0 07 00
00 0O 08 0 00O0T7O
00 0O 0 1 0 0O0O0DO

where units of cursor position were in cm and cursor velocity in cm/sec.

For the neural observation model, the C and Q matrices were initialized from neural and cursor kinematic data collected at the
beginning of each experimental session while Monkey G observed 2D cursor movements that moved through either a center-out
task or obstacle avoidance task. Maximum likelihood methods were used to fit C and Q.

Next, Monkey G performed a “calibration block” where he performed the center-out or obstacle-avoidance task movements as the
newly initialized decoder parameters were continuously calibrated/adapted online (“closed-loop decoder adaptation”, or CLDA).
This calibration block was performed in order to arrive at parameters that would enable excellent neuroprosthetic performance. Every
100ms, decoder matrices C and Q were adapted using the recursive maximum likelihood CLDA algorithm.*° Half-life values, defining
how quickly C and Q could adapt, were typically 300 sec, and adaptation blocks were performed with a weak, linearly decreasing
“assist” (re-defining c; as a weighted linear combination of user-generated c;and optimal c; to drive the cursor to the target). Typical
assist values at the start of the block were 90% user-generated, 10% optimal and decayed to 100% user-generated, 0% optimal over
the course of the block. Following CLDA, decoder parameters were fixed. Then the experiment proceeded with Monkey G performing
the center-out and obstacle-avoidance tasks.

Decoder algorithm and calibration - Monkey J

Monkey J used a velocity Point Process Filter (PPF).*”*® The PPF uses the same cursor dynamics model for cursor state c; as the KF
above, but uses a different neural observations model (a Point Process model rather than a Gaussian model) for the spiking S} of
each of N neurons:

Ct = AC{,1 + Wi, Wi ~ N(O7 W)
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N

(S‘N’vt) H (tve, o/ exp (= x(tve, @)A)

In the neural observations model, neural observation S’t is the j'" neuron’s spiking activity, equal to 1 or 0 depending on whether the
j'" neuron spikes in the interval (¢,t +A). We used At = 5ms bins since consecutive spikes rarely occurred within 5ms of each other.
For Monkey J, 20 or 21 units were used in the decoder (median 20 units). The probability distribution over spiking p(S}™V|v;) was a
point process with 2 t|vt, as the j'" neuron’s instantaneous firing rate at time t. Ai( t|vt, ) depended on the mtended cursor velocity
vt € R? in the two dimensional workspace and the parameters ¢/ for how neuron j encodes velocity. 4 t}vt, was modeled as a log-
linear function of velocity:

4i(t|ve.¢) = exp (6/- + ajrvt)

where ¢/ parameters consist of ;€ A2, 8;€ R'.
In summary, the PPF is parameterized by {A € R¥® W e R¥S ¢"N}. The PPF equations used to update the cursor based on
observations of neural activity are defined as in Shanechi et al.*®

The PPF parameters were defined as follows. For the cursor dynamics model, the A and W matrices are defined as:

1 0 00056 0 O 00 0 0 0
01 0 0005 0 00 0 0 0
A=|00099 0 O0|,W=|00 37x10°° 0 0
00 0 098 0 00 0 3.7x10°% 0
00 O 0o 1 00 0 0 0

where units of cursor position were in m and cursor velocity in m/sec.

For the neural observations model, parameters ¢'N were initialized from neural and cursor kinematic data collected at the begin-
ning of each experimental session while Monkey J observed 2D cursor movements that moved through a center-out task. Decoder
parameters were adapted using CLDA and optimal feedback control intention estimation as outlined in Shanechi et al.*” Following
CLDA, decoder parameters were fixed. Then the experiment proceeded with Monkey J performing the center-out and obstacle-
avoidance tasks.

Definition of the command for the BMI

We defined the “command” for the BMI as the direct influence of subjects’ neural activity x; (binned at 100ms) on the cursor.
Concretely, in both decoders, the command was a linear transformation of neural activity that we write as Kx; which updated the
cursor velocity.

Command definition - Monkey G

For Monkey G, the update to the cursor state c; due to cursor dynamics and neural observation x; can be written as:

Ct = FiCi_1 +Kix;

where F;c; _1 is the update in cursor state due to the cursor dynamics process and K;x; is what we have defined as the command: the
update in cursor state due to the current neural observation. K; € R%" is the Kalman Gain matrix and F; = (I — KtC)A. In practice K;
converges to its steady-state form K within a matter of seconds,’® and thus F; converges to F = (I — KC)A, so we can write the
above expression in its steady state form:

= FCT,1 +KXt

In our implementation, the structure of K is such that neural activity x; directly updates cursor velocity, and velocity integrates to
update position. The following technical note explains the structure of K. Due to the form of the A, W matrices, Rank(K) = 2.In addi-
tion, decoder adaptation imposed the constraint that the intermediate matrix C'Q-'C was of the form al, where a =
mean(diag(C"Q~'C)). Due to this constraint, the rows of K that update the position of the cursor are equal to the rows of K that up-
date the velocity multiplied by the update timestep: K(1: 2,:) = K(3 : 4,:) « dt°” (see independent velocity control in the reference).
Given this structure of K, neural activity’s contribution to cursor position is the simple integration of neural activity’s contribution to
velocity over one timestep.

In summary, since Kx; reflects the direct effect of the motor cortex units on the velocity of the cursor, we term the velocity com-
ponents of Kx; the “command”. We analyzed the neural spike counts binned at 100ms that were used online to drive cursor move-
ments with no additional pre-processing.

Command definition - Monkey J
For Monkey J the cursor state updates in time as:

Ct = fi(Cioq1) +Kexe
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where
fi(ci—1) = (ACt71 - KtGCACf’1A)7Kt = PC

Here f;(c:_ 1) is the cursor dynamics process and K;x; is the neural command. P; € R5%% js the estimate of cursor state covariance,
and C e R>" captures how neural activity encodes velocity as a matrix where each column is composed of [0, 0, &/, a}"’e’, g;] forthe
Jjth unit.

We define the command for analysis in this study as Kestxt, where Kegt is a time-invariant matrix that almost perfectly approximates
K:. While the PPF’s K; does not necessarily converge in the same way it does in the KF, for all four analyzed sessions, neural activity
mapped through Kes; € RN could account for 99.6, 99.6, 99.5, and 99.8 percent of the variance of the command respectively (Kix; =
KestXt). In addition, due to the accuracy of this linear approximation, we also match Monkey J’s timescale of neural activity and com-
mands to that of Monkey G. In order to match timescales across the two animals (Monkey G: 100 ms updates, Monkey J: 5ms up-
dates), Monkey J’'s commands were aggregated into 100 ms bins by summing Kestx; over 20 consecutive 5ms bins to yield the aggre-
gated command over 100ms. Correspondingly, Monkey J’s neural activity was also summed into 100ms bins by summing x; over 20
consecutive 5ms bins.

Neuroprosthetic tasks

Subjects performed movements in a two-dimensional workspace (Monkey J: 24cm x 24cm, Monkey G: 50cm x 28cm) for two neuro-
prosthetic tasks: a center-out task and an obstacle-avoidance task. We define the movement “condition” as the task performed
(“co” = center-out task, “cw” / “ccw” = clockwise/counterclockwise movement around the obstacle in the obstacle-avoidance
task) and the target achieved (numbered 0 through 7). Thus, there were up to 24 different conditions possible (8 center-out condi-
tions, 8 clockwise obstacle-avoidance conditions, 8 counterclockwise obstacle-avoidance conditions). In practice, subjects mostly
circumvented the obstacles for a given target location consistently in a clockwise or counterclockwise manner (as illustrated in Fig-
ure 1C right) resulting in an average of 16-17 conditions per session.

Center-out task

The center-out task required subjects to hold their cursor within a center target (Monkey J: radius = 1.2 cm, Monkey G: radius =
1.7 cm) for a specified period of time (Monkey J: hold = 0.25 sec, Monkey G: hold = 0.2 sec) before a go cue signaled the subjects
to move their cursor to one of eight peripheral targets uniformly spaced around a circle. Each target was equidistant from the center
starting target (Monkey J: distance = 6.5cm, Monkey G: distance = 10cm). Subjects then had to position their cursor within the pe-
ripheral target (Monkey J: target radius = 1.2cm, Monkey G: target radius = 1.7cm) for a specified period to time (Monkey J: hold =
0.25, Monkey G: hold = 0.2sec). Failure to acquire the target within a specified window (Monkey J: 3-10 sec, Monkey G: 10 sec) or to
hold the cursor within the target for the duration of the hold period resulted in an error. Following successful completion of a target, a
juice reward was delivered. Monkey J was required to move his cursor back to the center target to initiate a new trial, and Monkey G’s
cursor was automatically reset to the center target to initiate a new trial.

Obstacle-avoidance task

Monkey G performed an obstacle-avoidance task with a very similar structure to the center-out task. The only difference was that a
square obstacle (side length 2 or 3 cm) would appear in the workspace centered exactly in the middle of the straight line connecting
the center target position and peripheral target position. If the cursor entered the obstacle, the trial would end in an error, and the trial
was repeated.

Monkey J’s obstacle-avoidance task required a point-to-point movement between an initial (not necessarily center) target and
another target. On arrival at the initial target, an ellipsoid obstacle appeared on the screen. If the cursor entered the obstacle at
any time during the movement to the peripheral target, an error resulted, and the trial was repeated. Target positions and obstacle
sizes and positions were selected to vary the amount of obstruction, radius of curvature around the obstacles, and spatial locations of
targets. Trials were constructed to include the following conditions: no obstruction, partial obstruction with low-curvature, full
obstruction with a long distance between targets, and full obstruction with a short distance between targets thus requiring a high
curvature. See Shanechi et al.® for further details. In this study, only trials that included partial obstruction or full obstruction
were analyzed as “obstacle-avoidance” trials.

Number of sessions
We analyzed 9 sessions of data from Monkey G and 4 sessions of data from Monkey J where on each session, monkeys performed
both the center-out and obstacle-avoidance tasks with the same decoder. Only successful trials were analyzed.

Optimal feedback control model and simulation

We introduce a model based on optimal feedback control (OFC) for how the brain can use invariant neural population dynamics to
control movement based on feedback. From the perspective of the brain trying to control the BMI, we used the model to ask how
invariant neural population dynamics affect the brain’s control of movement.

Thus, we performed and analyzed simulations of a model in which the brain acts as an optimal linear feedback controller (finite
horizon linear quadratic regulator), sending inputs to a neural population so that it performs the center-out and obstacle-avoidance
tasks (Figure 6). The feedback controller computed optimal inputs to the neural population based on the current cursor state and
current neural population activity. Specifically, the inputs were computed as the solution of an optimization problem that used
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knowledge of the target and task, decoder, and the neural population’s invariant dynamics. We simulated 20 trials for each of 24
conditions: 8 center-out conditions, 8 clockwise obstacle-avoidance conditions, and 8 counterclockwise obstacle-avoidance con-
ditions. The neural and cursor dynamics processes in the simulation are summarized below:

Neural population dynamics with input

In our simulation, the neural activity of N neurons x; € R is driven by invariant dynamics A e RN*N that act on previous activity x; 1, an
activity offset be RV, inputs from the feedback controller u;_1 e RN that are transformed by input matrix Be RN*N, and noise
Ot_1 € HNZ

Xy = AX¢_1+b+Buy_1+0_4

The input matrix B was set to be the identity matrix such that each neuron has its own independent input. Each neuron also had its
own independent, time-invariant noise (see Noise section below for how the noise level was set).

For notational convenience, an offset term was appended to x;: [);'] e RN*1, This enabled incorporating the offset b into the neural

Xt | _ A b Xt—1 B Ot_1
3= [6 3]l ] e (G 7]
BMI cursor dynamics

The cursor update equations for the simulation matched the steady state cursor update equations in the online BMI experiment (see
“definition of the command for the BMI” above):

dynamics matrix:

c: = Fci_ 1 +Kx;:_4

As in the experiment, cursor state ¢c; € RNe where N, = 5 was a vector consisting of two-dimensional position, velocity, and an offset:
[posy, poxyvely, vel,, 1]T. K e RNeXN was the decoder’s steady-state Kalman gain (Monkey G) or estimated equivalent Kes; (Monkey J).
F e RN-*Ne was set to the decoder’s steady-state cursor dynamics matrix (Monkey G). For Monkey J, F was estimated using the expres-
sion for calculating the steady-state cursor dynamics matrix: Fest = (I — KestCest) * A1oms, Where /e RNe*Ne Coop € RNMNe was set using
the «, 8 velocity encoding parameters from the point process filter (see above): Cest(j,:) = [0 0 0.01 + ¢;(1)0.01 * ¢;(2)0.01 * §;]. Values
in Cest were multiplied by 0.01 to adjust for velocities expressed in units of cm/sec (in the simulation) instead of m/sec (as in PPF). A1goms
was set to the same A used by Monkey G so that the cursor dynamics would be appropriate for 100ms timesteps:

1001 0 O
01 0 01 O
A1ggms = 0 0 08 0 O
00 O 080
00 O 0o 1

Joint dynamics of neural activity and cursor

The feedback controller sent inputs to the neural population which were optimal considering the task goal, the cursor’s current state,
the neural population’s invariant dynamics, and the neural population’s current activity. To solve for the optimal input given all the
listed quantities, first, the neural and cursor states are jointly defined. We append the cursor state c; to the neural activity state

X
[ t} to form z; € RN+1+Ne;

1
Xt A b O Xt -1 B T 1

Z; = 1 = 0 1 0 1 + [0 fus_1+ 0

Ct K 0 F||ci_q 0 0

In words, this expression defines a linear dynamical system where input u; _ 1 influences only the neural activity x;, x; evolves by
invariant dynamics A with offset vector b, and x; drives cursor c; through the BMI decoder K. Finally, noise ;1 only influences neural
activity x; (see Noise section below for how the noise level was set).

OFC to reach a target

Our OFC model computes input u; to the neural population such that the activity of the neural population x; drives the cursor to
achieve the desired final cursor state (i.e. the target) with minimal magnitude of input u;. Concretely, in the finite horizon LQR model,
the optimal control sequence (us,t = 0,1,...T — 1) is computed by minimizing the following cost function:

T-1
JUor 1) = (Z((zt — Ztarg) Q(2t — Ztarg) + UT RUr)) + (2r — Ztag) Qr (2r — Ztarg)

t=0

0eRVN 0 0
In our model, Q = 0e RN+1T#Ne)x(N+1+Ne) B — | RNXN and Qr = 0 OeR! 0 € RIN+1+Ne) X (N+1+Ne) Thys,
0 0  [%10%g RNexNe
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the final cursor state error is penalized, and the magnitude of the input to the neural population u; is penalized (with setting R as non-
zero). Because the magnitude of the input to neural activity is penalized, the controller sends the minimal input to the neural popu-
lation to produce task behavior. We defined our cost function so that the cursor state during movement before the final cursor state is
not penalized, and the neural state is never penalized.

The optimal control sequence (us,t = 0,1,...T — 1) is given by us = K[ (2 — Ziary) Where feedback gain matrices (Kt =
0,1,...T — 1) are computed iteratively solving the dynamic Ricatti equation backwards in time. We note that we computed the
LQR solution for u; using the dynamics of state error z; — z:ag, and that the dynamics of state error for non-zero target states are
affine rather than strictly linear.

OFC for center-out task

Center-out task simulations were run with the initial cursor position in the center of the workspace at ¢y = [0, 0,0, 0, 1] and the target
cursor state at [targety, target,,vely = 0,vel, = 0, 1]T. Targets were positioned 10cm away from the origin (same target arrangement
as Monkey G). Target cursor velocity was set to zero to enforce that the cursor should stop at the desired target location.

Exact decoder parameters from Monkey G and linearized decoder parameters from Monkey J were used (F,K) in simulations. The
invariant neural dynamics model parameters (A,b) were varied depending on the simulated experiment (see below). The horizon for
each trial to hit its target state was setto be T = 40 (corresponding to 4 seconds based on the BMI’s timebin of 100ms). Constraining
each trial to be equal length facilitated comparison of performance across different simulation experiments. We verified that all of our
simulated trials completed their tasks successfully.

OFC for obstacle-avoidance using a heuristic

Obstacle-avoidance task simulations were performed with the same initial and target cursor states as the center-out task, except that
the cursor circumvented the obstacle to reach the target in both clockwise and counterclockwise movements. We used a heuristic
strategy to direct cursor movements around the obstacle; we defined a waypoint as an intermediate state the cursor had to reach
enroute to the final target. The heuristic solution performs optimal control from the start position to the waypoint, and then optimal
control from the waypoint to the final target. Importantly, this solution minimizes the amount of input needed to accomplish these
goals. We used a heuristic solution because the linear control problem of going from the initial cursor state to the final target cursor
state with the constraint of avoiding an obstacle is not a convex optimization problem.

Concretely, for the first segment of the movement, a controller with a horizon T=20 directed the cursor to the waypoint, and then a
controller with horizon T=20 directed the cursor from the waypoint to the final target (such that the trial length was matched to the
center-out task simulation with T=40).

The waypoint was defined relative to the obstacle position as follows. First the vector between the center target and the obstacle
position was determined (Vops center). The Vops center Was then rotated either +90 degrees or -90 degrees corresponding to clockwise
and counterclockwise movements. The waypoint position was a 6¢cm distance in the direction of the rotated vector, from the obstacle
center. Finally, the desired velocity vector of the intermediate target was set to be in the direction of Vops center, With @ magnitude of
10 cm/s, so that the cursor would be moving in a direction consistent with reaching its final target in the second segment of the move-
ment after the waypoint was reached.

To compute the input u; to execute these movements, we defined the state error at each time t as Zepror = Ziarg — Zt, Where Ziag Was
the waypoint for the first half of the movement, and z;,,¢ was the final target for the second half of the movement. The linear quadratic
regulator feedback gain Kf"’ matrices were computed on the appropriate state error dynamics with the shortened horizon T=20.
“Full Dynamics Model” Simulation
Simulations of the “Full Dynamics Model” consisted of OFC with the invariant dynamics parameters (A,b) that were fit on experimen-
tally-recorded neural activity from each subject and session (see “invariant dynamics models” below, under “quantification and sta-
tistical analysis”). K{q’ was computed using these experimentally-observed (A,b) parameters. The initial state of neural activity (i.e. x;
at t=0) was set to the fixed point of the dynamics.

“No Dynamics Model” Simulation

Simulations of the “No Dynamics Model” consisted of OFC with invariant dynamics parameter A set to zero (A = 0). The experimen-
tally-observed offset b was still used from each subject and session. K{q’ was computed using A = 0 and the experimentally-
observed b, and thus it was different than in the “Full Dynamics Model.” The initial state of neural activity (i.e. x; at t=0) was set to
offset b, the fixed point of dynamics with A = 0.

“Decoder-null Dynamics Model” Simulation

Simulations of the “Decoder-null Dynamics Model” consisted of OFC with the experimentally-observed invariant dynamics param-
eters (A,b) that were restricted to the decoder-null space, i.e. each invariant dynamics model was fit only on the projection of neural
activity into the decoder-null space (see “invariant dynamics models” under “quantification and statistical analysis”). K;q’ was
computed using these experimentally-observed decoder-null (A,b) parameters, and thus it was different than in the “Full Dynamics
Model.” The initial state of neural activity (i.e. x; at t=0) was set to the fixed point of the decoder-null invariant dynamics.

The “Decoder-null Dynamics Model” was compared to its own “No Dynamics Model”, which consisted of OFC with K{q’ computed
using A = 0 and the experimentally-observed decoder-null offset b for each subject and session, and thus it was different than in the
previously defined models. The initial state of neural activity (i.e. x; at t=0) was set to the decoder-null offset b, the fixed point of dy-
namics with A = 0.
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Noise

In our OFC model, movement errors arise due to noise in the neural activity, and subsequent neural activity issues commands based
on feedback to correct these errors. We used two considerations to choose the noise level for neural activity. First, we soughtto add a
level of neural noise that was comparable to the neural “signal” needed to perform control in the absence of noise. Second, we
wanted to add the same level of noise to the dynamics model (either “Full Dynamics Model” or “Decoder-null Dynamics Model”)
and the corresponding “No Dynamics Model,” in order to facilitate comparison.

Thus, we first simulated the “No Dynamics Model” without noise for a single trial for each of 24 conditions, and we calculated a, the
average variance of a neuron across time and trials.

Then for our noisy simulations of the “No Dynamics Model” and the corresponding dynamics models, Gaussian noise with zero
mean and fixed variance a was added to each neuron at each timestep: x; = Ax;_1+Bu;_1+adt_1, where a; ~ N(0,al). Thus, the
overall level of added noise (the sum of noise variance over neurons) matched the overall level of signal in the noiseless No Dynamics
Model simulation (sum of activity variance over neurons).

We note that our main findings (Figures 6C, 6D, 6G, and 6H) held even with different noise levels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Command discretization for analysis

We sought to analyze the occurrence of the same command across different movements. Commands on individual time points were
analyzed as the same command if they fell within the same discretized bin of continuous-valued, two-dimensional command space.
All commands from rewarded trials in a given experimental session (including both tasks) were aggregated and discretized into 32
bins. Individual commands were assigned to one of 8 angular bins (bin edges were 22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, and
337.5 degrees) and one of four magnitude bins. Angular bins were selected such that the straight line from the center to each of the
center-out targets bisected each of the angular bins as has been done in previous work®® (Figure S1A). Magnitude bin edges were
selected as the 23.75", 47.5™, 71.25™" and 951" percentile of the distribution of command magnitudes for that experimental session.
Commands falling between the 95" and 100" percentile of magnitude were not analyzed to prevent very infrequent noisy observa-
tions from skewing the bin edges for command magnitude.

Conditions that used a command regularly

For each session, the number of times each of the 32 (discretized) commands was used in a given condition was tabulated. If the
command was used >= 15 times for that condition within a given session pooling across trials, that condition was counted as using
the command regularly and was used in all analyses involving (command, condition) tuples. Commands that were used < 15 times
were not used in analysis involving (command, condition) tuples. We note that the main results of the study were not affected by this
particular selection. Typically, an individual command is used regularly in 5-10 conditions (distribution shown in Figure S1A).

Cursor and command trajectory visualization

Cursor position subtrajectories

To visualize the cursor position trajectories locally around the occurrence of a given command for each condition, we computed the
average position “subtrajectory,” which we define as the average trajectory in a window locked to the occurrence of the given com-
mand. For each condition, cursor positions from successful trials were aggregated. Cursor position subtrajectories shown in Fig-
ure 1F are from representative session 0 from Monkey G. A matrix of x-axis and y-axis position trajectories was formed by extracting
a window of -500ms to 500ms (5 previous samples plus 5 proceeding samples) around each occurrence of the given command in a
given condition (total of N¢om-cona OCCUrrences, yielding a 2 x 11 X Neom-cong Matrix). Averaging over the N¢om-cona ObServations
yielded a condition-specific command-locked average position subtrajectory (size: 2 x 11) for each condition. If a command fell in
the first 500ms or last 500ms of a trial, its occurrence was not included in the subtrajectory calculation. The position subtrajectories
were translated such that the occurrence of the given command was set to (0, 0) in the 2D workspace (Figures 1F right and S1C
middle).

Command subtrajectories

To visualize trajectories of commands around the occurrence of a given command for each condition (Figure 1G, right), we followed
the same procedure as described above for cursor position subtrajectories to tabulate a 2 x 11 X Ngom-cong Matrix but with x-axis and
y-axis commands instead of positions. We note that this matrix consisted of the continuous, two-dimensional velocity values of the
commands. Averaging over the Ncom-cong ObServations yielded the average condition-specific command subtrajectory (size: 2 x 11
array), as shown in Figure 1F left for example conditions.

Matching the condition-pooled distribution

In many analyses, data (e.g. neural activity or a command-locked cursor trajectory) associated with a command and a specific con-
dition is compared to data that pools across conditions for that same command (Figures 3, 4, and 5). The distribution of the precise
continuous value of the command within the command’s bin may systematically differ between condition-specific and condition-
pooled datasets, which we refer to as ‘within-command-bin differences.” To ensure within-command-bin differences are not the
source of significant differences between condition-specific and condition-pooled data associated with a command, we developed
a procedure to subselect observations of condition-pooled commands so that the mean of the condition-pooled command
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distribution is matched to the mean of the condition-specific command distribution. This procedure ensures that any differences
between the condition-specific quantity and condition-pooled quantity are not due to ‘within-command-bin differences’. This pro-
cedure is performed on all analyses comparing condition-specific data to a condition-pooled distribution of data. The matching pro-
cedure is as follows:

1. From the condition-specific distribution, compute the command mean o, — cong (Size: 2x1) and standard deviation gcom — cona
(size: 2x1).
2. Compute the deviation of each continuous-valued command observation in the condition-pooled distribution from the condi-
tion-specific distribution.
a. Use the condition-specific distribution’s parameters to z-score the condition-pooled distribution’s continuous-valued com-
mand observations by subtracting eom — cong @nd dividing by ocom — cond-
b. Compute the deviation of condition-pooled observations from the condition-specific distribution as the L2-norm of the
z-scored value
c. Forindices in the condition-pooled distribution that correspond to data in the condition-specific distribution, over-write the
L2-norm of the z-scored values with zeros. This step prevents the condition-pooled distribution from dropping datapoints
that are in the condition-specific data, thereby ensuring the condition-pooled distribution contains the condition-specific
data.
3. Remove the 5% of condition-pooled observations with the largest deviations
4. Use a Student’s t-test to assess if the remaining observations in the condition-pooled distribution are significantly different than
the condition-specific distribution for the first and second dimension of the command (two p-values)
5. If both p-values are > 0.05, then the procedure is complete and the remaining observations in the condition-pooled distribution
are considered the “command-matched condition-pooled distribution” for a specific command and condition.
6. If either or both p-values are < 0.05, return to step 3 and repeat.

If the condition-pooled distribution cannot be matched to the condition-specific distribution such that the size of the condition-
pooled distribution is larger than the condition-specific distribution, the particular command/condition will not be included in the
analysis.

Comparing command subtrajectories
To assess whether a command is used within significantly different command subtrajectories in different conditions (Figures S1D and
S1E), the following analysis is performed for conditions that have sufficient occurrences of the command (>=15):

1. The condition-specific average command subtrajectory is computed by averaging over Ncom-cond Single-trial command sub-
trajectories for the condition, as defined above in “Command subtrajectories”.

2. The condition-pooled average command subtrajectory is computed: all the single-trial command subtrajectories (N¢om) are
pooled across trials from all conditions that use the given command regularly (command occurs >= 15 times in a session)
to create a condition-pooled distribution of single-trial command subtrajectories (a 2 x 11 x N¢om matrix), which is then aver-
aged to yield the condition-pooled average command subtrajectory (a 2 x 11 matrix).

3. In order to test whether condition-specific average command subtrajectories were significantly different from the condition-
pooled average command subtrajectory, a distribution of subtrajectories was created by subsampling the condition-pooled
distribution to assess expected variation in subtrajectories due to limited data. Specifically, N¢om-cong Single-trial command
subtrajectories were sampled from a condition-pooled distribution of command subtrajectories that was command-matched
to the specific condition (see above, “Matching the condition-pooled distribution”). These N¢om-cong S@amMples were then aver-
aged to create a single subtrajectory, representing a plausible condition-specific average subtrajectory under the view that the
condition-specific subtrajectories are just subsamples of the condition-pooled subtrajectories. This procedure was repeated
1000 times and used to construct a bootstrapped distribution of 1000 command subtrajectories.

4. This distribution was then used to test whether condition-specific subtrajectories deviated from the condition-pooled subtra-
jectory more than would be expected by subsampling and averaging the condition-pooled subtrajectory distribution. Specif-
ically, the true condition-specific command subtrajectory distance from the condition-pooled command subtrajectory was
computed (L2-norm between condition-specific 2x11 subtrajectory and condition-pooled 2x11 subtrajectory) and compared
to the bootstrapped distribution of distances: (L2-norm between each of the 1000 subsampled averaged 2x11 command sub-
trajectories and the condition-pooled 2x11 command subtrajectory). A p-value for each condition-specific command subtra-
jectory distance was then derived.

The same analysis is also performed using only the next command following a given command (Figure S1E).

Behavior-preserving shuffle of activity

We shuffled neural activity in a manner that preserved behavior as a control for comparison against the hypothesis that neural activity
follows invariant dynamics beyond the structure of behavior. Shuffled datasets preserved the timeseries of discretized commands
but shuffled the neural activity that issues these commands. In order to create a shuffle for each animal on each session, all timebins
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from all trials from all conditions were collated. The continuous-valued command at each timebin was labeled with its discretized
command bin. For each of the 32 discretized command bins, all timebins corresponding to a particular discretized command bin
were identified. The neural activity in these identified timebins was then randomly permuted. A complete shuffled dataset was con-
structed by performing this random permutation for all discretized command bins. This full procedure was repeated 1000 times to
yield 1000 shuffled datasets.

Analysis of activity issuing a given command
Condition-specific neural activity distances
For each session, (command, condition) tuples with >= 15 observations were analyzed. For each of these (command, condition) tu-
ples, we analyzed the distance between condition-specific average activity and condition-pooled average activity, both for individual
neurons and for the population’s activity vector (Figures 3B-3E).

Analysis of individual neurons for a given (command, condition) tuple, given N neurons:

1. Compute the condition-specific average neural activity (isom_ cong € R") as the average neural activity over all observations of
the command in the condition.

2. Compute the condition-pooled average activity (icom — pool € RN) as the average neural activity over observations of the com-
mand pooling across conditions. The command-matching procedure is used to form the condition-pooled dataset to account
for within-command-bin differences (see “matching the condition-pooled distribution” above).

3. Compute the absolute value of the difference between the condition-specific and condition-pooled averages: ducom - cond =
abs(Keom - cond — HMeom - pool) € RN.

4. Repeat steps 1-3 for each shuffled dataset /, yielding dugpus i — com — cong fOr i = 1:1000.

5. For each neuron j, compare ducom — cona (/)10 the distribution of dugnus — i — com — cona (/) for i = 1:1000. Distances greater than the
95" percentile of the shuffled distribution are deemed to have significantly different neuron j activity for a command-condition.

Analysis of population activity for a given (command, condition) tuple:

To compute population distances, one extra step was performed. We sought to ensure that the distances we calculated were not
trivially due to “within-bin differences” between the condition-specific and condition-pooled distributions. The first step to ensure
this was described above in “matching the condition-pooled distribution”. The second step was to only compute distances in the
dimensions of neural activity that are null to the decoder and do not affect the composition of the command. Thus, any subtle remain-
ing differences in the distribution of commands would not influence population distances.

To compute distances in the dimensions of neural activity null to the decoder, we computed an orthonormal basis of the null space
of decoder matrix K € RZ" using scipy.linalg.null_space, yielding V,,,s € RNV =2, The columns of V correspond to basis vectors span-
ning the N — 2 dimensional null space. Using V,,; we computed: Weom—cond—nui = Voul' * Heom —cond @Nd  Koom — pool — null =
Viour' * teom _ pool- We then calculated the population distance metric (L2-norm), normalized by the square-root of the number of neu-

rons: dipop — com —cond = /YN, Alpop — com — cond € R'.In step 5, the single value dlpop — com — cona 1S COMpared to the distribution of

dshuff — i — pop — com — conag TOF i = 1:1000 to derive a p-value for each (command, condition) tuple. The fraction of (command, condition)

tuples with population activity distances greater than the 95™ percentile of the shuffle data (i.e. significant) is reported in Figure 3E.
For visualization of distances relative to the shuffle distribution (Figures 3B-3D), we divided the observed population distance for

each (command, condition) tuple by the mean of the corresponding shuffle distribution. With this normalization, we can visualize the

spread of the shuffle distribution (Figure 3B, right) and we can interpret a normalized distance of 1 as the expected distance according

to the shuffle distribution.

Activity distances pooling over conditions

To test whether condition-specific neural activity for a given command significantly deviated from condition-pooled neural activity for

the given command (Figure 3E, middle), we aggregated the distance between condition-specific and condition-pooled average ac-

tivity over all Ncond conditions in which the command was used ( >= 15 occurrences of the command in a condition). An aggregate

command distance is computed: disep com = Feorng /Nf‘;”ddupop,com,j, and an aggregate shuffle distribution is computed:

Alishutt i —pop—com = Newrg /Nf"{’ddushuf, i pop—com—_j- Then, ditsey —com is compared to the distribution of dugpusr i pop - com TOF
i = 1:1000 to derive a p-value for each command. The fraction of commands with significant population activity distances is reported
in Figure 3E, middle.

Single neuron distances

To test whether an individual neuron’s condition-specific activity deviated from condition-pooled activity (Figure 3E right), we aggre-
gated the distances between condition-specific and condition-pooled average activity over the C (command, condition) tuples with
at least 15 observations. The aggregated distance for neuron n was computed: du(n) = & Zfz 1duc(n) where duc(n) is the condi-
tion-specific absolute difference for the nth neuron and cth (command, condition) tuple. Then du(n) was compared to the distribution
of the aggregated shuffle: dugpr i(n) = & Zf: 1Aushusr i~ c(n) fori = 1:1000 to derive a p-value for each neuron. The fraction of neu-
rons with significant activity distances (p-value<0.05) is reported in Figure 3E right.
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Neural activity distances summary
Single neuron activity distances reported in Figure S2B (left) are for all (command, condition, neuron) tuples that had at least 15 ob-

—  (FHcom - cong (N) — mean(duspurr —i(n), i = 1:1000) )
Std(dagry ;(n), § = 1:1000) .

Single neuron activity distances reported in (Figure S2B center, right) are for (command, condition, neuron) tuples that significantly
deviated from shuffle. We report raw distances in neuron activity as dcom _ cong(n) (Figure S2B, center), and fraction distances as

eom—cona(") (Figure S2B, right).

Heom — poot (M)
Population activity distances reported in Figures 3B-3D and S2C left are for all (command, condition) tuples. We report distances in
population activity as a fraction of shuffle mean: dupep — com — cona/Me€aN (Aspys i, I = 1:1000)(Figures 3B-3D), and as a z-score of

servations. We report distances as a z-score of shuffle distribution: Zcom — cona (1)

. . . _ - —mean(d, _j, i =1:1000 .
shuffle distribution: Zpop — com - cond = (t50p com St ¢ o 7000) ))(Flgure S2C left).
shuff —i» - -

Population activity distances reported in Figure S2C (center, right) are for (command, condition) tuples that significantly deviated
from shuffle. We report distances in population activity as a fraction of shuffle mean dupo_com—cond/
mean(dugpus_i, i = 1:1000)(Figure S2C, center) and fraction of condition-pooled activity as toop — out—cona (Figure S2C, right).

lkcom - pootl,

Invariant dynamics models

In order to test whether invariant dynamics predicts the different neural activity patterns issuing the same command for different con-
ditions, a linear model was fit for each experimental session on training data of neural activity from all conditions and assessed on
held-out test data. Neural activity at time t, x;, was modeled as a linear function of x; _ 1:

Xy = AX¢_1+b

Here A ¢ RMN modeled invariant dynamics and b € RM was an offset vector that allowed the model to identify non-zero fixed points
of neural dynamics. Ridge regression was used to estimate the A and b parameters. Prior to any training or testing, data was collated
such that all neural activity in bins from t=2:T, in all rewarded trials were paired with neural activity from t=1:(Ty,-1), where T, is the
number of time samples in a trial.

Estimation of Ridge Parameter

For each experimental session, data collated from all conditions was randomly split into 5 sections, and a Ridge model (sklearn.
linear_model.Ridge) with a ridge parameter varying from 2.5x10° to 10° was trained using 4 of the 5 sections and tested on the re-
maining test section. Test sections were rotated, yielding five estimates of the coefficient of determination (R?) for each ridge param-
eter. The ridge parameter yielding the highest cross-validated mean R? was selected for each experimental session. Ridge regression
was used primarily due to a subset of sessions with a very high number of units (148 and 151 units), thus a high number of parameters
needed to be estimated for the A matrix. Without regularization, these parameters tended to extreme values, and the model gener-
alized poorly.

Invariant dynamics model: fitting and testing

Once a ridge parameter for a given experimental session was identified, A, b were again trained using 4/5 of the data. The remaining
test data was predicted using the fit A,b. This procedure was repeated, rotating the training and testing data such that after five it-
erations, all data points in the experimental session had been in the test data section for one iteration of model-fitting. The predictions
made on the held-out test data were collated together into a full dataset. Predictions were then analyzed in subsequent analyses.
Generalization of invariant dynamics

We assessed how well invariant dynamics generalized when certain categories of neural activity were not included in the training
data. Invariant dynamics models were estimated after excluding neural activity in the following categories (Figures 4C, 5C, 5E,
and S4):

1. Left-out Command: For each command (total of 32 command bins), training data sets were constructed leaving out neural ac-
tivity that issued the command (Figures 4C, 5C, 5E, and S4).

2. Left-out Condition: For each condition (consisting of target, task, and clockwise or counterclockwise movement for obstacle
avoidance), training data sets were constructed leaving out neural activity for the given condition (Figures 4C, 5C, 5E, and S4).

3. Left-out Command Angle: For each command angular bin (total of 8 angular bins), training data sets were constructed leaving
out neural activity that issued commands in the given angular bin. This corresponds to leaving out neural activity for the 4 com-
mand bins that have the given angular bin but different magnitude bins (Figure S4B, middle).

4. Left-out Command Magnitude: For each command magnitude bin (total of 4 magnitude bins), training data sets were con-
structed leaving out neural activity that issued commands of the given command magnitude. This corresponds to leaving
out neural activity for the 8 command bins that have the given magnitude bin but different angle bins (Figure S4B, right).

5. Left-out Classes of Conditions (Figure S4G):

a. vertical condition class consisting of conditions with targets located at 90 and 270 degrees for both tasks,

b. horizontal condition class consisting of conditions with targets located at 0 and 180 degrees for both tasks,

c. diagonal 1 condition class consisting of conditions with targets located at 45 and 215 degrees for both tasks, and
d. diagonal 2 condition class consisting of conditions with targets located at 135 and 315 degrees for both tasks.
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For each of the listed categories above, many dynamics models were computed — each one corresponding to the exclusion of one
element of the category (i.e. one model per: command left-out, condition left-out, command angle left-out, command magnitude
left-out, and class of conditions left-out). Each of the trained models was then used to predict the left-out data. Predictions were
aggregated across all dynamics models resulting in a full dataset of predictions. The coefficient of determination (R?) of this predicted
dataset reflected how well dynamics models could generalize to types of neural activity that were not observed during training. We
note that Monkey J did not perform all conditions in the “diagonal 2” class, and so was not used in the analysis predicting excluded
“diagonal 2” conditions.

Decoder-null dynamics model

As an additional comparison, we modeled invariant dynamics that lie only within the decoder-null space (the neural activity subspace
that was orthogonal to the decoder such that variation of neural activity in this space has no effect on the decoder’s output, i.e. com-
mands for movement).

Our approach was to project spiking activity into the decoder null space, and then fit invariant dynamics on the projected, decoder-
null spiking activity. We first computed an orthonormal basis of the null space of decoder matrix K € RZN using scipy.linalg.null_
space, yielding V. € R™V=2. The columns of V correspond to basis vectors spanning the N — 2 dimensional null space. We
then computed the projection matrix P, € RNMN where Py = V,,u,,VnTu,,. Spiking activity was then projected into the null space
XU = Pruixe, where xpull e RNXT,

Following the above procedure (see “estimation of ridge parameter”), a ridge regression parameter was selected using projected
data x{“!. Decoder-null dynamics model parameters A, bnus Were then fit on 4/5 of the dataset and then tested on the remaining 1/5
of the x/“dataset. As before, the training/testing procedure was repeated 5 times such that all data points fell into the test dataset
once. Predictions of test data from all five repetitions were collated into one full dataset of predictions. We note that the average of the

decoder-space activity across the entire session x%c°%r = 1 57T ydecoder \yhere T is the number of bins in an entire session, was
added to all predictions of decoder-null dynamics (X1 = AnuiXt +bpup + X960%),

Shuffle dynamics model

The invariant dynamics model was compared to a shuffle dynamics model fit on shuffled data (see “behavior-preserving shuffle of
activity” above). Following the above procedure (see “estimation of ridge parameter”), a ridge parameter was selected using shuffled
data. Shuffle dynamics model parameters Agnusre, Pshurrie Were then fit on 4/5 of the dataset using shuffled data and then tested on the
remaining 1/5 of the dataset using original, unshuffled data.

Invariant dynamics model characterization

Dimensionality and eigenvalues

Once the linear invariant dynamics model’s parameters A, b were estimated, A was analyzed to assess which modes of dynamics'®
were present (Figure S3). The eigenvalues of A were computed. From each eigenvalue, an oscillation frequency and time decay value
were computed using the following equations:

Frequency = £A/(2wAt) Hz if A is complex, else frequency = 0 Hz

-1
Time Decay = ——At sec
In(]A])
Modes of dynamics contributing substantially to predicting future neural variance will have time decays greater than the BMI de-
coder’s binsize (here, 100ms). 2-4 such dimensions of dynamics were found across sessions and subjects (Figure S3).

Invariant dynamics model predictions

Predicting next neural activity: x:.1| x;,A,b

In Figure 5C, we predict next activity x:.1 based on current activity x; by taking the expected value according to our model: E (x¢.1|x:,A,
b) = AXt +b.

In Figure 5D, we evaluated this prediction for individual dimensions of neural activity.

We projected the prediction of x;,1 onto each eigenvector of the dynamics model A matrix and evaluated how well that dimension
was predicted (via coefficient of determination).

In Figures S3E and S3G, we evaluated this prediction across time from the start of trial. The magnitude (i.e. L2 norm) of the model
residual ||x..1 — Ax:+b||, (Figure S3E) and the coefficient of determination (R?) (Figure S3G) are plotted for each time point from trial
start, evaluated on held-out test data pooling across trials.

Predicting next command: commandy,1| x;,A,b,K

In Figures 5E-5H, we predict the next command command;,1 based on current neural activity x; by taking its expected value accord-
ing to our model: E(command;.1| x;,A,b,K) = K(Ax; +b), where the decoder matrix K maps between neural activity and the com-
mand. This amounts to first predicting next activity based on current activity as above E(x:.1|x:,A,b) = Ax; +b and then applying
decoder K.
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Predicting activity issuing a given command

In Figures 4C-4G, we predict current activity x; not only with knowledge of previous activity x;_1, but also with knowledge of the
current command command; ( x¢| X;—1,A,b,K,command;). We modeled x; and x; 1 as jointly Gaussian with our dynamics model,
and command; is jointly Gaussian with them since command; = Kx;. We modify our prediction of x; based on knowledge of
command;: E(x¢|x;_1, A, b, K, command;). Explicitly we conditioned on command;, thereby ensuring that K x E(x;|x;_1, A, b, K,
command;) = command;. To do this we wrote the joint distribution of x; and command;:

X n((# = (KD)

Kx: Ku )P\ K= KzK'T
where u = E(x¢|xt_1,A,b) = Ax:_1+b, and £ = cov[x; — (Ax;_+1 +b)] is the covariance of the noise in the dynamics model. Then,
the multivariate Gaussian conditional distribution provides the solution to conditioning on command;:

E(x¢|x:_1,A,b,K,command;) = Ax,,1+b+ETKT(KZKT)71(commandt — K(Ax;_1 + b))

This prediction constrains the prediction of x; to produce the given command command;.

For these predictions, = is estimated following dynamics model fitting and set to the empirical error covariance between estimates
of E(x¢) = Ax;_1 +b and true x; in the training data.
Predicting current activity only with command
In Figures 4C—4E, as a comparison to the dynamics prediction (x| x: - 1,A,b,K,command;), we predict x; as its expected value (x| K,
command;)based only on the command command; = Kx; it issues and the decoder matrix K. The same approach was used as
above, except with empirical estimates of u, = corresponding to the mean and covariance of the neural data instead of using the neu-

ral dynamics model and x; _1 to compute u, =.
X N[ # s (KD
Kx; Ku '\ Ks KsKT

E(x|K,command;) = u+ETKT(K2KT)71(command, — Ku)

This formulation makes the prediction:

Comparing invariant dynamics to shuffle

For the above predictions, we evaluated if invariant dynamics models were more accurate than shuffle dynamics. A distribution of
shuffle dynamics R? values (coefficient of determination) was generated by computing one R? value per shuffled dataset (see
“behavior-preserving shuffle of activity” above), where Rﬁhuﬁ,e” corresponds to the R? for shuffle dataset i on session j. For each ses-
sion j, each invariant dynamics model was considered significant if its R? was greater than 95% of shuffle R? values. To aggregate
over S sessions, the R? values for all S sessions were averaged yielding one Rgvg value. This averaged value was compared to a dis-
tribution of averaged shuffle R? values. Specifically, for each shuffle i (i=1:1000 shuffled dataset) an averaged R? value was computed
across all S sessions: R2,, e = & 3o - 1R%utme.;» Yielding a distribution of averaged shuffle R values.

Predicting condition-specific activity

The invariant dynamics model was used to predict the condition-specific average activity for a given command (ucom — cona> i-€- the
average neural activity over all observations of the command in the condition, see “analysis of activity issuing a given command”
above) (Figures 4D-4G). The invariant dynamics model prediction (tcom —cong) Was computed as E(x¢|x;—1,A,b,K,command;)
(see “predicting activity issuing a given command” above) averaged over all observations of neural activity for the given command
and condition.

To test if the invariant dynamics prediction was significantly more accurate than the shuffle dynamics model (i.e. the dynamics
model fit on shuffled data, see “shuffle dynamics model” above) prediction, we computed the error as the distance between true
(Heom — cong) @nd predicted (ucom—cong) CONdition-specific average activity (single neuron error and population distance). Note that
population distances for true and predicted activity were taken only in the dimensions null to the decoder (see “condition-specific
neural activity deviation”). The invariant dynamics model was deemed significantly more accurate than shuffle dynamics if the error
was less than the 5™ percentile of the distribution of the errors from shuffle dynamics models. We reported the fraction of (command,
condition) tuples that were individually significant relative to shuffle (Figure 4G, left). We determined whether commands were indi-
vidually significant relative to shuffle by analyzing the average population activity error across conditions (Figure 4G, middle). We
determined whether neurons were individually significant relative to shuffle by analyzing the average single-neuron error over (com-
mand, condition) tuples (Figure 4G, right).

Predicting condition-specific component
The component of neural activity for a given command that was specific to a condition was calculated as p.om_cond —
E(xt |K7commandt), where ucom _cong IS Neural activity averaged over observations for the given command and condition,

com —cond
and E(x,,_conq|K:cOMmand;) is the prediction of neural activity only given the command it issued, averaged over
observations for the (command, condition) tuple (see “predicting current activity only with command” above). Thus, ticom - cond —

E(xfmmfcond|K, command;) estimates the portion of neural activity that cannot be explained by just knowing the command issued.
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We analyzed how well this condition-specific component could be predicted with invariant dynamics as:
Keom —cond — E(xéomfcond|K, command;) (see “Predicting condition-specific activity” above for calculation of ucom, —cong)- The vari-
ance of teom — cond — E(Xéomfcond|K, command;) explained by pcom - cond — E(xéomfcond|K, command;) is reported in Figure 4F.
Predicting condition-specific next command
For each (command, condition) tuple, the average “next command” commandcom — cong Was calculated. For every observation of the
given command in the given condition, we took the command at the time step immediately following the given command and aver-
aged over observations. We then analyzed how well invariant dynamics predicted this average “next command” commaer\com _conds
calculated as E(command;. 1| X;,A, b, K) averaged over all observations of neural activity x; for the given command and condition.
The L2-norm of the difference commandcom —cona — comman/cﬂom,co,,d was computed and compared to the errors obtained
from the shuffled-dynamics predictions. For each (command, condition) tuple, the dynamics-predicted “next command” was
deemed significantly more accurate than shuffle dynamics if the error was less than the 5™ percentile of the distribution of the errors
of the shuffled-dynamics predictions (Figure 5F, left). Commands were determined to be individually significant if the error averaged
over conditions was significantly less than the shuffled-dynamics error averaged over conditions (Figure 5F, right).

Analysis of predicted command angle

We sought to further analyze whether invariant dynamics predicted the transition from a given command to different “next com-
mands” in different movements. Thus, we calculated two additional metrics on the direction of the predicted “next command”,
i.e. the angle of the predicted “next command” commar?d\wm,w,,d with respect to the condition-pooled “next command”
commandcom — poor (the average “next command” following a given command when pooling over conditions).

First, we predicted whether a condition’s “next command” would rotate clockwise or counterclockwise relative tglhe condition-
pooled “next command.” Specifically, we calculated whether the sign of the cross-product between commandcom - cong @and
commandcom —poor Matched the sign of the cross-product between commandcom - cond @nd commandcom —poor- The fraction of
(command, conditions) that were correctly predicted (clockwise vs counterclockwise) was compared to the fraction of (command,
condition) tuples correctly predicted in the shuffle distribution (Figure 5H, left).

Second, we calculated the absolute error of the angle between the predicted “next command” and the condition-pooled “next
command” for each (command, condition) tuple:

abs( £ (commandcom — cond,COMMaNdcom — poor) — £ (COMMaNdcom — cond; COMMaNdeom — poor) )

Explicitly, for each (command, condition) tuple, we calculated the absolute difference between two angles: 1) the angle between
the predicted “next command” and the condition-pooled “next command” and 2) the angle between the true “next command” and
the condition-pooled “next command”. These errors were then compared to the shuffle distribution (Figure 5H, right).

Estimation of behavior-encoding models

To compare invariant dynamics models to models in which neural activity encodes behavioral variables in addition to the command,
we fit a series of behavior-encoding models (Figure S5). Regressors included cursor state (position, velocity), target position (x,y pos-
tion in cursor workspace), and a categorical variable encoding target number (0-7) and task (“center-out”, “clockwise obstacle-
avoidance”, or “counter-clockwise obstacle-avoidance”).

Models were fit using Ridge regression following the same procedure described above (see “estimation of Ridge parameter”) was
followed with one additional step: prior to estimating the ridge parameter or fitting the regression, variables were z-scored. Without
z-scoring, ridge regression may favor giving explanatory power to the variables with larger variances, since they would require
smaller weights which ridge regression prefers. Then, as above, models were fit using 4/5 of the data and then used to predict
the held-out 1/5 of data. After 5 rotations of training and testing data, a full predicted dataset was collated.

We then tested whether invariant neural dynamics improved the prediction of neural activity beyond behavior-encoding. The co-
efficient of determination (R?) of the model containing all regressors except previous neural activity was compared to the R? of the
model containing all regressors plus previous neural activity (Figure S5B) using a paired Student’s t-test where session was paired.
One test was done for each monkey.

Analysis between pairs of conditions

We sought to assess whether the invariant dynamics model predicted the relationship between pairs of conditions for neural activity
and behavior (Figure S6).

Average neural activity for a given command

The invariant dynamics model was used to predict the distance between average neural activity patterns for the same command
across pairs of conditions. Concretely, the predicted distance was simply the distance between the predicted neural activity pattern
for condition 1 and for condition 2. The correlation between the true distance and the predicted distance was reported for individual
neurons (Figures S6A and S6C) and population activity (Figures S6B and S6D). The Wald test (implemented in scipy.stats.linregress)
was used to assess the significance of the correlations on single sessions. To assess significance pooled over sessions, data points
(true distances vs. dynamics model predicted distances) were aggregated across sessions and assessed for significance.
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Average next command

The invariant dynamics model was used to predict the distance between “next commands” for the same given command across
pairs of conditions. Concretely, the predicted distance was simply the distance between the predicted “next command” for condition
1 and for condition 2. The correlation between the true distance and the predicted distance was reported (Figures S6J and S6K). As
above, the Wald test was used to assess significance of correlations on single sessions and over pooled sessions.

Correlating neural distance with behavior

We asked whether neural activity for a given command was more similar across conditions with more similar command subtrajec-
tories (see “command subtrajectories”) (Figure S6E), and whether invariant dynamics predict this. Specifically, we analyzed whether
the distance between average neural activity across two conditions for a given command correlated to the distance between com-
mand subtrajectories for the same two conditions (Figures S6F top, S6G left, and S6H left). Further, we analyzed whether invariant
dynamics predicted this correlation (Figures S6F bottom, S6G right, and S6H right). For every command (that was used in more than
five conditions) and pair of conditions that used the command (>=15 observations in each condition in the pair), 1) the distances be-
tween condition-specific average activity were computed and 2) distances between command subtrajectories were computed. The
neural activity distances were correlated with the command subtrajectory distances (Figures S6F top, S6G left, and S6H left). To
assess whether invariant dynamics made predictions that maintained this structure, we performed that same analysis with distances
between dynamics-predicted condition-specific average activity across pairs of conditions (Figures S6F bottom, S6G right, and S6H
right).

We assessed the significance of the relationship using a linear mixed effects (LME) model (statsmodels.formula.api.mixedim). The
LME modeled command as a random effect because the exact parameters of the increasing linear relationship between command
subtrajectories and population activity may vary depending on command. Individual sessions were assessed for significance. To
assess significance across sessions, data points were aggregated over sessions, and the LME model used command and session
ID as random effects.

Analysis of Optimal Feedback Control Models

Input magnitude

For each simulated trial, we computed the magnitude of input to the neural population as the L2 norm of the input matrix u; e RV*T
(where N is the number of neurons and T = 40 was the horizon and thus movement length). For each of the 24 conditions, we calcu-
lated the average input magnitude over the 20 trials. We compared the magnitude of input used by the Invariant Dynamics Model and
the No Dynamics Model, where the Invariant Dynamics Model was either the Full Dynamics Model (Figure 6C) or the Decoder-Null
Dynamics Model (Figure 6D). We analyzed each individual session with a paired Wilcoxon signed-rank test, where each pair within a
session consisted of one condition (24 conditions total). We aggregated across sessions for each subject using a linear mixed effect
(LME) model between input magnitude and model category (Invariant Dynamics Model or No Dynamics Model), with session
modeled as a random effect.

Simulated activity issuing a given command

In the OFC simulations, we sought to verify if different neural activity patterns were used to issue the same command across different
conditions, applying analyses that we used on experimental neural data to the OFC simulations. As above, we defined discretized
command bins (see “command discretization for analysis”) and calculated the average neural activity for each (command, condition)
tuple. For (command, condition) tuples with >=15 observations (example shown in Figure 6E), we computed the distance between
condition-specific average activity and condition-pooled average activity by subtracting the activity, projecting into the decoder-null
space, taking the L2 norm, and normalizing by the square root of the number of neurons, as in the experimental data analysis (see
“analysis of activity issuing a given command”).

We analyzed the distance between condition-specific average activity and condition-pooled average activity for a given command,
comparing each model to its own shuffle distribution (see “behavior-preserving shuffle of activity”) (Figures 6G and 6H). Concretely,
for each simulated session, we calculated the mean of the shuffle distribution of distances for each (command, condition) tuple and
compared these shuffle means (one per (command, condition) tuple) to the observed distances from the simulations. We analyzed
individual sessions with a Mann-Whitney U test. We aggregated across sessions for each subject with a LME model between activity
distance and data source (OFC Simulation vs shuffle), with session modeled as a random effect. For visualization of distances relative
to the shuffle distribution (Figures 6F-6H), we divided the observed distance for each (command, condition) tuple by the mean of the
corresponding shuffle distribution (same as in Figures 3B-3D).

Statistics Summary

In many analyses, we assessed whether a quantity calculated for a specific condition was significantly larger than expected from the
distribution of the quantity due to subsampling the condition-pooled distribution. A p-value was computed by comparing the con-
dition-specific quantity to the distribution of the quantity computed from subsampling the condition-pooled distribution. The
“behavior-preserving shuffle of activity” and “matching the condition-pooled distribution” (see above) were used to construct the
condition-pooled distribution.

e14 Current Biology 33, 2962-2976.e1-e15, July 24, 2023
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The following is a summary of these analyses:

e Figure S1D, Quantity: distance between condition-specific average command subtrajectory and condition-pooled average
command subtrajectory, P-value: computed using behavior-preserving shuffle.

e Figure S1E, Quantity: distance between condition-specific average next command and the condition-pooled average next
command, P-value: computed using behavior-preserving shuffle.

e Figures 3B left and 3E right: Quantity: for a given command, distance between condition-specific average activity for a neuron
and condition-pooled average activity for a neuron, P-value: behavior-preserving shuffle.

e Figures 3B right, 3D, and 3E left, middle: Quantity: for a given command, distance between condition-specific average popu-
lation activity and condition-pooled average population activity, P-value: behavior-preserving shuffle.

e Figure 4G right: Quantity: for a given command, error between the invariant dynamics’ prediction of condition-specific average
activity for a neuron and the true condition-specific average activity for the neuron. P-value: distribution of prediction errors
from shuffle dynamics (models fit on behavior-preserving shuffle and that made predictions using unshuffled data).

e Figure 4G left, middle: Quantity: for a given command, error between the invariant dynamics’ prediction of condition-specific
average population activity and the true condition-specific average population activity. P-value: distribution of prediction errors
from shuffle dynamics (models fit on behavior-preserving shuffle and that made predictions using unshuffled data).

e Figure 5F: Quantity: for a given command, error between the invariant dynamics’ prediction of condition-specific average next
command and true condition-specific average next command. P-value: distribution of prediction errors from shuffle dynamics
(models fit on behavior-preserving shuffle and that made predictions using unshuffled data).

In the above analyses, we also assessed the fraction of condition-specific quantities that were significantly different from the con-
dition-pooled quantities or significantly predicted compared to a shuffled distribution (Figures 3E, 4G, 5F, S1D, S1E, S4D, S4l, and
S6G). In order to aggregate over all data to determine whether condition-specific quantities were significantly different from shuffle or
significantly predicted within a session relative to shuffle dynamics, we averaged the condition-specific quantity over the relevant
dimensions (command, condition, and/or neuron) to yield a single aggregated value for a session. For example in Figure 3E right,
we take the distance between average activity for a (command, condition, neuron) tuple and condition-pooled average activity for
a (command, neuron) tuple, and we average this distance over (command, condition) tuples to yield an aggregated value that is
used to assess if individual neurons are significant. We correspondingly averaged the shuffle distribution across all relevant dimen-
sions (command, condition, and/or neuron). Together this procedure yielded a single aggregated value that could be compared to a
single aggregated distribution to determine session significance. Finally, when we sought to aggregate over sessions, we took the
condition-specific quantity that was aggregated within a session and averaged it across sessions and again compared it to a shuffle
distribution of this value aggregated over sessions.

When R? was the metric assessed (Figures 4C, 4F, 5C-5E, S4B, S4F, and S4G), a single R? metric was computed for each session
and compared to the R? distribution from shuffle models. This R% metric is known as the “coefficient of determination,” and we note
that it assesses how well the dynamics-predicted values (e.g. spike counts) account for the variance of the true values.

In some cases, a linear regression was fit between two quantities (Figures S6C, S6D, S6G, S6J, and S6K) on both individual ses-
sions and on data pooled over all sessions, and the significance of the fit and correlation coefficient were both reported. In other
cases where random effects such as session or analyzed command may have influenced the linear regression parameters
(Figures S6F and S6G), a Linear Mixed Effect (LME) model was used with session and/or command modeled as random effects
on intercept.

In Figure S5, a paired Student’s t-test was used to compare two models’ R% metric across sessions. Figure 6 analyzed simulations
of OFC models, not experimentally-recorded data. Figures 6C and 6D used a paired Wilcoxon test and a LME to compare input
magnitude between a pair of OFC models. Figures 6G and 6H used a Mann-Whitney U test and a LME to compare population dis-
tance between an OFC model and its shuffle distribution.
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Figure S1. The same command is issued within different command trajectories to produce different
movements. Related to Figure 1EF.

(A) To analyze the same command in different movements, the continuous-valued two-dimensional commands
are categorized into one of 32 bins. Bins discretize the command angle into 8 equally spaced bins and
magnitude into 4 bins, so that the pair of angle bin and magnitude bin results in 32 total bins. (B) The number of
conditions in which the same command occurs frequently enough to be analyzed (>=15 occurrences) for each
session analyzed from monkeys G and J. (C) Left. Repeated from Figure 1E for visualization: observations of
an example command (shown as a black arrow) are plotted during single trials for nine conditions. The example
command was in the -45 degree direction and the smallest magnitude bin of analysis (see STAR methods —
“Command discretization for analysis”). Center. Local cursor position subtrajectory plot (aligned to command
occurrence) repeated from Figure 1F for visualization, plus the condition-pooled cursor position subtrajectory
(dashed gray arrow; average over command observations pooling over conditions). Right. Command
subtrajectory plot repeated from Figure 1F for visualization, plus the condition-pooled command subtrajectory
(gray; average over command observations pooling over conditions). (D) Analysis of whether the same
command is used within different command subtrajectories in different conditions. The “condition-specific
subtrajectory distance” is quantified between each condition-specific command subtrajectory and the condition-
pooled command subtrajectory. Left. Colored dots show the condition-specific subtrajectory distance for the
example command and conditions. The gray boxplots (whiskers span 01-95™ percentile) show the chance
distribution of distances derived from bootstrapping, i.e. subsampling and averaging command subtrajectories
from the condition-pooled distribution of command occurrences. For visualization, condition-specific
subtrajectory distances are normalized by the mean of the bootstrapped distribution. 89% of the example
conditions have command subtrajectories that are significantly different from the condition-pooled command
subtrajectory. Center. Fraction of (command, condition) tuples with condition-specific command subtrajectories
that are significantly different from the condition-pooled command subtrajectory. Condition-specific command
subtrajectories are overall significantly different from the condition-pooled command subtrajectory: Monkey G
[J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 pooled over sessions (mean of command
subtrajectory distances = 1.920 [2.342], mean (95th percentile) of bootstrapped distribution distances = 1.0
(1.01) [1.0 (1.02)]). Right. Distribution of condition-specific subtrajectory distances for individually significant
(command, condition) tuples. Horizontal colored lines correspond to example conditions shown in left. (E)



Analysis of whether the same command is followed by distinct next commands in different conditions. For a
given command and condition, the “condition-specific next command” is calculated as the average command
following the given command in the given condition. For a given command, the “condition-pooled next
command” is the average command following the given command, pooling over conditions. The “condition-
specific next command distance” is calculated between the condition-specific next command and the condition-
pooled next command. Distances are normalized by the mean of the bootstrapped shuffle distribution. Left.
Colored dots show the condition-specific next command distance for the example command and conditions.
Center. Fraction of (command, condition) tuples with condition-specific next commands that are significantly
different from the condition-pooled next command. Condition-specific next commands are overall significantly
different from the condition-pooled next command: Monkey G [J]: p-value < 0.01 for 9/9 [4/4] sessions, p-value
< 0.001 for 8/9 [4/4] sessions, p-value < 0.001 pooled over sessions (mean of next command distances = 1.676
[2.178], mean (95th percentile) of bootstrapped distribution of next command distances = 1.0 (1.03) [1.0
(1.05)]). Right. Distribution of condition-specific next command distances for individually significant
(command, condition) tuples. Horizontal colored lines correspond to example shown in left.
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Figure S2. Distributions of condition-specific neural activity issuing a given command. Related to Figure
3B-E. In all plots, colored horizontal lines correspond to the example data in Figure 3B, and whiskers span the
2.5" —97.5M percentiles of the data distribution.

(A) Population activity distances for all (command, condition) tuples in an example session. Left. Population
activity distances (divided by the shuffle mean) for the example command, conditions, and session (Money G,
session 0) from Figure 3B. Right. For the same example session, population distances (divided by shuffle mean)
for all commands and conditions with sufficient datapoints (>= 15 observations per session) to be analyzed.
Columns correspond to the analysis of one command across various conditions (rows). Boxes are not filled in
(white) if there are not enough observations of the command in the condition. The example command in /lef? is
marked in right with a red box and the command bin label of “Ang 2, Mag 0”. (B) Single neuron activity
distances. Left. For all (command, condition, neuron) tuples, the distance (absolute difference) between
condition-specific activity and condition-pooled activity, z-scored by the mean and standard deviation of the
shuffle distribution’s same distances. The horizontal black line illustrates an estimate of the significance
threshold (z = 1.645, 95 percentile of a standard normal distribution). In formal analysis, the empirical
(command, condition, neuron) shuffle distribution’s 95 percentile serves as the significance threshold for each
(command, condition, neuron) tuple. Center. For (command, condition, neuron) tuples that are significantly
different than shuffle, the distribution of the distance (absolute difference) between condition-specific activity
and condition-pooled activity. Right. For (command, condition, neuron) tuples that are significantly different
than shuffle, the distribution of the distance (absolute difference) between condition-specific activity and
condition-pooled activity, divided by the condition-pooled activity. (C) Population activity distances. Left. For
all (command, condition) tuples, the distance between condition-specific activity and condition-pooled activity,
z-scored by the mean and standard deviation of the shuffle distribution’s same distances. The horizontal black
line illustrates an estimate of the significance threshold (z = 1.645, 95" percentile of a standard normal
distribution). In formal analysis, the empirical (command, condition) shuffle distribution’s 95" percentile serves
as the significance threshold for each (command, condition) tuple. Center. For (command, condition) tuples that
are significantly different than shuffle, the distribution of the distance between condition-specific activity and
condition-pooled activity, divided by the mean of the shuffle distribution of the same distance. Right. For
(command, condition) tuples that are significantly different than shuffle, the distribution of the distance between
condition-specific activity and condition-pooled activity, divided by the magnitude of the condition-pooled
activity.
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Figure S3. Properties of invariant dynamics models. Related to Figures 2, 4C, and 6.

(A) The frequency and decay properties of the eigenvalues of the dynamics matrix for an example session’s
dynamics model (Monkey G, session 0). Eigenvalues with decay timescales greater than 0.1 seconds (the
timescale at which the BMI updates the command and cursor) are denoted with arrows. (B) The dimensionality
of the full dynamics matrix (decoder-null dynamics matrix) ranged from 2-4 (2-5) when considering the
eigenvalues that had timescales greater than the BMI update’s timescale of 0.1 seconds. The number of
eigenvalues (each corresponding to one dimension of neural activity) with time decay > 0.1 seconds is shown
for each monkey and session. (C) The average frequency of the full dynamics matrix (decoder-null dynamics
matrix) eigenvalues with time decays > 0.1 seconds is ~0.1 (~0.06) Hz for Monkey G and is 0 Hz (0 Hz) for
Monkey J. The average frequency (averaged over eigenvalues with time decays > 0.1 seconds) is shown for
each monkey and session. (D) Left. Example movements which are composed of the same commands in
different temporal orders. Right. Illustration of neural trajectories that follow invariant, decaying dynamics to
control different movements. As illustrated in Figure 2B, the projection of neural activity into the decoder space
determines the command that is issued for movement. As in Figure 4A, different neural activity patterns are
used to issue the same command. For example, the first neural activity pattern in each trajectory is different,
although they issue the same command. (E) Plot of the magnitude of neural activity that is not explained by the
invariant dynamics model (i.e. the residual of the invariant dynamics model’s predictions, which is the
difference between observed neural activity and the prediction of neural activity based on the previous time
step’s neural activity). The trial-averaged L2-norm of the residual (divided by the square root of the number of
neurons) is shown across time for an example session (Monkey G, session 0). (F) The residual magnitude in the
late trial period, normalized to the residual magnitude in the early trial period. For analysis, the trial length was
set to the median trial time for each session, and the early trial period (late trial period) was the first (last) one-
third of the trial length. Each data point is the average of a single session, and the bar is the average across
sessions. The residual is larger in the early trial period than the late trial period. Analysis was done using a
linear-mixed effect model with session modeled as a random effect and early vs. late modeled as a fixed effect:
Monkey G, slope = -0.242, t(4746) = -24.926, p-value = 3.87 x1071*7, Monkey J slope = -0.0625, t(1161) = -
5.354, p-value = 8.58 x 10°®. Individual datapoints in the statistics were the average of the norm of the residuals
during the early and late epochs for individual trials. Trials that were shorter than the trial median were not
included in the statistics. (G) The R? (coefficient of determination) of the invariant dynamics model at each time
point relative to the start of the trial, calculated for each session with held-out test data pooling across trials and
conditions. The following is some interpretation of this data. At the very start of the trial, the model predicts
spiking activity less well, consistent with large input driving neural activity. Then, there is a bump of high
predictability, consistent with the initial large input evolving according to invariant dynamics. Then, the
predictability decreases to an asymptote, consistent with ongoing feedback modulating neural activity.
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Figure S4. Generalization of invariant dynamics across sets of commands and conditions. Related to

Figure 4B-E, G.

As in Figure 4C, each panel shows the R? of models predicting neural activity given the command it issues
(Monkey G [J]: n=9 [4] sessions) including 1) the dynamics model that is trained using a complete dataset and
that predicts held-out test data (cyan, labeled “full”), 2) the dynamics model that is trained with commands left
out and that predicts the left-out commands (magenta, labeled “command left-out™), 3) the dynamics model that
is trained using a shuffled complete dataset and that predicts held-out, unshuffled test data (black, labeled
“shuffle”), and 4) a model trained using a complete dataset and that predicts held-out test data just given the
command but not given previous neural activity (gray, labeled “command only”). See STAR methods —

“Invariant dynamics models” —

“Generalization of invariant dynamics”. (A) Schematic (as in Figure 4B /eft).



We ask if a linear model of invariant dynamics can predict the neural activity that issues a given command that
was left out of training the model. Magenta box indicates that neural activity that transitions to and from the
given command are left-out of the dynamics model training data. (B) Generalization of invariant dynamics’
predictions to sets of commands that were not used to train the invariant dynamics model. Predictions of left-out
neural activity are significantly better than shuffle dynamics. Lefi. An individual command is left out and
significantly predicted relative to shuffle dynamics (stats reported in Figure 4C for “command left-out
dynamics”). The left-out model coefficient of determination (R?) aggregates the predictions for each left-out
command. Middle. All commands in a particular angular bin are left out and predicted significantly better than
shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [3/4], p-value n.s for 0/9 [1/4] sessions, p-value <
0.001 for sessions pooled, mean R? = 0.155 [0.216], mean (95th percentile) R? of shuffle = 0.130 (0.130) [0.196
(0.196)]). The left-out model R? aggregates the predictions for each left-out angle of commands. Right. All
commands in a particular magnitude bin are left out and predicted significantly better than shuffle dynamics
(Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled, mean R? = 0.159
[0.238], mean (95th percentile) R? of shuffle = 0.130 (0.130) [0.196 (0.196)]). The left-out model R? aggregates
the predictions for each left-out magnitude of commands. (C) Visualization of observed and predicted neural
activity for the example command and conditions from Figure 4DE. Predictions are from the invariant dynamics
model that has been trained with data left out for the example command (“left-out command dynamics™). Left.
Condition-specific average activity for the example neuron and command (repeated from Figure 4D left for
visualization). Left-center. Prediction for the condition-specific average activity for the example neuron by the
left-out dynamics model (stars), the shuffle dynamics model (black boxplot distribution), and the model
predicting neural activity only using the command (gray triangle). Right-center. Condition-specific average
population activity is visualized along the activity dimension that captured the most neural activity variance (the
first principal component, labeled “PC1”, from principal components analysis applied to condition-specific
average population activity) for the example command and conditions (repeated from Figure 4E left for
visualization). Right. Prediction for the condition-specific average population activity on PC1 by the left-out
dynamics model (stars), the shuffle dynamics model (black boxplot distribution), and the model predicting
neural activity only using the command (gray triangle). (D) Analyses of how well neural activity is predicted for
individual (command, condition) tuples when the command is left out of training data for the dynamics model
(“left-out dynamics”). Left. Fraction of (command, condition) tuples where left-out dynamics predicts
condition-specific average population activity significantly better than shuffle dynamics (Monkey G [J]: n=9 [4]
sessions). Right. Fraction of neurons, aggregated over all (command, condition) tuples, where left-out dynamics
predicts the neuron’s average activity significantly better than shuffle dynamics (Monkey G [J]: n=9 [4]
sessions). (E) Schematic (as in Figure 4B right). We ask if the invariant dynamics model can predict neural
activity for a given command and condition if all neural activity in that condition (illustrated in purple) is left-
out of training the model. (F) Predictions of neural activity for a given command in a left-out condition are
significantly better than shuffle dynamics (stats reported in Figure 4C for “condition left-out dynamics”). The
left-out model R? aggregates the predictions for each left-out condition. (G) Generalization of invariant
dynamics’ predictions to sets of conditions that were not used to train the invariant dynamics model. Left.
Schematics illustrate which conditions were left out and then predicted for each left-out set of conditions. Right.
All neural activity in a particular set of left-out conditions is left out and predicted significantly better than
shuffle dynamics. Vertical conditions left out. Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value <
0.001 for sessions pooled (mean R?> = 0.169 [0.251], mean (95th percentile) of shuffled R*> = 0.131 (0.131)
[0.206 (0.206))). Horizontal conditions left out. Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value <
0.001 for sessions pooled (mean R =0.161 [0.251], mean (95th percentile) of shuffled R? =0.128 (0.128),
[0.204, (0.205)]). Diagonal 1 conditions left out. Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value
<0.001 for sessions pooled (mean R? = 0.172 [0.212], mean (95th percentile) of shuffled R? = 0.135 (0.135)
[0.158 (0.158)]). Diagonal 2 conditions left out. Monkey G: p-value < 0.001 for 9/9 sessions, p-value < 0.001
for sessions pooled (mean R? = 0.168, mean (95th percentile) of shuffled R? = 0.134 (0. 134)). Monkey J:
obstacle task did not have these diagonal conditions. (H) Visualization of observed and predicted neural activity
for the example command and conditions from Figure 4DE. Predictions are from the invariant dynamics model
that has been trained with data left out for each condition separately (“left-out condition dynamics”). Thus, each
prediction is made by a separate model with the corresponding condition left out of training data. Left.



Condition-specific average activity for the example neuron and command (repeated from Figure 4D left for
visualization). Left-center. Prediction for the condition-specific average activity for the example neuron by the
left-out dynamics models (stars), the shuffle dynamics model (black boxplot distribution), and the model
predicting neural activity only using the command (gray triangle). Right-center. Condition-specific average
population activity is visualized along PC1 (see legend (C) for explanation) for the example command and
conditions (repeated from Figure 4E left for visualization). Right. Prediction for the condition-specific average
population activity on PC1 by the left-out dynamics models (stars), the shuffle dynamics model (black boxplot
distribution), and the model predicting neural activity only using the command (gray triangle). (I) Analyses of
how well neural activity is predicted for individual commands and conditions when the condition is left out of
training data for the dynamics model (“left-out dynamics”). Left. Fraction of (command, condition) tuples
where left-out dynamics predicts condition-specific average population activity significantly better than shuffle
dynamics (Monkey G [J]: n=9 [4] sessions). Right. Fraction of neurons, aggregated over all (command,
condition) tuples, where left-out dynamics predicts the neuron’s average activity significantly better than shuffle
dynamics (Monkey G [J]: n=9 [4] sessions).
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Figure S5. Alternative models to predict neural activity. Related to Figures 4AC and 5C.

Invariant dynamics predict neural activity beyond encoding of cursor, target, and task.

(A) Schematic of task-relevant behavior variables that may be encoded in motor cortex population activity x, at
time t during BMI performance, including the command c, (orange), cursor position p,_4 and velocity v;_4,
target position tg,, in the 2D workspace, a categorical variable tg that encodes the target, and a categorical
variable tsk that encodes task (center-out versus obstacle-avoidance) and whether the trajectory went clockwise
vs counterclockwise for the obstacle-avoidance task. (B) Fraction increase in coefficient of determination (R?)
for models predicting neural activity for a given command c; as an increasing number of predictors are
incorporated. Reported R? values are on left-out test data, so increasing the number of predictors does not
trivially increase R2. Incorporating invariant neural dynamics (cyan) significantly improves upon predictions
from the model with all task-relevant variables (right-most dark blue bar “behavior encoding model”:

X¢| Ct» Pe-1, Ve-1, t9xy, tsk, tg) (Monkey G: paired Student’s t-test: N = 18, T = -7.182, p-value = 9.41e-05,
Monkey J: paired Student’s t-test: N =8, T =-5.141, p-value = 0.0143).

Non-linear invariant dynamics do not predict neural activity beyond linear invariant dynamics. To test if neural
activity predictions may be improved by using a non-linear model of invariant dynamics, we chose to use a
recurrent switching linear dynamics system (rsLDS) model 3!. The rsLDS has the advantage of capturing non-
linear dynamics yet still having parameters that are interpretable using linear systems analysis. Specifically, we
used a “recurrent-only” switching linear dynamical system that switches between dynamical systems depending
only on the latent stateS!. This was selected for interpretability (i.e. dynamics always obey specific linear
dynamics 4 when the latent state is in a specific region of state space).

(C) We first ensured we could properly fit the non-linear dynamics®' to a toy example, the “Nascar example”
(“ssm” repository -- https://github.com/lindermanlab/ssm) that has activity evolving under a piecewise
combination of four linear dynamical systems. (D) Forward prediction accuracy of the true Nascar example
generative models (black bars) and the fit models (gray bars) confirmed that our fitting procedure found model
parameters that yielded comparable accuracy in forward model prediction to the generative model, even when
noise was added to observations. Both models suffered similarly from additive noise to the observations. (E) In
the case of mild additive noise (noise = 0.1, indicated in dotted box in (D)), both the nascar generative (black)
and fit (gray) rsLDS models outperformed linear ridge regression (cyan) in prediction of future observations, as
expected due to the non-linear generative model. (F) Comparison of rsLDS models (gray) vs. linear ridge
regression (cyan) fit on neural data as animals perform BMI. We set the latent state dimensionality to the
number of neurons that were recorded. This choice was made after sweeping latent state dimensionalities and
observing increasing log-likelihoods with higher latent state dimensionality on held-out test data. The linear
ridge regression models outperformed the rsLDS models on held-out test data, and the rsLDS performance
worsened as more dynamical systems were incorporated (i.e., as more non-linearities were added).
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Figure S6. Invariant dynamics predicts structure across pairs of conditions. Related to Figures 3 and
4ADEG.

(A) For a given example command, visualization of the distance between single neuron activity across pairs of
conditions (dark blue dots, top x-axis) and the distance between dynamics-predictions of activity across pairs of



conditions (“predicted distance”, cyan blue dots, bottom x-axis), shown for the command, neuron (neuron 36),
and conditions in Figure 3B. As comparison, activity was predicted given just the continuous-valued commands
for each condition in the pair (i.e. activity predicted without an invariant dynamics model), and the distance
between these predictions across pairs of conditions is shown (gray triangles which are measured on the cyan
scale). The individual conditions composing each condition-pair are indicated with colored dots at the left of the
plot. Condition-pairs are sorted by increasing distance. Two examples of condition-pairs are highlighted in pink
and green, and the corresponding activity of the individual conditions is shown in the inset. The position
subtrajectories for these condition-pairs are shown below in (E). (B) Same as (A) but for distances between
population activity. Inset shows differences in PC1 activity for illustration, but population distances are
calculated in the high-dimensional decoder-null space (see STAR methods — “Analysis of activity issuing a
given command”). (C) Left. For a given command, correlation between the true distance across condition-pairs
(x-axis) and predicted distance (y-axis), for the example neuron and session in (A) and Figure 3B. Dots include
all commands and corresponding condition-pairs analyzed for this example session. Pink and green dots
indicate condition pairs highlighted in (A). Right. Correlation coefficients between true distance across
condition-pairs and predicted distance. Each data point is one session, averaging over neurons for all
(command, condition-pair) tuples, and the bar is the session-average. Dynamics-predicted distances across
condition-pairs are significantly correlated with true distances: Monkey G: p-value < 0.001 for 9/9 sessions, p-
value < 0.001 pooled over sessions (linear regression: slope = 0.221, rv = 0.584, N=377489). Monkey J: p-value
< 0.001 for 4/4 sessions, p-value < 0.001 pooled over sessions (linear regression: slope =0.317, rv = 0.693, N =
34643). (D) Left. Same as (C) left, except for population activity distances. Right. Same as (C) right, except for
population activity distances. Each data point is for one session, averaging over all (command, condition-pair)
tuples, and the bar is the session-average. Dynamics-predicted distances across condition-pairs are significantly
correlated with true distances: Monkey G: p-value < 0.001 for 9/9 sessions, p-value < 0.001 pooled over
sessions (linear regression, slope = 0.350, rv =0.638, N = 5112). Monkey J: p-value < 0.001 for 4/4/ sessions,
p-value < 0.001 pooled over sessions (linear regression, slope = 0.449, rv = 0.800, N=1714). (E) Analysis of
whether neural activity for a given command is more similar across conditions that have more similar command
subtrajectories, and whether this structure is predicted by a model of invariant dynamics. Illustration of example
condition-pairs used in (A)-(D) with similar (pink) and dissimilar (green) command subtrajectories (position
subtrajectories are plotted). (F) 7op. For the example command from Figure 3B, correlation between population
activity distances and command subtrajectory distances for condition-pairs in (A). Pink and green points
correspond to pairwise comparisons illustrated in (E). Bottom. Same as Top but correlation between dynamics-
predicted distances and command subtrajectory distances. (G) Left. Fraction of commands that occur frequently
(in > 5 conditions) that exhibit a significant correlation between 1) population activity distance across a
condition-pair and 2) command subtrajectory distance across a condition-pair. Over all commands, command
subtrajectory distance across a condition-pair is significantly correlated with population activity distance:
Monkey G: p-value < 0.001 for 9/9 sessions, pooled over sessions: linear mixed effect (LME) model with
command identity and session as random effects: N=4674, z=31.04, p = 1.36e-211, Monkey J: p-value < 0.05
for 4/4 sessions, p-value < 0.001 for 3/4 sessions, pooled over sessions: LME model with command identity and
session as random effects: N=1629, z = 14.18, p-value = 1.22e-45. Right. Fraction of commands that occur
frequently (in > 5 conditions) that exhibit a significant correlation between 1) the dynamics-predicted
population activity distance across a condition-pair and 2) the command subtrajectory distance. Over all
commands, command subtrajectory distance across a condition-pair is significantly correlated with dynamics-
predicted population activity distance (Monkey G: p-value < 0.01 for 9/9 session, p-value < 0.001 for 8/9
sessions, p-value < 0.001 for pooled sessions (LME with command identity and session modeled as random
effects, N =4674, z = 33.1, p-value = 3.92¢-240), Monkey J: p-value < 0.001 for 4/4 sessions, p-value < 0.001
for pooled sessions (LME with command identity and session modeled as random effects, N = 1629, z=22.5,
p-value = 5.93e-112)). (H) Left. Average correlation coefficient of 1) true population distance across a
condition-pair versus 2) command subtrajectory distance, aggregated across significant command-conditions.
Right. Same as Left but correlation of 1) predicted population distance across a condition-pair versus 2)
command subtrajectory distance. (I) Analysis of how condition-specific neural activity issuing the same current
command (c¢) transitions forward to issue distinct next commands (c¢+1).




Left. For the example command in Figure 3B, visualization of the average current and next command for each
example condition. Right. Visualization of the distance between the dynamics-predicted next commands for
each condition in a pair (red, bottom x-axis) and the distance between the true next commands across a
condition-pair (black, top x-axis). The individual conditions composing each condition-pair are indicated with
colored dots at the left of the plot. Condition-pairs are sorted by increasing distance in next command. Two
examples of condition pairs are highlighted in pink and green (same as in (A)). (J) For the example session,
correlation of 1) the distance between true next commands across a condition-pair (x-axis) and 2) the distance
between predicted next commands across a condition-pair (y-axis). Dots include all commands and
corresponding condition-pairs. Pink and green dots indicate condition-pairs highlighted in (I). (K) Same as (J)
except for all sessions (example session is shown in red). Dynamics-predicted distance between next commands
across a condition-pair is significantly correlated with the true distance: Monkey G: p-value < 0.001 for 8/9
sessions, p-value n.s. for 1/9 sessions, p-value < 0.001 for pooled sessions (linear regression, slope=0.263, rv
=0.76), Monkey J: p-value < 0.001 for 4/4 sessions, p-value < 0.001 for pooled sessions (linear regression,
slope=0.178, rv =0.63).



Analysis description Figure Monkey Session significance Pooled session statistics vs. shuffle
# sessions | # sessions # sessions mean of 50 mean of 957
with p- with 0.001 < with p-value data percentile shuffle percentile of
value < p-value < 0.05 >0.05 (n.s.) of shuffle shuffle
0.001
Distances aggregating over (command, condition, neuron) 3B G 9/9 1.167 1.004 1.010
tuple
J 4/4 1.235 0.745 0.757
Population distance aggregating over (command, 3D G 9/9 1.222 1.0 1.007
condition) tuple
J 4/4 1.724 1.0 1.019
R2 of full dynamics predictions of neural activity given 4C G 9/9 0.167 0.130 0.130
command (cyan bar)
J 4/4 0.252 0.196 0.196
R2 of command left-out dynamics predictions of neural 4C G 9/9 0.163 0.130 0.130
activity given command (magenta bar)
J 4/4 0.243 0.196 0.196
R2 of condition left-out dynamics predictions of neural 4C G 9/9 0.163 0.130 0.130
activity given command (purple bar)
J 4/4 0.240 0.196 0.196
Single neuron error between true and dynamics-predicted 4D G 9/9 1.232 1.359 1.359
neural activity given command, aggregating over all
(command, condition, neuron) tuples
J 4/4 1.182 1.454 1.455
Population error between true and dynamics-predicted 4E G 9/9 0.883 0.99 1.0
neural activity given command, aggregating over all
(command, condition) tuples, normalized by the mean of
the shuffle distribution
J 4/4 0.809 0.99 1.0
R2 of condition-specific component of neural activity 4F G 9/9 0.226 -0.006 -0.005
predicted by dynamics
J 4/4 0.330 -0.016 -0.014
R2 of full dynamics predictions of neural activity (cyan bar) | 5C G 9/9 0.100 0.055 0.055
J 4/4 0.117 0.051 0.053
R2 of command left-out dynamics predictions of neural 5C G 9/9 0.099 0.055 0.055
activity (magenta bar)
J 4/4 0.113 0.051 0.053
R2 of condition left-out dynamics predictions of neural 5C G 9/9 0.097 0.055 0.055
activity (purple bar)
J 4/4 0.103 0.051 0.053
R2 of decoder-null dynamics predictions of neural activity 5C G 9/9 0.083 0.055 0.055
(pink bar)
J 4/4 0.085 0.051 0.053
R2 of full dynamics predictions of command (orange bar) 5D G 9/9 0.315 0.264 0.266
J 4/4 0.212 0.186 0.188
R2 of command left-out dynamics predictions of command 5D G 9/9 0.310 0.264 0.266
(magenta bar)
J 4/4 0.211 0.186 0.188
R2 of condition left-out dynamics predictions of command 5D G 9/9 0.305 0.264 0.266
(purple bar)
J 2/4 1/4 1/4 0.193 0.186 0.188
R2 of decoder-null dynamics predictions of command 5D G 9/9 0.0 0.264 0.266
(pink bar)
J 4/4 0.0 0.186 0.188
Error in prediction of condition-specific next command 5E G 9/9 3.956 5.38 5.40
J 4/4 7.324 9.240 9.305
Fraction of (command, condition) tuples with sign of next 5G G 9/9 0.708 0.535 0.541
command’s angle is accurately predicted with full
dynamics
J 4/4 0.617 0.473 0.480
Error in prediction of next command’s angle with full 5G G 9/9 19.503 26.415 26.564
dynamics
J 4/4 9.608 12.636 12.779

Table S1. Comparisons to shuffled datasets. Related to Figures 3-5. Statistics computed for individual animal sessions and pooling across sessions compared to shuffled datasets as described in
main text and STAR Methods.



Analysis description Figure Monkey Session significance Pooled session statistics (linear mixed effect model
with session modeled as random effect)
Individual session # of sessions w/ | Number of datapoints Z statistic p-value
comparison test p-value < 0.05 (N)

Input magnitude, comparison between full dynamics and 6C G Wilcoxon signed-rank test 9/9 432 10.49 9.67e-26
no dynamics with conditions paired

J 4/4 192 5.20 1.92e-7
Input magnitude, comparison between decoder-null 6D G Wilcoxon signed-rank test 0/9 432 0.002 0.998
dynamics and no dynamics with conditions paired

J 0/4 192 -0.003 0.990
Distance between average population activity for a 6G G Mann-Whitney U test 9/9 4906 -23.09 6.37e-118
(command, condition) compared to shuffle: Full dynamics
(cyan)

J 4/4 2408 -16.68 1.77e-62
Distance between average population activity for a 6G G Mann-Whitney U test 0/9 4334 0.168 0.866
(command, condition) compared to shuffle: No dynamics
(black)

J 0/4 2188 0.462 0.644
Distance between average population activity for a 6H G Mann-Whitney U test 0/9 4488 0.932 0.351
(command, condition) compared to shuffle: Decoder-null
dynamics (pink)

J 0/4 2252 -1.490 0.136
Distance between average population activity for a 6H G Mann-Whitney U test 0/9 4482 0.611 0.541
(command, condition) compared to shuffle: No dynamics
(black)

J 0/4 2250 0.449 0.654

Table S2. Simulation statistics. Related to Figure 6. Statistics computed for simulations performed on individual animal sessions and pooling across sessions as described in main text and STAR

Methods.
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