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Summary

To perform successful actions, motor commands must be adapted by taking into account the current goal of
the animal as well as changes in the environment. The central nervous system has the remarkable ability
to adapt to these changes with ease in healthy individuals. For example, we can rapidly adapt to typing on
an unfamiliar keyboard or riding a new bicycle. This process called motor adaptation – namely, the ability
to learn from environmental perturbations to restore performance – has also been demonstrated in various
laboratory tasks such as a physical perturbation to the limb or a task that decouples visual feedback to limb or
eye movements [1, 2, 3, 4, 5].

Since the pioneering work of Shadmehr & Mussa-Ivaldi in the 1990’s, the use of force field perturbations
during forelimb movement has become a powerful way to study the behaviorally observable mechanisms
underlying motor adaptation. Despite the successes of these studies, our understanding of neural mechanisms
underlying motor adaptation remains elusive. We recently translated these paradigms to a mouse model in
order to study neural circuit mechanisms. We found that for forelimb adaptation, the somatosensory cortex (S1)
was essential for learning to adapt (Mathis et al, Neuron 2017), but inactivation did not disrupt motor control.
The finding suggests a unique role of the cortex for adaptive learning. Yet, how S1 encodes perturbations
and systematically adapts to these perturbations remains unclear. In this proposal, we aim to build on this
work to test the role of reward-based learning during motor adaptation.

1 Background & Introduction

Figure 1: Theory of Adaptive Mo-
tor Control: Top: diagram of brain
regions likely involved in motor con-
trol. Bottom: conceptual diagram
of optimal feedback control theory.
Adapted from Scott, 2004.

In forelimb reaching tasks in humans, upon introduction of a force field
perturbation, reaching movements are initially deviated from the baseline
trajectory. Yet with repeated exposure to the same perturbation, one can
compensate for the force field and restore performance similar to the base-
line level [2]. Motor adaptation was further demonstrated when the per-
turbation was unexpectedly removed [2, 6], revealing both the trajectory
employed to compensate for the perturbation and an ’aftereffect’ wherein
the subject continued to compensate in the opposite direction of the per-
turbation. These changes indicate that - behaviorally - the subjects learned
a new internal model (representation) that connects motor commands and
the resulting movements (or the sensory feedback of the executed move-
ments) in the new environment.

Multiple mechanisms have been proposed for how the brain learns to
adapt motor commands to novel environments [7, 8, 9, 10, 11]. Several dis-
tinct error signals have been postulated. One proposed mechanism con-
cerns whether an executed movement matches the intended movement.
This learning type (supervised learning) is based on sensory feedback
about executed actions. For instance, motor adaptation may occur by up-
dating an internal model that relates motor commands and the resulting movements or the sensory feedback
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about the executed movements (Figure 1). This can be achieved by reducing the sensory prediction error
(SPE), the difference between the predicted and actual sensory feedback given a motor command [2, 4, 12, 5].

An alternative hypothesis is that reinforcement learning drives adaptation. The brain may choose a
particular motor command that results in maximum future rewards (typically given as an explicit correct versus
incorrect feedback in an all-or-none fashion in these tasks)[13, 8, 14, 15]. Such learning involves updating
predictions about reward associated with different motor commands using reward prediction errors (RPEs)—
the discrepancy between the realized and expected reward [16, 17, 11]. Indeed, it has been shown that when
sensory feedback is unreliable, reward feedback directly instructs motor adaptation in a force-field adaptation
task [18, 19]. Recent evidence from humans performing a visuomotor adaptation task has also suggested that
when both reward and sensory feedback signals are available, sensory feedback signals predominate [20].

More generally, it remains to be determined how prediction errors are coordinated to drive behavior—
how does the brain weigh different prediction errors in particular conditions?

2 Research Plan

2.1 Scientific Aim(s) & Methods:

Aim:
In this proposal, we aim to determine the factors that facilitate learning from SPEs and RPEs. Using our
recently developed head-fixed mouse model of forelimb motor adaptation [5], we will develop a new task that
challenges the mice to learn from RPEs and SPEs. In our previous study [5], empirically, adaptation was
not correlated with an increased reward rate [5]. Based on modeling with temporal difference learning and a
state-space model, these data indicated that reward was not directly driving or instructing motor adaptation,
but we did not directly test this. Specifically, here we will test the hypothesis that reward plays a critical role
in defining task-relevant dimensions but not in trial-by-trial feedback that drives adaptation. To test this
idea, we will change the reward zone to examine how this affects motor adaptation.
Methods:
We will develop a new task that changes the structure of the reward zone to test whether changing the
task relevant-dimension affected motor adaptation. Specifically, we replace the target box with a spatial
threshold during the perturbation and washout blocks. This threshold-based reward zone will make lateral
deviations task-irrelevant. As a consequence, the hand location at which the animal received reward could be
shifted towards the direction of the force field if rewards are relevant to the mouse.

As a control for general effects of reward in this task setting, we will also teach mice to perform the target-
shift task where they have to learn from explicit reward feedback, yet perform the same general forelimb/joystick
movements. The baseline period will be the same as in all the previous tasks. During the “perturbation” block,
however, the reward box is shifted towards the right or left (positive perpendicular displacement) [5]. During
the “washout”, the box is shifted back to the original baseline location. Here, we expect mice to learn from
reward feedback how to modulate their trajectories. This task serves as an important control to measure the
direct effect of reward-based learning on forelimb movements.

To test whether reward provided trial-by-trial feedback to instruct motor commands we will perform a linear
regression analysis. The change in the perpendicular displacement (PD) between the n+1 and n trials (∆PDn
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= pdn+1 - pdn) during the perturbation block will be fit by a linear regression to the reward history Rn, as follows:

∆PDn = C + β1Rn + β2Rn−1 + β3Rn−2 + β4Rn−3 (1)

Where n indexes the trial, and Rn refers to the reward in the n-th trial (0 or 1). This analysis tests if reward
obtained on the previous trials (or farther back in history), directly affected the motor command on the current
trial. Specifically, this model tests if there are any linear effects.

2.2 Anticipated Results

Given the prior art on the ability of mice to perform this task we do not expect complications in training the
mice. In the task where the reward box is shifted to a threshold, we expect, if rewards are equal or more
relevant than SPEs, that this reward will shift their behavior such that they do not show within block adaptation
– they would continue to let the force field “pull" them to this new reward location. This will also be quantified
by the linear regression model, as outlined above. There, one would see that the previous trial would have a
strong effect on the subsequent trials lateral displacement.
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