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SUMMARY

Efficient musculoskeletal simulators and powerful learning algorithms provide computational tools to tackle
the grand challenge of understanding biological motor control. Our winning solution for the inaugural NeurlPS
MyoChallenge leverages an approach mirroring human skill learning. Using a novel curriculum learning
approach, we trained a recurrent neural network to control a realistic model of the human hand with 39 mus-
cles to rotate two Baoding balls in the palm of the hand. In agreement with data from human subjects, the
policy uncovers a small number of kinematic synergies, even though it is not explicitly biased toward low-
dimensional solutions. However, selectively inactivating parts of the control signal, we found that more di-
mensions contribute to the task performance than suggested by traditional synergy analysis. Overall, our
work illustrates the emerging possibilities at the interface of musculoskeletal physics engines, reinforcement
learning, and neuroscience to advance our understanding of biological motor control.

INTRODUCTION

Motor control, the art of coordinating muscles to produce intri-
cate movements, is a marvel of biological intelligence. From
the graceful dance of a ballerina to the dexterous manipulation
of objects, these movements are a testament to the brain’s
prowess of mastering numerous degrees of freedom,'~° which
can take years of training and coaching to master, involving
both explicit and implicit learning.®” Yet, understanding how
the brain achieves skilled behavior remains one of the funda-
mental challenges in neuroscience. While significant strides
have been made, much of the research has been confined to
relatively simple behavioral tasks.®® Moreover, computational
modeling of motor control and learning is usually limited to
simplified models of the musculoskeletal systems.®'® There
are many good reasons to consider a simplified musculoskeletal
system, and using these models has provided many funda-
mental contributions. Tackling motor skills with more realistic
musculoskeletal models is an important complementary
approach, which has thus far remained out of reach.®
Biomechanical simulators like OpenSim'® have offered re-
searchers many insights into musculoskeletal control.>'>'®
While deep reinforcement learning (RL) recently succeeded in
training control policies for complex tasks,’” 2 the computa-

tional cost for combining it with biomechanics simulators like
OpenSim has been a bottleneck.?*?* MyoSuite,”® built on the
efficient MuJoCo physics simulator,?” revolutionizes this space.
It is not only vastly faster (up to 4,000x) than its predecessors,*®
but also introduces intricate object-manipulation tasks like
Baoding balls, which have long fascinated motor control re-
searchers due to its demand on coordinated and dynamic fine
motor skills.®

In this article, we contribute to the ongoing dialogue between
computational models and biological understanding in two sig-
nificant ways. First, drawing inspiration from human skKill
learning, we introduce a novel learning approach: the static to
dynamic stabilization (SDS) curriculum. Our approach, SDS,
won the first NeurlPS MyoChallenge for Baoding balls,”® and
here we describe our solution in detail. Second, we analyze the
learned policy, comparing and contrasting it with data from hu-
mans. We found that like biological agents,' the SDS policy
learns to operate in a reduced kinematic (pose) and dynamic
(muscles) space, despite its generic architecture and the
absence of pre-programmed simplifications. We found that the
controller is robust to activity perturbations and that even low-
variance dimensions still contain task-relevant signals, akin to
Yan et al.>® Furthermore, by considering additional object
manipulation as well as control tasks, we found that the learned
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subspaces are task dependent and do not generalize well to
other tasks. Exploiting the biomechanical simulator, we also
highlight that higher dimensional control spaces are needed to
carry out the task than is suggested by traditional reconstruction
analyses. Last but not least, we found lower tangling of the dy-
namics in the learned controller state space than in the action
state space, akin to what Russo et al.*° found for motor cortex
vs. electromyography (EMG) dynamics. We discuss these re-
sults in light of the muscle synergy and skill-learning literature.

To our knowledge, SDS is the first example of an artificial
agent successfully controlling a realistic musculoskeletal model
of the hand in a skillful object-manipulation task. Overall, our
work showcases how simulation-based approaches can provide
key insights into biological motor control, complementing exper-
iments by providing a window into the representations underly-
ing control, thereby allowing for studies across multiple scales
of abstraction. With these advancements, we are better equip-
ped to tackle deeper challenges in the realm of motor control,
particularly the alignment between artificial and biological
systems.®’

RESULTS

Solution to the MyoChallenge

The Baoding balls task, as featured in MyoSuite, offers a rigorous
testbed that captures the essence of contact-rich motor control
challenges.?®?® It presents a biologically realistic model of the
human forearm, complete with a skeletal structure encompass-
ing 23 joints that are actuated by 39 independent muscles and
two freely moving balls subject to physics (Figure 1A). The objec-
tive of the task is to maneuver the pair of balls in the hand, mak-
ing them rotate in tandem along a circular trajectory. Maximum
reward is achieved when the controller can guide the balls to
follow a pair of moving targets (small spheres in Figure 1B).

The MyoChallenge unfolded in two distinct phases. In phase |,
only counter-clockwise (CCW) rotations had to be achieved. By
contrast, phase Il introduced several layers of complexity. Not
only did it add the clockwise (CW) rotation and “stay still”
(hold) conditions, but it also necessitated complex decision-
making right at the episode’s onset. The task’s condition was
not inherently evident from the observed variables; instead, it
had to be inferred by the agent. Adding to the challenge, the
initial target position of the balls might not align with the actual
position of the balls at the onset of an episode. This misalignment
demanded strategic decisions to reach a high reward: whether
to initiate the balls’ rotation in the reverse or forward direction,
when to switch directions, decelerate, or maintain position.
Further amplifying the task’s difficulty, phase Il introduced vari-
ability by randomizing parameters like the required targets’ rota-
tion radius and speed, as well as the balls’ size, weight, and fric-
tion (Table 1). Each episode (in RL nomenclature, but more aptly
described as “trial” in neuroscience) began with these parame-
ters being randomly sampled from a predetermined range
(Figure 1B).

The evaluation criterion of the task measures the fraction of
time steps within an episode when the balls successfully trace
the desired trajectory marked by the moving targets (see STAR
Methods).
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Reinforcement and curriculum learning
Recently, deep RL algorithms made strides in learning motor
skills from scratch without a model of the environment dy-
namics.'®'®?® Such model-free RL algorithms have proven to
scale robustly across increasingly complex environments. This
robust scalability can be attributed to their effective use of
powerful neural networks for processing high-dimensional
data, alongside their high computational efficiency, broad appli-
cability across tasks, and ease of “out-of-the-box” implementa-
tion—advantages not as prevalent in more structured, model-
based strategies. However, state-of-the-art model-free methods
for RL faced significant challenges, which are evident when im-
plementing them in the Baoding balls task: proximal policy opti-
mization (PPO), a powerful model-free RL algorithm,'® combined
with a recurrent neural network architecture (Figure S1) only
reached 41% performance in phase | and 0% in phase Il (see
STAR Methods). The initial, sparse reward function proved insuf-
ficient for the agent to develop effective policies. Due to gravity
and low friction, the balls easily rolled off the hand at the begin-
ning of the episode, and the PPO agent was often not able to
hold them at all. While adjusting the reward function to
encourage long episodes provided an incentive to keep the balls
on the palm (see STAR Methods), the trained policy was highly
susceptible to failure modes, like grabbing the balls to avoid
them rolling off the hand (Figure 1C), preventing any meaningful
behavior from emerging. These optimization challenges are
inherent to model-free RL: as opposed to supervised learning,
where the agent has access to the gradient of the task objective
with respect to the control parameters, the RL agent must infer
this gradient using the reward function. This makes learning
less sample-efficient and more prone to exploration-exploitation
failures. Hence, enhancing the model-free optimization process
is crucial, which led us to focus on curriculum learning.®?*
Drawing parallels to human skill learning can provide valuable
inspiration.®>~*® Consider the complex skill of performing a back-
flip (Figure 1D). For a novice, a backflip is a daunting sequence of
(partially) unfamiliar states that must be seamlessly integrated
into one fluid movement. Direct trial and error, or simply learning
from one’s mistakes, can be a dangerous and inefficient
approach. Athletes often undergo a structured training regimen:
they first familiarize themselves with the specific bodily states
required by the skill (Figure 1E). Once comfortable, they then
piece these states together into a singular movement, initially
slow and deliberate, eventually reaching full speed and fluidity.
Thus, inspired by coaching practice, we propose the SDS cur-
riculum for RL. Analogous to the athlete’s training, in SDS the RL
agent is tasked to first learn to hold the balls statically in various
configurations along the desired trajectory (Figure 1F, left). Once
the controller can stabilize those states, the agent is gradually
trained to dynamically transition between them, creating a
continuous movement that mirrors the desired trajectory (Fig-
ure 1F, right). This curriculum not only addresses the explora-
tion-exploitation dilemma but also provides the agent with a
structured learning pathway, akin to the way humans approach
some complex motor tasks. In the final stages of training, we
also performed random target initialization and domain random-
ization, i.e., varying the task parameters (see STAR Methods,
Table 2). Overall, the SDS policy carried out 300 million
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Figure 1. Definition of the SDS curriculum, performance benchmarks, and ablation study

(A) Visualization of the musculoskeletal hand in Mujoco.?%2”

(B) Task variations include direction of rotation (counter-clockwise [CCW, left], clockwise [CW, middle], and hold [Hold, right]) along with domain randomization,
i.e., varying initial locations of targets (dotted green circles) as well as varying ball size, mass, and friction.

(C) Visualization of a problematic local optimum during curriculum learning.

D) lllustration of the states traversed during a backflip, a complex, whole-body skill performed by humans.

E) Steps involved in a recommended training routine. lllustrations in (D) and (E) by Julia Kuhl inspired by backflip training materials.

F) Schematic of our static to dynamic stabilization (SDS) curriculum proposed to tackle the Baoding balls task by analogy to human skill learning (D-E).

G) Performance results from an ablation study demonstrate the necessity of the curriculum, especially in noisy environments with multiple conditions (phase Il of
the MyoChallenge). Here and in (H), performance is measured as the fraction of time steps in which the balls overlap with the targets.

(H) Performance benchmarks and the MyoChallenge leaderboard (each row is a team).

(I) Learning curve illustrating the 32 curriculum steps used to train the policy that achieved the top performance in phase Il of the MyoChallenge. The graph
displays episode reward against training time and number of environment interactions. The reward is a dense signal, which we designed to encourage the agent
to follow the target trajectory of the Baoding balls without letting them fall. The initial “static” and “dynamic” periods correspond to the respective stages of the
SDS curriculum. The latter part of the training focused on dealing with the misalignment between the initial position of the Baoding balls and the targets (“random
target initialization”) and with the variable environment physics (“domain randomization”). Note that the maximum (possible) episode reward decreases during
the “random target initialization period,” as the targets do not overlap with the balls at the beginning of the episode. While the episode reward generally increases
within a curriculum step, it exhibits a decreasing trend as more challenging settings are introduced during training. Our goal was to maximize performance on the
(to-us) unknown statistics of the phase Il testing. The dashed blue line corresponds to the twelfth step of the SDS curriculum, after which random target
initialization and domain randomization are introduced. We later also use this network state for comparisons.

See also Figures S1 and S2 and Table S1.
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Table 1. Parameters of the Boading Balls environments of
phases | and Il

Parameter Phase | Phase Il
Num episode steps 200 200
Drop threshold (m) 1.3 1.3
Target threshold (¢) (cm) 15 15
Radius x min (cm) 2.5 2
Radius x max (cm) 2.5 3
Radius x y min (cm) 2.8 2.2
Radius y max (cm) 2.8 3.2
Balls mass min (kg) 0.043 0.030
Balls mass max (kg) 0.043 0.300
Balls size min (cm) 2.2 1.8
Balls size max (cm) 2.2 2.4
Friction coeff. 1 min 1 0.8
Friction coeff. 1 max 1 1.2
Friction coeff. 2 min 0.005 0.004
Friction coeff. 2 max 0.005 0.006
Friction coeff. 3 min 0.0001 0.00008
Friction coeff. 3 max 0.0001 0.00012
Rotation period min (s) 5 4
Rotation period max (s) 5 6
Possible tasks CCwW CCW, CW, hold

environment interactions, and it took almost 400 h to train the
model (Figure 11). Due to the sequential nature of the curriculum,
the training steps cannot be parallelized. The SDS policy
achieved a 100% score in phase | (Video S1) and a 55% score
in phase Il (Video S2), which is close to the maximum possible
reward since the initial positions of the balls and the targets do
not overlap.

We note that in the competition the sensory feedback was
given in the form of joint angles and velocities, as it is more com-
mon in RL. We also tested if SDS could also learn from muscle
lengths, velocities, and forces, which is more akin to propriocep-
tive feedback.***° We found that a policy provided with such
proprioceptive feedback and trained with SDS can achieve
over 99% solved fraction in phase | of the MyoChallenge (Fig-
ure S2). This control validates the SDS curriculum as a way to
learn control policies with more biologically realistic propriocep-
tive input.

Performance benchmarks

To showcase the importance of the SDS curriculum, we per-
formed an ablation analysis, systematically stripping away key
components of the curriculum to observe the resultant impact
on learning efficacy. We evaluated three alternative training pro-
cedures, maintaining the network architecture and RL algorithm
but devoid of the full SDS curriculum (see STAR Methods). We
evaluated the performance of PPO without a curriculum
(“none,” Figure 1G), a curriculum that attempts to rotate the balls
at full speed but departing from multiple initial locations (“loca-
tion only,” Figure 1G), and a curriculum that gradually increases
the target speed but departing from a unique initial location

3972 Neuron 1712, 3969-3983, December 4, 2024

Table 2. Parameters of PPO and of the network architecture

Parameter Before step 25 After step 25
Discount factor y 0.99 0.99
GAE 2 0.9 0.95
Entropy regularization 3.62109e—6 3e-5
PPO clipping 0.3 0.2
Optimizer adam adam
Learning rate 2.6e—5 2.5e—5
Batch size 2,048 65,536
Minibatch size 32 1,024
Max grad norm 0.835671 0.8
Num parallel envs 16 16
LSTM layer size 256 256
Layer 1 size 256 256
Layer 2 size 256 256
Activation RelLU RelLU

The same parameters are used for both the actor and the critic. Some pa-
rameters changed starting from step 25 of the training curriculum.

(“speed only,” Figure 1G). In the simpler phase |, the perfor-
mance drops by more than half upon removing either component
(100% for SDS vs. 41%-45% for “none,” “location only,”
“speed only” curricula), whereas it all but entirely fails to learn
anything in the more complex task of phase Il (55% for SDS
vs. 0%-4% for others). Thus, the high performance of the SDS
curriculum requires its two main components: learning multiple
static configurations and gradually merging these configurations
via increasingly faster dynamic trajectories.

To further contextualize our achievements, we juxtaposed our
performance against those of the top contenders of the compe-
tition (Figure 1H). More than 40 teams took part, and more than
340 entries were submitted.”® While most top solutions in the
MyoChallenge incorporate RL with a curriculum, often comple-
mented by reward shaping,® it was our human-inspired SDS
curriculum (Figure 11, static and dynamic) that distinguished
our approach and elevated our results above the competition.
Furthermore, we reviewed the literature since the December
2022 challenge for new results: more recent exploration
methods that do not use any kind of curriculum learning, such
as generalized state-dependent exploration*’ and Lattice,*”
marginally improve performance but fail to solve the task, suc-
cessfully tracking less than 50% of the target ball trajectory
(Table S1). This further highlights the necessity of the curriculum
learning approach.

To the best of our knowledge, our demonstration provided the
first successful example of fully learned musculoskeletal control
in a skilled object-manipulation task.

Motor and muscle of synergies

Mastering the many degrees of freedom inherent in motor control,
often referred to as “Bernstein’s problem,’”’5 is a central chal-
lenge in biological motor control. Having trained a policy network
that solves the dexterous manipulation task with 39 muscles, we
can interrogate the network state, muscle activations, and hand



Neuron

>

Transient First half

Second half

¢? CellPress

OPEN ACCESS

Figure 2. Kinematic and dynamic motifs

Joint angle

within one full rotation of each Baoding
ball for one episode of the SDS policy, after

Angle [rad]
o

Muscle activation

\

i b \ "". |
: ! »,:-;;’é‘i«‘ .,A,‘- 'L_;A_J_)-"\

{)
kb

Activation
¥
w

Ball position

00d" ¥<\’ > ‘ =

W position [cm]

Principal pose importance
1

ey,

| 0 i}

Principal
pose
‘O‘.DO‘O\IO)U\JIM:\JNH

=

I
Principal action importance

Principal
action

_‘
X

OLENOUIRWNIF

-

m ¥
RS RS

00
25
@0

Time [s]

kinematics (Figure 2A). How does the artificial agent compare to
the intricate behavior of human motor control?

Classic motor control studies have illuminated a fascinating
phenomenon: the vast realm of possible hand poses is not occu-
pied by actual behavior; rather, actual behavior is often distilled
into a low-dimensional subspace.w’5 In other words, different
joints appear coupled. Like others,*>** we refer to the coordi-
nated patterns of joint angles that span this low-dimensional
subspace as “motor synergies.” Although researchers interpret
motor synergies in various ways, it is widely accepted that
dimensionality reduction techniques can be used to identify
them.®*%3%° Here, we focus on analyzing these synergies and,
in the discussion, interpret our findings in relation to the litera-
ture. Analogously, we refer to the basis set of muscle-activation
patterns as “muscle synergies.”

We hypothesize that similarly to biological agents,’™ artificial
agents also learn to operate in a reduced kinematic (pose) and
dynamic (muscles) space. By projecting the hand poses (i.e.,
joint angles) and the policy’s actions (i.e., muscle activations)
onto the principal axes, we can qualitatively gauge the signifi-
cance of each principal component (PC) during the Baoding
balls’ rotation cycle. Comparing the top principal poses and ac-
tions between the first and second half of the cycle, we see that
the same PC is reused to swap the positions of the Baoding balls
(first row in both panels of Figure 2B), indicating that the SDS pol-
icy has effectively generalized across similar phases of the task.

We begin by comparing the SDS policy with human movement
data from Todorov and Ghahramani,® who used a CyberGlove to
capture hand movements during object-manipulation tasks,
including the Baoding balls task. Their approach, using prin-

—
3 -1
— ] |

completion of the training curriculum

(A) Time series of the hand kinematics (top), the
muscle activations (middle), and the position of the
Baoding balls (bottom) during a full rotation of both
balls (5 s). In the “transient” part of the trajectory,
the hand catches the balls, which are initially
slightly above the palm. In each of the subsequent
halves of the trajectory, the position of the balls is
swapped.

_ ;Z:::i (B) Relative importance of the 10 main principal

zball 1 components (PCs) of the hand pose (top) and of

— xhball 2 the muscle activations (bottom), named “principal

— Z E:I': ; poses” and “principal actions,” as a function of the

time step within a full rotation of both balls. The

activations are averaged across all the episodes of

- - the Baoding-SV dataset featuring a clockwise
E__ &5 rotation (see STAR Methods). Apart from the initial
. 10 transient period, many components exhibit a pe-

v o5 riodic behavior, suggesting the emergence of co-

) ordination patterns that are repeated in the first

L 0.5 and second half of the rotation. Indeed, a full

Baoding balls cycle is completed when the posi-
tion of the two balls is swapped twice.
See also Figure S3.

A

cipal-component analysis (PCA) on the hand kinematics, sought
to unveil the number of motor synergies at play. To get an upper
limit, they also considered a control task that instructed subjects
to reach all joint limits. Echoing their methodology, we estimated
the dimensionality of the movements generated by SDS
(Figures 3A and 3B, “Baoding”) and a policy for a control task
called hand pose (Figures 3A and 3B, “control”), designed to
span the maximum dimensionality of the hand in joint space.
Namely, to solve the hand-pose task, one needs to actuate the
joints to random target hand postures (see STAR Methods).
The CyberGlove, however, does not record muscle dynamics,
which is fully accessible in the MyoSuite simulator. Therefore,
we can also analyze which activation patterns the SDS policy
employs to control the hand, something that is more challenging
torecord in humans. For both tasks, we found that just a few syn-
ergies capture most of the variance in the posture (Figure 3A) and
muscle space (Figure 3B). Note that if the posture space was be-
ing used uniformly, the cumulative variance plot would linearly in-
crease. If it was spanned by a fixed combination of n indepen-
dent primitives, then we should see a linear increase up to N
PCs, where the cumulative variance becomes one. Given that
this is not the case, we estimated the dimensionality with the
same counting convention as in Todorov and Ghahramani,®
namely by averaging the number of dimensions needed to ac-
count for 85% and 95% of the variance (see STAR Methods).
Our findings painted a compelling picture: the dimensionality
of hand poses during Baoding ball rotation was lower than during
the control task, both in our RL controller and in Todorov and
Ghahramani®’s experiments (Figure 3C, position column). This
result also validates the experimental design of the control

Neuron 772, 3969-3983, December 4, 2024 3973
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Figure 3. Dimensionality of the control pol-
icy and SDS policy in the Baoding balls task
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gives similar results (Table 3).
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task. Remarkably, despite the simulated agent being trained to
maximize performance and not to match human behavior, the
number of synergies in joint angle space computed for the simu-
lated agent closely resembles the one measured for human sub-
jects (Figure 3C, position column), an observation also sup-
ported by the fraction of explained variance of individual
components (Figure 3C, right). We also checked that our dimen-
sionality estimates are robust to the dataset size (Figure S4).

By contrast, a difference between artificial and human sub-
jects emerged when analyzing the dimensionality of the angular
velocities of the joints (Figure 3C, “velocity” column). However,
this may be expected. While the tasks on which we trained the
artificial agents (Baoding and control) resemble the experiments
in terms of states to be visited (ball trajectory for Baoding and
attainable hand poses for control), the instructions regarding
the speed were different. The control policy attempts to reach
the target pose as fast as possible, while for Baoding, the rota-
tion speeds are constrained by the task. By contrast, human
subjects were instructed to solve the task at an (unspecified)
comfortable speed,® likely faster than the rotation speed of the
SDS policy (4-6 s period).

3974 Neuron 112, 3969-3983, December 4, 2024

Number of PCs

agent’s actions, corresponding to the muscle ac-
tivations. We also call those “muscle synergies.”
(C) Left: comparison between the number of in-
dependent degrees of freedom or “synergies”

20 30 40

Joint angles

observed in the RL model (SDS) and experimental
data (human)® for the Baoding balls task as well as
the control (hand/joint pose) task. The values are

obtained by averaging the number of PCs neces-

sary to explain 85% and 95% of the variance of the
joint positions, the joint velocities, and the muscle
activations, respectively (A and B). Right: graphs
of the explained variance for the first 15 PCs of the

@,

0 5

SDS muscle activation

10
Number of PCs

15  joint angles, for the SDS policy (top) and for a
human subject (bottom, reproduced from Todorov
and Ghahramani®).

(D) Pose variation corresponding to the first two
PCs of the hand poses recorded from humans
rotating two Baoding balls (figure adapted from
Todorov and Ghahramani®).

(E) Same as (D), but extracting the PCs from the
hand poses of the SDS policy rotating the Baoding
balls counter-clockwise.

(F) Impact of applying the muscle-activation pat-
terns corresponding to the first two PCs of the
control policy of the MyoChallenge competition for
15 steps (0.6 s), starting from an open hand posi-
tion.

See also Figure S4.

Diving deeper, we performed an analysis that is harder with
subjects: probing the dimensionality of the control signal in mus-
cle space. Strikingly, the dimensionality of the control policy in
muscle space showed a different pattern than in joint space. Ob-
ject manipulation demanded more degrees of freedom than
pose reaching (12 vs. 7, Figure 3C). This finding introduces a crit-
ical, yet often overlooked perspective: assessing the complexity
of control solely from motion capture observations might prove
misleading.>°~*? It is likely that this result, namely that the mus-
cle-space dimensionality during free-hand movement is lower
than during object manipulation, derives from the musculoskel-
etal structure of the hand, which has pairs of muscles antago-
nizing each other such that reaching desired hand positions
requires low-dimensional muscle-activation patterns. By
contrast, robustly manipulating objects like two Baoding balls
might require a more complex co-activation of antagonist mus-
cles, leading to a higher effective muscle-space dimensionality.
This interpretation is supported by the fact that the control policy
outputs a sparser control signal than the Baoding policy (Fig-
ure 4C). Indeed, we can assess how many muscles a control pol-
icy recruits by computing, for every simulation time step, the
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Table 3. Detailed dimensionality estimation of the joint angular positions (position), joint angular velocities (velocity), and actions

(muscle activation)

Position Velocity Muscle activation

CW CCwW Both CW CCW Both CW CCwW Both
Exp. var. thresh.
0.85 4.0 3.0 4.0 6.0 6.0 6.0 9.0 9.0 9.0
0.95 6.0 6.0 7.0 10.0 11.0 11.0 15.0 15.0 15.0
Average 5.0 45 5.5 8.0 8.5 8.5 12.0 12.0 12.0

The values were extracted including the clockwise (CW), counter-clockwise (CCW), or both (both) episodes of the Baoding-LV dataset (see STAR

Methods) and considering different thresholds of the explained variance.

number of muscles activated above a certain threshold. We
found that the control policy, on average, only activates around
6 muscles out of 39 above a 5% activation threshold. This value
is much larger for the Baoding policy, which activates, on
average, over 17 muscles above the same 5% threshold. This in-
dicates that the Baoding policy retains a residual activity for a
large fraction of muscles, which is not present in the free-reach-
ing movements.

To better grasp the meaning of the PCs of the hand pose, we
can visualize them as shifts from the mean pose. Comparing the
first two PCs computed from a human subject (Figure 3D) and
from the SDS policy (Figure 3E), the SDS policy’s movements
appear more rigid and localized to a subset of fingers. Further-
more, we can visualize the effect of individual PCs of the muscle
activations by repeatedly applying them as actions, starting from
an open hand position (Figure 3F). In the SDS policy, the first
principal action causes a flexion of the middle finger and the
thumb and a wrist movement, while the second principal action
orchestrates a flexion pattern of the thumb away from the palm
and the other fingers toward it. The SDS policy primarily engages
four of the five fingers (see Videos S1 and S2). In particular, the
policies of phase | and of phase Il seem to not involve the middle
and the ring finger, respectively. This contrasts with Todorov and
Ghahramani®’s findings, where the first two PCs of the hand
poses influenced all fingers (Figure 3D). Why are those patterns
different when the dimensionality is comparable? Unlike biolog-
ical agents, the artificial policy has been optimized exclusively for
the Baoding task, which might explain the more localized and
rigid movements. For the distribution of ball sizes, engaging
four fingers might be sufficient, and it gives rise to a similar motor
synergy dimension. Discrepancies in the biomechanical model
could also be at play.

Overall, we found that like biological agents, ' artificial agents
learn to operate in a reduced kinematic (pose) and dynamic
(muscles) space.

Task relevance of the low-variance PCs
Itis tempting to categorize the high- and low-variance PCs as the
task-relevant and task-irrelevant muscle synergies, respectively.
Indeed, projecting the muscle activations onto the first 15 (out of
39) PCs accounts for over 95% of the variance of the control
signal (Figure 3B). Yet, the role of low-variance (muscle) PCs in
mastering the skill is unclear.

Indeed, we argue that the importance of muscle synergies is
more meaningfully evaluated based on their impact on task per-

formance rather than their contribution to the reconstruction of
the control signal. The task performance can, of course, be eval-
uated in the biomechanical simulator.>*¢~*° While inactivating
specific muscle synergies is currently impossible experimentally,
it is a straightforward procedure in our computational model.
With an experiment akin to selective modulation of ensembles
of neurons via optogenetics, we removed the component of
the control signal, which lies on a specific subspace of the mus-
cle-activation space (Figure 4A). By projecting the muscle-acti-
vation pattern output by the policy onto the subspace spanned
by a subset of the principal directions of variability, we forced
the control signal to lie in a lower-dimensional space (namely,
the lower-dimensional space that captures the largest amount
of variability). In this way, we could measure how the task perfor-
mance varied as a function of the dimensionality of the enforced
space (see STAR Methods). We call this procedure control sub-
space inactivation (CSl). Adding one PC after the other in
decreasing order of explained variance (blue curve in Figure 4B)
revealed how many directions of variability contribute to suc-
cessfully rotating the Baoding balls. We found that twelve PCs
out of 39 retain 50% of the task performance, which only satu-
rates after 25 components are allowed. Compared with the
dimensionality estimation obtained by reconstructing the control
signal (Figure 3B), this estimation in terms of task performance
returns a larger and, arguably, more meaningful value. In partic-
ular, even the components that contribute less than 5% in
explaining the variance of the muscle-activation space play a
decisive role in solving the task. Conversely, as expected, the
high-variance PCs are crucial for task performance (red curve
in Figure 4B), as just removing a few of them causes the solved
fraction to quickly drop to zero.

Comparing activity across different conditions of the task can
additionally shed light on the low-variance PCs of hand kine-
matics (CW or CCW rotation in Figure 4D). We found that low-
variance PCs of the hand pose are task dependent, as they retain
discriminative power regarding what task is being performed
(CW or CCW rotation in Figure 4D). This result is consistent
with the observations of Yan et al.,>° who showed evidence for
task relevance even in low-variance PCs for hand kinematics.
Highly task-specific kinematic synergies suggest that it might
not be possible to create a common, low-dimensional control
subspace that works across tasks. To further investigate this
question, in the next subsection, we performed CSl across tasks
to show that kinematic or muscle spaces are indeed highly task
dependent.
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A Control subspace inactivation
Observation

(86) Action

PC3

Action

Neuron

Figure 4. Task relevance of the low-vari-
ance PCs of the SDS policy

(A) lllustration of the control subspace inactivation
procedure. Before being transmitted to the envi-
ronment, the action (i.e., pattern of muscle acti-

il @) > Agtiopiprol-1/pet vations) is projected on the subspace spanned by
__________________ % a subset of the principal vectors and is therefore
Action proj. 2 constrained to a lower-dimensional space. The
Memory PC2 - . .
(256) muscle-activation pattern is applied to the hand
model, which returns an observation to be pro-
B —— Hightolow EV. —— Low to high EV C cessed by the policy network.

20 Average active muscles (B) Average performance of the policy (+SEM over
0.7 —— Baoding 100 episodes) when the actions are projected
0.6 g —— Control (Hand Pose) onto progressively larger subspaces of the action
é 0.5 § 30 space, defined by the PCs. Blue curve: the prin-
5 04 € cipal axes are added from the most to the least
5 20 important in terms of explained variance. Red
g 03 g curve: the principal axes are added from the least

802 E10 to the most important.
0.1 = (C) Number of muscles active more than a
0.0 0 threshold value for variable threshold values. The
0 5 10 15 20 25 30 35 0 20 40 60 80 control policy outputs a sparse control signal (the
Number of PCs Activation threshold % number of active muscles quickly drops for low
D = gfucr':tvevi:glockwise activity threshold levels). For high activity thresh-
Time olds, the control policy recruits slightly more

Mean accuracy = 1.000 Mean accuracy = 1.000 Mean accuracy = 0.997

Mean accuracy = 0.951 muscles than Baoding. This indicates that the
Baoding policy has a tendency to output interme-
diate activation values, while the control policy
outputs extreme values (either fully active or not
active at all).

(D) Average trajectory of the hand pose (500 epi-
sodes per rotation direction, see STAR Methods)

when projected onto different three-dimensional

subspaces defined by progressively less important PCs. The mean accuracy score refers to the decoding accuracy via logistic regression of the task direction
from each of the 1,000 episodes considered (see STAR Methods). While the accuracy decreases with the importance of the PCs, one can also reliably decode the

task from the least important ones.

Task dependence of the muscle synergies

We have found that a policy trained with RL finds a low-dimen-
sional kinematic and muscle space. It is unclear whether this
emerging dimensionality reduction indicates the existence of
redundant control dimensions that would allow a policy to
confine itself to a reduced space for any motor task or whether
the dimensionality reduction is instead task specific. To disen-
tangle these possibilities, we considered three additional motor
control tasks: hand reach, reorient, and pen, featured in
MyoSuite (see STAR Methods). In hand reach, a policy has to
control the MyoHand to reach five target points with the hand’s
fingertips. Unlike the control task, which requires targeting spe-
cific angles for each joint, this task involves guiding only the fin-
gertips to random targets. For reorient and pen, a policy has to
control the MyoHand and rotate an object (a die and a pen,
respectively) to achieve a target orientation. We also considered
the policy obtained at step 12 of the SDS curriculum (SDS step
12), which achieved 100% solved fraction in the Baoding ball
rotation, both CW and CCW, before any variability (rotation
speed and radius, ball mass, size, and friction) was introduced
(dashed blue line in Figure 1l). First, we evaluated the similarity
between pairs of tasks in the kinematic and muscle space. For
each of the six policies, we collected a dataset of 1,000 episodes
and extracted the PCs of the hand kinematics and of the muscle
activations, defining a task-specific subspace. We then pro-
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jected the kinematics and the muscle activations of the SDS
step 12 policy (Figures 5A and 5B) and of the final SDS policy
(Figures 5D and 5E) onto these task-specific subspaces. The
PCA of the hand kinematics (Figures 5A and 5D) confirms the
intuition that the final SDS policy and the SDS step 12 policy
are the most similar, while the hand pose and hand reach policies
are the most dissimilar from the SDS step 12 policy and the final
SDS policy. In the muscle-activation space, the SDS step 12 and
the final SDS are more different than in the kinematics space,
and the clear hierarchy among the other tasks also disappears
(Figures 5B and 5E). Thus, to accurately reconstruct the muscle
dynamics of SDS, one needs more than 20 muscle synergies
from other tasks. However, this does not answer whether one
could actually achieve the task. To tackle this, we take advan-
tage of the biomechanical simulator.

Performance is a better metric for determining whether a com-
mon low-dimensional subspace can be reused to solve multiple
tasks. This can be achieved by extracting the PCs of each task
and using them as a basis for the inactivated subspace when
applying CSI on a different task. We performed this analysis on
the SDS step 12 policy (Figure 5C) and on the final SDS policy
(Figure 5F). We can see how, remarkably, 30 or more dimensions
extracted from a different task are necessary to achieve high per-
formance for both the SDS step 12 policy and the final SDS pol-
icy. Interestingly, while the kinematics of SDS step 12 and of final
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Figure 5. Transfer of muscle synergies from
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204 _'_,J_: Bo4 : 95% explained variance.
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£0.2 = ] E' 0.2 0 agent’s actions, corresponding to the muscle ac-
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c 85% ' c mance (+SEM) over 100 test episodes. The
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> ‘ |J_ > tion based on 95% explained variance when re-
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e ! = (D-F) Same as (A)—(C), but for the final SDS policy.
@ : @ See also Figure S5.
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Number of PCs (muscles) Number of PCs (muscles) policy network into a 3D space with uni-
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1.9 P q i (UMAP) (Figure 6A, see STAR Methods).
08 : 06 : We also quantified the degree to which
-% : ‘ § : the state spaces of the two tasks are en-
g 96 : o4 : tangled using Russo et al.’s tangling
Co4 : g : metric Q (see STAR Methods).
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0.0| =——f= — 0.0]{— - Lna ol tion), the activity of the two tasks (blue and
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Number of PCs (muscles)

SDS are similar, the two tasks require surprisingly different mus-
cle synergy spaces. A high number of muscle synergies is neces-
sary to achieve good task performance also when extracting
them from multiple tasks at the same time, although (as ex-
pected) they tend to transfer better to Baoding when all the tasks
(hand pose, hand reach, pen, and reorient) are considered at the
same time (Figure S5). Taken together, these results indicate
that, unless one uses more than 30 dimensions, the muscle syn-
ergies discovered by a policy trained on one task do not consti-
tute a useful subspace to solve a different task. This estimate of
at least 30 dimensions is close to the dimensionality of the orig-
inal space and much bigger than previous estimates based on
dimensionality reduction.***

Analysis of the SDS policy’s computation

The policy network, with its long-short-term memory (LSTM) layer
and two fully connected layers (Figure S1), offers a lens into how
information is transformed from the hand’s proprioceptive
state to the output control signal in terms of muscle activations.

Number of PCs (muscles)

red) is more tangled than in the input
(observation) and in the early layers (mem-
ory and LSTM output). Furthermore, the
state spaces of the two tasks are more
separated in the memory subspace than in the observation sub-
space (compare top-right with top-left), suggesting that the sys-
tem distills the information from the observation space into two
separate state spaces, effectively separating states that are
similar in observation space but require different motor plans.
Then, the state spaces merge back together toward the action
space as the system recruits similar motor synergies indepen-
dently of the rotation direction (Figure 6A). Note that, unlike the
tasks in the previous section, in which a different neural network
was trained independently in each task, in this case, the same
neural network was trained to solve both the CW and CCW tasks,
likely favoring the reusability of common synergies across tasks.

The population activity of the memory layer of the LSTM block
presents the least tangled trajectories in the policy network. In
particular, it is consistently less tangled than the action and
observation dynamics (Figure 6B) when carrying out the analysis
in a per-episode manner. This result qualitatively resembles
Russo et al.’s insight that motor cortical dynamics avoid tangling
more than muscle dynamics (EMG).*°
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Figure 6. Population activity of the SDS policy network

(A) UMAP embedding of the population activity of all the layers of the policy network (Figure S1), extracted from the Baoding-SV dataset (see STAR Methods). The
rotational dynamics and the separation between clockwise and counter-clockwise rotation progressively disappear along the processing hierarchy. The average

tangling metric Q is displayed (see STAR Methods).

(B) Pair-wise comparison of the tangling of the population activity in the memory layer vs. the observation (left) and the action space (right). Each point indicates
the average tangling of one episode (see STAR Methods). The memory layer consistently untangles the input observation, while the deeper layers transform it into

more tangled actions.

(C) Decoding analysis of the policy network, showcasing where task-relevant quantities are best encoded in each layer. Each time point is separated by 25 ms.

The error bars indicate the standard deviation across 5-fold cross validation.

Finally, we sought to determine if and where in the network
different task-relevant quantities are encoded (Figure 6C). While
certain variables, like joint angular positions, can be directly de-
coded from the observation, others that are not part of the obser-
vation space, like the physical properties of the balls, are better
decoded from the LSTM layer’s memory layer. This suggests
that the SDS policy accumulates data over time to form a repre-
sentation of the system’s non-observable state, which then con-
ditions the control signal, and several variables cannot be well
decoded, suggesting that they are implicitly represented.

DISCUSSION

The intersection of efficient musculoskeletal simulators and
powerful learning algorithms heralds a new era of understanding
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in the realm of biological motor control. By leveraging these
models, we can delve deeper into the core principles of biolog-
ical skill learning. This approach can not only offer insights into
how animals, including humans, learn and execute complex mo-
tor tasks but also generate both behavioral and neural predic-
tions. The SDS curriculum, inspired by human learning, empha-
sizes the significance of reinforcement and curriculum learning in
training motor control policies for complex tasks. This show-
cases the potential of RL in developing high-fidelity sensorimotor
models and provides a platform to juxtapose artificial and biolog-
ical control systems. Such comparisons, as we have demon-
strated, can yield insights into emergent movement dynamics,
offering a fresh perspective on motor learning and control.

Yet, as we push the boundaries of what is possible with digital
simulations in deep RL, we are confronted with a deeper, more
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fundamental challenge: model alignment in sensorimotor sys-
tems. How do we bridge the gap between artificial systems
and the intricate, naturalistic movements of a living organism?
While supervised learning offers some solutions, allowing us to
enforce specific movement repertoires, as demonstrated in pre-
vious models of the motor,*° visuo-motor,”' and proprioceptive
system,*?>? RL presents a unique conundrum. Without explicit
guidance, a model must bootstrap itself to discover viable solu-
tions. Our SDS curriculum is more than just a technical achieve-
ment in that it is a step toward aligning artificial and biological
motor control.

Indeed, the SDS policy exhibits a number of properties that
have been observed in primates. First, we found that the SDS
policy, without any explicit constraint, discovers a low-dimen-
sional posture and control space, reminiscent of humans per-
forming the Baoding ball task.® While the specific synergies are
not the same, it is worth noting that the SDS policy has only
been trained on this single task. Second, we found that the
controller is robust to activity perturbations and that low-vari-
ance PCs still contain task-relevant signals, akin to Yan et al.’s
experimental result.”® Third, we found lower tangling of the dy-
namics in the learned controller than in the action space, akin
to what Russo et al.*>° found for the motor cortex vs. EMG dy-
namics. We observed this last result in a different task and archi-
tecture, suggesting it might be a general characteristic of RL
policies.*®

Our policy analysis further illuminates the complexities of mo-
tor control. Low-dimensional control emerges both in SDS and
human subjects. Yet, the dimensionality of control in muscle
space and joint space offers a nuanced perspective, suggesting
that assessing complexity solely from motion observations might
be misleading.>*“*° This highlights the importance of delving
deeper into the underlying representations of control, beyond
observations.

Are muscle synergies an emergent property of
successful control?

The terms motor synergies, muscle synergies, and motor primi-
tives have been used with diverse connotations in the neurosci-
entific literature.>*>*® The concept of motor and muscle syn-
ergies gained popularity when studies on the frog’s spinal cord
showed that the forces generated by stimulating individual sites
of the spinal cord combine according to vector summation when
the sites are stimulated together.®* Analogous results were
found in spinalized rats® and through the electrical microstimu-
lation of the motor cortex of macaques.*® These findings suggest
that motor commands might result from a linear combination of
muscle-activation patterns, forming a “basis” (in the algebraic
sense) of the motor control space, defined at the spinal cord
level. These muscle patterns were also referred to as “motor
primitives.”®” Other studies, instead, propose that motor primi-
tives are combined by the human motor control system into
complex motion through juxtaposition in time, similarly to letters
in a sentence.’®*° In this line of work, motor primitives are some-
times called “movemes” (since they are to motion what pho-
nemes are to speech). Whether motor and muscle synergies
are a fundamental mechanism of motor control to deal with a
large control space, the result of optimizing for a specific task,
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or explained by other hypotheses is an ongoing debate in the
motor control community.®5+45:47:48

We found that like biological agents,' RL-trained agents
learn to operate in a reduced kinematic (pose) and dynamic
(muscles) space. However, our dimensionality estimates are
larger than in a classic behavioral grasping study by Santello
et al.”® and closer to estimates for corresponding object-manip-
ulation tasks by Todorov.** Taking advantage of the biomechan-
ical simulator, like others for different purposes,®‘®*® we
showed evidence that for successful control, one needs many
more dimensions than suggested by classic signal reconstruc-
tion methods (20 vs. 5). This insight from our computational
model is consistent with prior analyses of isometric tasks.*’**9¢°

One popular explanation for this dimensionality reduction is
that it provides evidence that the nervous system might simplify
the control problem.®*° We remark that the dimensionality reduc-
tion for our RL policies was not imposed by the design of the pol-
icy network but was instead discovered purely through struc-
tured learning via the maximization of the reward, reminiscent
of a hypothesis proposed by Loeb.® The poor transfer of motor
synergies from one task to another (Figure S5) reinforces this
interpretation. In fact, the same neural network architecture,
trained with the same RL algorithm to control the same hand
model, but on different tasks, learns to use different muscle syn-
ergies. Our results with RL are also consistent with arguments
based on optimal feedback control.'%**€° QOverall, our results
speak against the necessity for muscle synergies as a simplifying
constraint to tame the complexity of the biomechanical system.
In other words, motor synergies are a signature of good control
reflecting plant (biomechanical) and task properties while not
providing evidence for a general simplifying strategy.

Is curriculum learning necessary for RL?

Despite recent successes in machine learning, optimizability re-
mains a key concern for deep learning, and many innovations
seek to target this challenge, such as LSTMs,®' ResNet’s skip-
ped connections,®” reward shaping,’® and sensorimotor
priors,®>*%* the true potential of RL lies in its adaptability. Our
SDS curriculum, inspired by human learning paradigms, curricu-
lum learning,**** and elements of deliberate practice,***® ex-
emplifies this adaptability, offering a structured learning pathway
that aligns with biological motor control. The success of curricu-
lum learning, mirrored by other top-performing models for the
2022 MyoChallenge, underscores its efficacy.’® We note that
A.S.C., AM., as well as Alessandro Marin Vargas won the
MyoChallenge in 2023, with a solution also relying on curriculum
learning, suggesting that it is a necessary ingredient for
mastering complex skills with RL, despite recent advances in
exploration and reward shaping for musculoskeletal sys-
tems.*>®> Thus, we currently believe curriculum learning is
necessary for acquiring complex musculoskeletal skills, and
perhaps the same is true in biology. Additionally, self-play,®®¢’
a framework in which an agent competes against itself, can be
regarded as a form of implicit curriculum.

Do humans use curriculum learning for skill acquisition?

Practice is essential for learning motor skills, and the order in
which one practices greatly impacts success.®>"868
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Importantly, humans can learn (certain) skills in a few trials without
requiring a curriculum.®” We speculate that for Baoding balls in
particular, humans already have extensive prior experience
manipulating objects with their hands and thus will rely on a
mechanism akin to transfer learning. This differs from the learning
framework we used to train the SDS policy network, which starts
learning from scratch (i.e., randomly initialized weights). The arti-
ficial model that starts from random weights can be considered a
purely exploratory agent without prior knowledge. This scenario
aligns more with the acquisition of novel or “unnatural” skills
(like learning to do a backflip), or at early development stages, sit-
uations in which humans greatly benefit from structured practice
depending on one’s skill level.>>~*® SDS provides evidence for the
utility of those ideas in a challenging RL setting. At the brain level,
practicing with increasing task difficulty based on the individual’'s
skill level gives rise to greater performance and increased cortico-
spinal excitability,%° compared with practice at constant difficulty.
Going forward, there are many exciting questions at the interface
of skill learning and motor neuroscience. Advances in pose esti-
mation,”® biomechanics as well as curriculum learning, as pre-
sented here, open up new possibilities. For instance, how do
EMG patterns change when humans learn a novel, complex mo-
tor skill?

Limitations of the study

Our study has several limitations. First, like any biomechanical
model, the MyoHand is an imperfect, simplified imitation of a hu-
man hand.”’ As all the environments in MyoSuite, it does not
consider some features of the human musculoskeletal system,
such as the elasticity of the tendons and the pennation angles
of the muscular fibers (see STAR Methods). Furthermore,
anatomical components such as the skin are not part of
the model.

Second, the SDS policy network is an abstraction of the
sensorimotor system, with important limitations. It provides a
general sensorimotor transformation that receives sensory feed-
back as an input, processes it with recurrent transformations,
and then projects it to muscle activations. Its design is similar
to what was used in previous modeling studies,*>°%°" but it is
of course not a reflection of the known anatomy of the motor sys-
tem. For instance, it is not hierarchical and does not include
reflexes.>%1%:72

Third, the type of sensory feedback provided to the SDS policy
is different from the one received by the motor control system. In
fact, in the Baoding balls task (as part of the NeurlPS competi-
tion), proprioceptive feedback is provided in joint coordinates,
which is unbiological.>**“° As the SDS policy was part of a
competition, we were not allowed to change the input signals,
which had to be the same for all the participants. We provided
evidence that SDS can also be trained with feedback of muscle
lengths, muscle velocities, and muscle forces (Figure S2). Future
work should consider providing the control policy with proprio-
ceptive information more closely resembling the output of mus-
cle spindles and Golgi tendon organs.® Last but not least, the
Baoding balls environment directly provides the state of the balls
to the policy network in the form of their instantaneous position
and velocity. In this way, touch and vision are bypassed. While
inferring the state of the balls from those senses is in principle
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doable, it is beyond the scope of this study. Furthermore, be-
sides achieving a higher score than the other solutions, the
SDS policy required 40% less energy than the closest compet-
itor.”® However, future work could explore how patterns of mus-
cle recruitment and metabolism relate to humans.

In conclusion, our work demonstrates the potential of realistic
biomechanical simulation-based approaches in motor control
research. We showcased several techniques that help us under-
stand the workings of the artificial motor control agent, such as
CSl and inter-tasks tangling metrics across the processing pipe-
line. Of course, this analysis departed from the existence of a
successful artificial motor policy in the complex Baoding task,
which we achieved by combining a coaching-inspired curricu-
lum with deep RL. The result of the training was a successful mo-
tor policy that, while it significantly differs from its biological
analog, retains important aspects of it. Crucially, as the gap be-
tween the artificial and biological policies closes, analysis tech-
niques like the ones in this paper will offer increasingly powerful
insights to complement experimental findings in biological motor
control. As we continue to push the boundaries of musculoskel-
etal simulations in RL, the quest for model alignment in sensori-
motor systems remains at the forefront, promising a future where
the intricate movements of living organisms can be seamlessly
replicated and understood in the digital realm.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Weights for trained RL policies This paper https://zenodo.org/records/13332869
Rollouts for RL policies (analysis) This paper https://zenodo.org/records/13332869

Human data

Todorov and Ghahramani®

https://doi.org/10.1109/IEMBS.2004.1404285

Software and algorithms

Repository for training baoding balls policies
Repository for analysis of policy and agent’s behavior
Repository for training Control policy (Hand Pose)
Repository for training Hand pose policy

Repository for training Reorient policy

Repository for training Pen policy

This paper
This paper
Chiappa et al.*
Chiappa et al.*
Chiappa et al.*?

|42

Chiappa et a
3

https://github.com/amathislab/myochallenge
https://github.com/amathislab/MyoChallengeAnalysis
https://github.com/amathislab/lattice
https://github.com/amathislab/lattice
https://github.com/amathislab/lattice
https://github.com/amathislab/lattice

Scikit-learn Scikit-learn developers” https://scikit-learn.org/stable/

Pytorch Pytorch Developers’* https://www.tensorflow.org/

MyoSuite Caggiano et al.*® https://github.com/MyoHub/myosuite
MudoCo Todorov et al.?’ https://github.com/google-deepmind/mujoco

Stable Baselines 3 Raffin et al.”® https://github.com/DLR-RM/stable-baselines3

METHOD DETAILS

Musculoskeletal model of the forearm (MyoHand)
The simulation environment of the Baoding balls task is part of the library MyoSuite.?® The musculoskeletal model of the forearm is
called MyoHand, previously used in the library MyoSim.”" MyoSim is a library of biomechanical models ported to the MuJoCo phys-
ics simulator®” from models in OpenSim.'* MyoSuite defines environments based on these models (that also include reward func-
tions, etc.), where policies can be trained with RL. MyoHand comprises of 29 bones, 23 joints and 39 muscle-tendon units. It is based
on widely used models of the human hand (2nd-Hand”®) and of the human forearm (MoBL-ARMS’"), as implemented in the biolog-
ically-accurate simulator OpenSim.'* Caggiano et al.?® merged the two models and enhanced them with the addition of an Opponens
Pollicis muscle, to obtain a complete model of the human forearm apt for object manipulation. Differently from OpenSim, MyoSuite is
implemented in the MuJoCo physics simulator, which enables faster execution by up to three orders of magnitude. Compared to
OpenSim, MyoSuite adopts a simplified muscle model, which, e.g., does not consider tendon elasticity and fiber pennation angles.
The muscle activation dynamics and the force-velocity relationship used in MyoSuite are identical to those used in OpenSim. The
muscle models of MyoSuite obtain accurate force-length-velocity curves, by optimizing the available parameters in order to match
the more detailed model of OpenSim.”" This optimization process happens in three steps: 1) Matching forward kinematics, which
ensures that the joint and limb positions align accurately with biomechanical data from OpenSim 2) Matching moment arms of
each muscle, which verifies that the leverage effects of muscles across joints are consistent with OpenSim, and 3) Matching
force-length validation curves, which adjusts the muscle models to replicate force generation behaviors as observed in OpenSim.
Wang et al.”" report a relative root mean squared error (RMSE) for the muscle moments of 0.38 + 0.57% and of 4.1 + 2.0% compared
to the OpenSim model. This OpenSim model was chosen as the benchmark for the MyoHand as it provides a highly accurate repro-
duction of the biological moment arms for all the intrinsic and extrinsic muscles of the hand (1.5 mm average RMS error across the
moment arms of all muscles, and 7.1% relative error between artificial and biological muscle attachment points’®). Importantly, how-
ever, OpenSim still cannot model all the details of a human hand, and further improvements in our understanding of motor control
may come from improvements in the accuracy of the musculoskeletal models.

Baoding balls challenge

The interaction between the control policy and the MuJoCo physics simulator can be formulated as a Partially-Observable Markov
Decision Process (POMDP) M = (S,A4,0,T,R,v,). The process M is identified by the state space S, the observation function ©, the
action space A, the transition function 7, the reward function R and the discount factor v. The action space .A C R* is the space of
the possible activations of the 39 muscles controlling the human arm model. The observation function ©@ : S — R® maps the state to
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the observation vector, which includes the angular position of each joint (23 elements), the positions (6 elements) and velocities (6
elements) of the two balls, the positions (6 elements) and the distances (6 elements) of the targets and the activation of each muscle
at the previous time step (39 elements). The transition function 7 : $x.4 — S maps a state and an action to a new environment state,
defining how the environment evolves depending on the agent’s decision. An agent seeks to maximize the discounted cumulative
reward R = Zf’: o ¥'rt, where ry is the reward at time step t, associated by the reward function R : Sx.AxS— R to the transition
from the state s; to the state s;,¢ via the action a;.

The performance of the agent for the Baoding ball challenge (Figures 1G and 1H) is evaluated in terms of the solved fraction (SF),
corresponding to the number of steps in which both balls are in proximity of the two moving target balls:

ST he<e(IP) = P& 1) heee (IPE, — PELI)
= = ,
where T is the maximum number of time steps in the episode, /. (x) is the indicator function, ¢ is the distance threshold between the
balls and the targets (1.5 cm), while pg/_) and pgf, ie {1,2} correspond to the position vector of the ball and the goal i at time step ¢,
respectively.

Phase | of the MyoChallenge had the objective of rotating the two balls counter-clockwise, with a constant rotation period of 5
seconds. The simulation was chunked into episodes of 200 time steps, corresponding to 5 seconds of simulation. This means
that the agent had sufficient time to complete a full rotation of the two balls, before the simulation terminated. An early termination
condition was set to accelerate the training, when the balls fell below the palm. In this way, no computation was wasted simulating the
environment with the balls in a hopeless position (namely, too far from the hand), which would not provide any useful experience. At
the beginning of every episode, the balls started from the same initial location, corresponding to the first target position.

Phase Il of the MyoChallenge introduced many complications compared to Phase I. At the beginning of every episode, a random
task was sampled (clockwise or counter-clockwise rotation, holding the balls in place) and a target trajectory generated accordingly.
Differently from Phase |, the starting point of the target trajectory might be different from the initial position of the balls. This meant that
in Phase Il it was impossible for the model to score 100% “solved,” because in most episodes the targets would spawn away from the
initial position of the balls, and the model would require some time steps before being able to reach them. This complications were
addressed with several intermediate curriculum steps (Figure 11, Phase shift). Besides the random task selection, further variability
was provided by the randomization of the task parameters, namely: target rotation period, ellipse axes of the rotation trajectory,
mass, size and texture of the balls. Each of these parameters was sampled independently, uniformly at random in a predefined range
(Table 1). The MyoChallenge is described by Caggiano et al.?®

SF (Equation 1)

Reward engineering

The performance score (Equation. 1) provided a too sparse signal to be directly optimized via reinforcement learning, as an agent
which had not yet learnt how to rotate the balls would almost always collect a vanishing score. For this reason, we designed a dense
reward function R : S— R, which associates a meaningful performance score to all states. The reward was computed as a weighted
sum of four values: the distance between each ball and the corresponding target (2 values), the indicator function representing
whether both balls are at most 1.5 cm away from the respective target and the indicator function representing whether the balls
are still on the palm. This last reward component proved fundamental for the agent to learn not to drop the balls, which would cause
an early termination of the episode (and thus a lower cumulative reward). We penalized the distance between the balls and the targets
(weight: -1) and promoted the balls being on the palm (weight: 1) and close to the targets (weight: 5).

Reinforcement learning details

We used the on-policy RL algorithm PPO'® from the Stable Baselines 3 library”® with a recurrent architecture that has LSTM layers®’
in both the actor and critic, which allowed us to deal with the partially observable environment (Figure S1). The neural networks of the
actor and the critic were implemented in PyTorch.”* The parameters of PPO and of the network architecture are listed in Table 2. This
policy was trained as a baseline. To win the challenge we developed the following curriculum learning strategy.

Static to Dynamic Stabilization curriculum

The schematic of the SDS training curriculum is illustrated in Figure 1F. For clarity we only show the CCW trials, but the full curriculum
includes CW and Hold trials. The key idea of the SDS curriculum is to learn stable postures at intermediate states along the desired
trajectory before having to learn how to reach those states. The benefits of learning stable intermediate postures are twofold: (1) they
serve as safe arriving and departing subgoals for an increasingly complex and unstable policy and (2) they robustly shape the value
function of the RL agent such that it assigns a high value to these intermediate states, effectively acting as attractors for the final
policy. The SDS curriculum imposes several subtasks that the agent must solve before moving to the next subtask. In the first sub-
task, the balls are initialized at random phases along the desired rotation cycle, and the goal of the agent is simply to hold them still at
the initial position (Figure 1F, first panel). In the following subtasks, the balls are also initialized randomly, but now the task of the agent
is to move them following the desired trajectory, gradually increasing the target speed from subtask to subtask. As the curriculum
advances and the targets speed up, at one point it is not beneficial to use random initialization anymore, as the policy can benefit
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from exploiting the inertia of the balls. At this point, SDS initializes the balls at the original initial position of the task (Figure 1F, second
to last panel) and continues speeding up the targets until it reaches the final task.
The code for training the policy including all hyperparameters is available at online (see key resources table).

Control task
To contextualize the analysis of the Baoding policy, we considered the policy trained by Chiappa et al.*® for the Hand Pose task of
MyoSuite.?® The environment uses the same musculoskeletal model of the forearm as the Baoding balls environment, but rewards
the agent when it reaches a certain target pose (i.e., an angular position of each joint). At the beginning of each episode, a new
(randomly sampled) target pose is selected. Each target joint angle is sampled independently from the others, uniformly at random
in half of the attainable range of the corresponding joint, in a neighborhood including the resting position. This makes the task hard, as
some pose configurations might not be achievable due to mechanical coupling. As for Baoding, the training also relies on PPO and
recurrent networks, with the same network architecture (Figure S1).

One episode includes 100 simulation steps, corresponding to 2.5 s of simulation time. Each episode starts with the hand in aresting
position and with a new target pose. The reward function is maximized when the hand achieves the target pose as fast as possible
and maintains that pose for the longest time. The function is an equally-weighted sum of three components:

® “pose” corresponds to the euclidean distance between the hand pose and the target hand pose.

® “solved” assigns a positive reward when the root mean squared error RMSE) between the hand pose and the target hand pose
is smaller than 7.34 degrees.

® “penalty” assigns a negative reward when the RMSE between the hand pose and the target pose is larger than 57.65 degrees.

The Control policy achieves a solved fraction of 68.3%, meaning that the hand successfully maintains the target pose for more than
2/3 of the simulation time.

Additional tasks: Hand Reach, Reorient, Pen

To evaluate the similarities between control policies trained on different tasks, we considered the Hand Reach, Reorient and Pen
environments from MyoSuite, and in particular the policies trained by Chiappa et al.** All these environments feature the same
musculoskeletal model (MyoHand). These policies present the same architecutre as all the other policies analyzed in this paper,
and were trained with the same RL algorithm (PPO). We refer to Chiappa et al.*? for the details of the training setup, while we provide
a description of the tasks below.

Hand Reach is a free movement task, which does not involve object manipulation. The objective of the policy is to control the
MyoHand and reach five target points, one per finger tip, at the same time and as fast as possible. The target positions are sampled
at the beginning of every episode within a range specified by the environment. One episode includes 100 simulation steps, corre-
sponding to 2.5 s of simulation time. The policy achieves 0.654 solved fraction, meaning that it manages to keep the finger tips at
the target positions 65.4% of the time. Reorient and Pen, on the other hand, are object manipulation environments. The policy
has to use the MyoHand to move and rotate a die (Reorient) and a pen (Pen) to achieve a target orientation. One episode lasts
150 simulation steps (3.75 s) for Reorient and 100 simulation steps (2.5 s) for Pen. A new target orientation is sampled at the beginning
of each episode. The solved fraction is 0.685 for Reorient and 0.648 for Pen.

Dataset generation

For analyzing the SDS policy, we created two datasets including 1000 episodes each, in which the artificial agent trained for the
MyoChallenge rotates the two Baoding balls for 5 seconds. In the first dataset, Baoding-SV (small variations), we sampled in
each episode the size and the mass of the balls within a small range of values, to introduce some variability in the task while main-
taining consistent movements. This dataset is used for the analyses illustrated in Figures 2, 3, 4, 5; in Figures 6A and 6B.

The second dataset, Baoding-LV (large variations), features the same experimental conditions as the Phase Il of the MyoChallenge.
Baoding-LV was used to linearly decode the unobservable environment variables from the policy’s neural population (Figure 6C).

Furthermore, we created a third dataset (Control) comprising 1000 episodes collected with the control policy trained in the Hand
Pose environment, where in each episode a new target pose is sampled from the training distribution (although the specific pose was
not observed during the training). Data extracted from the Control dataset are utilized in Figures 3A and 3B.

Finally, we created datasets comprising 1000 episodes using the policy resulting from the twelfth SDS curriculum step and the
policies trained on Hand Reach, Reorient and Pen. These datasets have been used to generate the plots in Figures 5 and S5.

In each dataset, we recorded the joint angles, the joint velocities and the muscle activations with a frequency of 40 Hz. Furthermore,
we recorded all the internal activations of the policy network, namely, the memory state and the output of the LSTM layer, and the
output of the two fully connected layers (Figure S1). We validated the size of the dataset verifying that the dimensionality of the joint
angle, joint velocity and muscle activation trajectories was stable when only using a subset of the data (Figure S4).

e3 Neuron 772, 3969-3983.e1-e5, December 4, 2024



Neuron ¢ CellP’ress

OPEN ACCESS

Estimation of the number of motor synergies

We analyze synergies as in previous works.**>** The coordination between muscle activations, hand poses or hand velocities was
quantified via principal component analysis (PCA). The first principal components capture the (linear) basis that maximally explain
the variability of the dataset. We applied PCA on the hand poses, hand velocities and muscle activations of the episodes included
in the Baoding-SV, Control and other datasets. For the Baoding-SV dataset, we also analyzed how these quantities change when
considering the sub-dataset of episodes where the balls rotate in the same direction (Table 3). For consistency with Todorov and
Ghahramani,® we calculated the number of degrees of freedom by averaging the number of principal components necessary to
achieve an explained variance higher than 85% and 95%. The same steps were applied to the Control dataset, to estimate the motor
synergies emerging from free hand motion (target pose reaching).

Control subspace inactivation (CSI)

Control subspace inactivation (Figure 4A) is a procedure to evaluate the impact that removing certain muscle synergies has on the
task performance. Given a policy = : RY —RM, N being the size of the observation space and M the size of the action space, we
consider an orthogonal matrix W e RM*Y_ whose columns w;,i = 1,...,M, define an orthonormal basis of the action space (in this
paper, the space of all the possible muscle activations). Given an observation o e R", the policy returns a muscle activation pattern
a = (o) e RM. Control subspace inactivation modifies the muscle activation before it is transmitted to the physics simulator, select-
ing a subset / of the indices of the basis vectors w;, whose contribution to the control signal is removed. The resulting activation
pattern is

a= Y (aww, (Equation 2)
ic {1,..MN\S

where (-, -) indicates the canonical inner product of RM. A reward and a new observation are then returned by the environment, ac-
cording to the transition dynamics of the POMDP. In the experiments illustrated in Figures 4B, 5C, 5F, and S5, control subspace inac-
tivation used the orthonormal basis defined by the principal components extracted by one of the datasets of this paper, inactivating
components in order of importance. When all the components are inactivated (left most point in the plots), the performance is 0, since
a constant action is applied at all times. When no component is inactivated (right most point in the plots), the full task performance is
recovered.

Decoding the rotation direction from the PCs of the hand pose

We assessed whether progressively less important principal components retain information about the rotation direction by decoding
it via logistic regression. To this end, we considered four different subsets of three principal components of the hand pose, extracted
from the Baoding-SV dataset (Figure 4B). One data point of the training dataset consisted in a flattened vector of three principal com-
ponents of the pose for all the 200 time steps of one episode (600 features in total). The mean accuracy was obtained by averaging the
logistic regression score via 5-fold cross validation on random shuffles of the Baoding-SV dataset. We used the Python library Scikit-
Learn.”®

Time-dependent importance of the PCs

The relative importance of the PCs of the hand pose and of the muscle activations varies throughout the rotation of the Baoding balls.
To visualize the point at which each component is more relevant, we considered the subset of the Baoding-SV dataset featuring
clockwise rotations and averaged the hand poses and the actions. In this way we obtained the average hand pose and muscle acti-
vation across episodes at each time step. For clearer visualization, these coefficients were then rescaled between — 1 and 1 (Fig-
ure 2B). A full rotation of the Baoding balls corresponds to two periods in the hand pose and muscle dynamics, which are evident in
several principal components. In fact, approximately the same PCs swap the first and the second ball and vice versa, to complete a
rotation. The re-utilization of PCs is indicative that the RL policy has achieved appropriate generalization capabilities: if the identity of
the balls is ignored in the input (which is irrelevant for task performance), the states at the beginning of the first and second half of the
cycle are similar, so the PCs that achieve the desired goal should also be similar.

Visualization of the network activations
We embedded the observations, the actions and the network activations into a 3-dimensional space using Uniform Manifold Approx-
imation Projection (UMAP).”® Each point of the graphs of Figure 6A corresponds to a single time step.

Tangling of the population activity at variable depth

We quantified the tangling of the observations, actions and population activity of each layer of the SDS policy (Figures 6A and 6B)
employing a metric introduced by Russo et al.?>° They propose to measure the time-dependent tangling of a trajectory x : R— RY
with the scalar function Q(t), defined as

Q) - max X0 = XOIF

, Equation 3
() — x(t)[P+e (Ea )
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where x(t) is temporal derivative of the trajectory, while ¢ is a small constant such that division by 0 is avoided (¢ = 10~ % in our anal-
ysis). The tangling was computed on a lower-dimensional projection of the signal (8 dimensions), obtained via PCA like in Russo
et al.*° A single value per plot (Q value in Figure 6A) is computed by averaging Q(t) over M trajectories and N = 200 time steps:

1 M N )
Q= TN 2 j:ZOQm, (t). (Equation 4)
We also report Q values per trial (episode) by averaging across N = 200 time steps (Figure 6B).

Decoding the environment variables from the population activity

Some unobservable (i.e., not part of the observation provided to the agent) parameters of the environment, such as the mass of the
balls, have an impact on the dynamics of the environment and thus on the task performance. Such parameters are encoded with
variable accuracy in the population activity of the different layers of the SDS policy. Using the Baoding-LV dataset, we computed
the encoding score of each environment parameter proportionally to how well such parameter could be linearly decoded from
each layer of the policy network (Figure 6C). For continuous parameters (Mass, Size, Friction, Radius, Joint Positions, Joint Velocities)
we considered the coefficient of determination R? of a linear regression, while for the only categorical parameter (Task) we consid-
ered the mean accuracy of a logistic regression. To compute robust scores and estimate their variability, we used 5-fold cross vali-
dation on random shuffles of the Baoding-LV dataset, using the Python library Scikit-Learn.”®
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