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SUMMARY
Efficient musculoskeletal simulators and powerful learning algorithms provide computational tools to tackle
the grand challenge of understanding biologicalmotor control. Our winning solution for the inaugural NeurIPS
MyoChallenge leverages an approach mirroring human skill learning. Using a novel curriculum learning
approach, we trained a recurrent neural network to control a realistic model of the human hand with 39 mus-
cles to rotate two Baoding balls in the palm of the hand. In agreement with data from human subjects, the
policy uncovers a small number of kinematic synergies, even though it is not explicitly biased toward low-
dimensional solutions. However, selectively inactivating parts of the control signal, we found that more di-
mensions contribute to the task performance than suggested by traditional synergy analysis. Overall, our
work illustrates the emerging possibilities at the interface of musculoskeletal physics engines, reinforcement
learning, and neuroscience to advance our understanding of biological motor control.
INTRODUCTION

Motor control, the art of coordinating muscles to produce intri-

cate movements, is a marvel of biological intelligence. From

the graceful dance of a ballerina to the dexterous manipulation

of objects, these movements are a testament to the brain’s

prowess of mastering numerous degrees of freedom,1–5 which

can take years of training and coaching to master, involving

both explicit and implicit learning.6,7 Yet, understanding how

the brain achieves skilled behavior remains one of the funda-

mental challenges in neuroscience. While significant strides

have been made, much of the research has been confined to

relatively simple behavioral tasks.6–8 Moreover, computational

modeling of motor control and learning is usually limited to

simplified models of the musculoskeletal systems.9–13 There

are many good reasons to consider a simplified musculoskeletal

system, and using these models has provided many funda-

mental contributions. Tackling motor skills with more realistic

musculoskeletal models is an important complementary

approach, which has thus far remained out of reach.5

Biomechanical simulators like OpenSim14 have offered re-

searchers many insights into musculoskeletal control.5,15,16

While deep reinforcement learning (RL) recently succeeded in

training control policies for complex tasks,17–23 the computa-
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tional cost for combining it with biomechanics simulators like

OpenSim has been a bottleneck.24,25 MyoSuite,26 built on the

efficient MuJoCo physics simulator,27 revolutionizes this space.

It is not only vastly faster (up to 4,0003) than its predecessors,26

but also introduces intricate object-manipulation tasks like

Baoding balls, which have long fascinated motor control re-

searchers due to its demand on coordinated and dynamic fine

motor skills.3

In this article, we contribute to the ongoing dialogue between

computational models and biological understanding in two sig-

nificant ways. First, drawing inspiration from human skill

learning, we introduce a novel learning approach: the static to

dynamic stabilization (SDS) curriculum. Our approach, SDS,

won the first NeurIPS MyoChallenge for Baoding balls,28 and

here we describe our solution in detail. Second, we analyze the

learned policy, comparing and contrasting it with data from hu-

mans. We found that like biological agents,1–5 the SDS policy

learns to operate in a reduced kinematic (pose) and dynamic

(muscles) space, despite its generic architecture and the

absence of pre-programmed simplifications. We found that the

controller is robust to activity perturbations and that even low-

variance dimensions still contain task-relevant signals, akin to

Yan et al.29 Furthermore, by considering additional object

manipulation as well as control tasks, we found that the learned
ber 4, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 3969
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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subspaces are task dependent and do not generalize well to

other tasks. Exploiting the biomechanical simulator, we also

highlight that higher dimensional control spaces are needed to

carry out the task than is suggested by traditional reconstruction

analyses. Last but not least, we found lower tangling of the dy-

namics in the learned controller state space than in the action

state space, akin to what Russo et al.30 found for motor cortex

vs. electromyography (EMG) dynamics. We discuss these re-

sults in light of the muscle synergy and skill-learning literature.

To our knowledge, SDS is the first example of an artificial

agent successfully controlling a realistic musculoskeletal model

of the hand in a skillful object-manipulation task. Overall, our

work showcases how simulation-based approaches can provide

key insights into biological motor control, complementing exper-

iments by providing a window into the representations underly-

ing control, thereby allowing for studies across multiple scales

of abstraction. With these advancements, we are better equip-

ped to tackle deeper challenges in the realm of motor control,

particularly the alignment between artificial and biological

systems.31

RESULTS

Solution to the MyoChallenge
The Baoding balls task, as featured inMyoSuite, offers a rigorous

testbed that captures the essence of contact-rich motor control

challenges.26,28 It presents a biologically realistic model of the

human forearm, complete with a skeletal structure encompass-

ing 23 joints that are actuated by 39 independent muscles and

two freely moving balls subject to physics (Figure 1A). The objec-

tive of the task is to maneuver the pair of balls in the hand, mak-

ing them rotate in tandem along a circular trajectory. Maximum

reward is achieved when the controller can guide the balls to

follow a pair of moving targets (small spheres in Figure 1B).

The MyoChallenge unfolded in two distinct phases. In phase I,

only counter-clockwise (CCW) rotations had to be achieved. By

contrast, phase II introduced several layers of complexity. Not

only did it add the clockwise (CW) rotation and ‘‘stay still’’

(hold) conditions, but it also necessitated complex decision-

making right at the episode’s onset. The task’s condition was

not inherently evident from the observed variables; instead, it

had to be inferred by the agent. Adding to the challenge, the

initial target position of the balls might not align with the actual

position of the balls at the onset of an episode. Thismisalignment

demanded strategic decisions to reach a high reward: whether

to initiate the balls’ rotation in the reverse or forward direction,

when to switch directions, decelerate, or maintain position.

Further amplifying the task’s difficulty, phase II introduced vari-

ability by randomizing parameters like the required targets’ rota-

tion radius and speed, as well as the balls’ size, weight, and fric-

tion (Table 1). Each episode (in RL nomenclature, but more aptly

described as ‘‘trial’’ in neuroscience) began with these parame-

ters being randomly sampled from a predetermined range

(Figure 1B).

The evaluation criterion of the task measures the fraction of

time steps within an episode when the balls successfully trace

the desired trajectory marked by the moving targets (see STAR

Methods).
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Reinforcement and curriculum learning
Recently, deep RL algorithms made strides in learning motor

skills from scratch without a model of the environment dy-

namics.18,19,23 Such model-free RL algorithms have proven to

scale robustly across increasingly complex environments. This

robust scalability can be attributed to their effective use of

powerful neural networks for processing high-dimensional

data, alongside their high computational efficiency, broad appli-

cability across tasks, and ease of ‘‘out-of-the-box’’ implementa-

tion—advantages not as prevalent in more structured, model-

based strategies. However, state-of-the-art model-freemethods

for RL faced significant challenges, which are evident when im-

plementing them in the Baoding balls task: proximal policy opti-

mization (PPO), a powerful model-free RL algorithm,18 combined

with a recurrent neural network architecture (Figure S1) only

reached 41% performance in phase I and 0% in phase II (see

STARMethods). The initial, sparse reward function proved insuf-

ficient for the agent to develop effective policies. Due to gravity

and low friction, the balls easily rolled off the hand at the begin-

ning of the episode, and the PPO agent was often not able to

hold them at all. While adjusting the reward function to

encourage long episodes provided an incentive to keep the balls

on the palm (see STAR Methods), the trained policy was highly

susceptible to failure modes, like grabbing the balls to avoid

them rolling off the hand (Figure 1C), preventing any meaningful

behavior from emerging. These optimization challenges are

inherent to model-free RL: as opposed to supervised learning,

where the agent has access to the gradient of the task objective

with respect to the control parameters, the RL agent must infer

this gradient using the reward function. This makes learning

less sample-efficient and more prone to exploration-exploitation

failures. Hence, enhancing the model-free optimization process

is crucial, which led us to focus on curriculum learning.32–34

Drawing parallels to human skill learning can provide valuable

inspiration.35–38 Consider the complex skill of performing a back-

flip (Figure 1D). For a novice, a backflip is a daunting sequence of

(partially) unfamiliar states that must be seamlessly integrated

into one fluid movement. Direct trial and error, or simply learning

from one’s mistakes, can be a dangerous and inefficient

approach. Athletes often undergo a structured training regimen:

they first familiarize themselves with the specific bodily states

required by the skill (Figure 1E). Once comfortable, they then

piece these states together into a singular movement, initially

slow and deliberate, eventually reaching full speed and fluidity.

Thus, inspired by coaching practice, we propose the SDS cur-

riculum for RL. Analogous to the athlete’s training, in SDS the RL

agent is tasked to first learn to hold the balls statically in various

configurations along the desired trajectory (Figure 1F, left). Once

the controller can stabilize those states, the agent is gradually

trained to dynamically transition between them, creating a

continuous movement that mirrors the desired trajectory (Fig-

ure 1F, right). This curriculum not only addresses the explora-

tion-exploitation dilemma but also provides the agent with a

structured learning pathway, akin to the way humans approach

some complex motor tasks. In the final stages of training, we

also performed random target initialization and domain random-

ization, i.e., varying the task parameters (see STAR Methods,

Table 2). Overall, the SDS policy carried out 300 million



Figure 1. Definition of the SDS curriculum, performance benchmarks, and ablation study

(A) Visualization of the musculoskeletal hand in Mujoco.26,27

(B) Task variations include direction of rotation (counter-clockwise [CCW, left], clockwise [CW, middle], and hold [Hold, right]) along with domain randomization,

i.e., varying initial locations of targets (dotted green circles) as well as varying ball size, mass, and friction.

(C) Visualization of a problematic local optimum during curriculum learning.

(D) Illustration of the states traversed during a backflip, a complex, whole-body skill performed by humans.

(E) Steps involved in a recommended training routine. Illustrations in (D) and (E) by Julia Kuhl inspired by backflip training materials.

(F) Schematic of our static to dynamic stabilization (SDS) curriculum proposed to tackle the Baoding balls task by analogy to human skill learning (D–E).

(G) Performance results from an ablation study demonstrate the necessity of the curriculum, especially in noisy environments with multiple conditions (phase II of

the MyoChallenge). Here and in (H), performance is measured as the fraction of time steps in which the balls overlap with the targets.

(H) Performance benchmarks and the MyoChallenge leaderboard (each row is a team).

(I) Learning curve illustrating the 32 curriculum steps used to train the policy that achieved the top performance in phase II of the MyoChallenge. The graph

displays episode reward against training time and number of environment interactions. The reward is a dense signal, which we designed to encourage the agent

to follow the target trajectory of the Baoding balls without letting them fall. The initial ‘‘static’’ and ‘‘dynamic’’ periods correspond to the respective stages of the

SDS curriculum. The latter part of the training focused on dealing with the misalignment between the initial position of the Baoding balls and the targets (‘‘random

target initialization’’) and with the variable environment physics (‘‘domain randomization’’). Note that the maximum (possible) episode reward decreases during

the ‘‘random target initialization period,’’ as the targets do not overlap with the balls at the beginning of the episode. While the episode reward generally increases

within a curriculum step, it exhibits a decreasing trend as more challenging settings are introduced during training. Our goal was to maximize performance on the

(to-us) unknown statistics of the phase II testing. The dashed blue line corresponds to the twelfth step of the SDS curriculum, after which random target

initialization and domain randomization are introduced. We later also use this network state for comparisons.

See also Figures S1 and S2 and Table S1.
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Table 1. Parameters of the Boading Balls environments of

phases I and II

Parameter Phase I Phase II

Num episode steps 200 200

Drop threshold (m) 1.3 1.3

Target threshold (ε) (cm) 1.5 1.5

Radius x min (cm) 2.5 2

Radius x max (cm) 2.5 3

Radius x y min (cm) 2.8 2.2

Radius y max (cm) 2.8 3.2

Balls mass min (kg) 0.043 0.030

Balls mass max (kg) 0.043 0.300

Balls size min (cm) 2.2 1.8

Balls size max (cm) 2.2 2.4

Friction coeff. 1 min 1 0.8

Friction coeff. 1 max 1 1.2

Friction coeff. 2 min 0.005 0.004

Friction coeff. 2 max 0.005 0.006

Friction coeff. 3 min 0.0001 0.00008

Friction coeff. 3 max 0.0001 0.00012

Rotation period min (s) 5 4

Rotation period max (s) 5 6

Possible tasks CCW CCW, CW, hold

Table 2. Parameters of PPO and of the network architecture

Parameter Before step 25 After step 25

Discount factor g 0.99 0.99

GAE l 0.9 0.95

Entropy regularization 3.62109e�6 3e�5

PPO clipping 0.3 0.2

Optimizer adam adam

Learning rate 2.6e�5 2.5e�5

Batch size 2,048 65,536

Minibatch size 32 1,024

Max grad norm 0.835671 0.8

Num parallel envs 16 16

LSTM layer size 256 256

Layer 1 size 256 256

Layer 2 size 256 256

Activation ReLU ReLU

The same parameters are used for both the actor and the critic. Some pa-

rameters changed starting from step 25 of the training curriculum.
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environment interactions, and it took almost 400 h to train the

model (Figure 1I). Due to the sequential nature of the curriculum,

the training steps cannot be parallelized. The SDS policy

achieved a 100% score in phase I (Video S1) and a 55% score

in phase II (Video S2), which is close to the maximum possible

reward since the initial positions of the balls and the targets do

not overlap.

We note that in the competition the sensory feedback was

given in the form of joint angles and velocities, as it is more com-

mon in RL. We also tested if SDS could also learn from muscle

lengths, velocities, and forces, which is more akin to propriocep-

tive feedback.39,40 We found that a policy provided with such

proprioceptive feedback and trained with SDS can achieve

over 99% solved fraction in phase I of the MyoChallenge (Fig-

ure S2). This control validates the SDS curriculum as a way to

learn control policies with more biologically realistic propriocep-

tive input.
Performance benchmarks
To showcase the importance of the SDS curriculum, we per-

formed an ablation analysis, systematically stripping away key

components of the curriculum to observe the resultant impact

on learning efficacy. We evaluated three alternative training pro-

cedures, maintaining the network architecture and RL algorithm

but devoid of the full SDS curriculum (see STAR Methods). We

evaluated the performance of PPO without a curriculum

(‘‘none,’’ Figure 1G), a curriculum that attempts to rotate the balls

at full speed but departing from multiple initial locations (‘‘loca-

tion only,’’ Figure 1G), and a curriculum that gradually increases

the target speed but departing from a unique initial location
3972 Neuron 112, 3969–3983, December 4, 2024
(‘‘speed only,’’ Figure 1G). In the simpler phase I, the perfor-

mance drops bymore than half upon removing either component

(100% for SDS vs. 41%–45% for ‘‘none,’’ ‘‘location only,’’

‘‘speed only’’ curricula), whereas it all but entirely fails to learn

anything in the more complex task of phase II (55% for SDS

vs. 0%–4% for others). Thus, the high performance of the SDS

curriculum requires its two main components: learning multiple

static configurations and gradually merging these configurations

via increasingly faster dynamic trajectories.

To further contextualize our achievements, we juxtaposed our

performance against those of the top contenders of the compe-

tition (Figure 1H). More than 40 teams took part, and more than

340 entries were submitted.28 While most top solutions in the

MyoChallenge incorporate RL with a curriculum, often comple-

mented by reward shaping,28 it was our human-inspired SDS

curriculum (Figure 1I, static and dynamic) that distinguished

our approach and elevated our results above the competition.

Furthermore, we reviewed the literature since the December

2022 challenge for new results: more recent exploration

methods that do not use any kind of curriculum learning, such

as generalized state-dependent exploration41 and Lattice,42

marginally improve performance but fail to solve the task, suc-

cessfully tracking less than 50% of the target ball trajectory

(Table S1). This further highlights the necessity of the curriculum

learning approach.

To the best of our knowledge, our demonstration provided the

first successful example of fully learned musculoskeletal control

in a skilled object-manipulation task.

Motor and muscle of synergies
Mastering themany degrees of freedom inherent inmotor control,

often referred to as ‘‘Bernstein’s problem,’’1–5 is a central chal-

lenge in biological motor control. Having trained a policy network

that solves the dexterous manipulation task with 39 muscles, we

can interrogate the network state, muscle activations, and hand



Figure 2. Kinematic and dynamic motifs

within one full rotation of each Baoding

ball for one episode of the SDS policy, after

completion of the training curriculum

(A) Time series of the hand kinematics (top), the

muscle activations (middle), and the position of the

Baoding balls (bottom) during a full rotation of both

balls (5 s). In the ‘‘transient’’ part of the trajectory,

the hand catches the balls, which are initially

slightly above the palm. In each of the subsequent

halves of the trajectory, the position of the balls is

swapped.

(B) Relative importance of the 10 main principal

components (PCs) of the hand pose (top) and of

the muscle activations (bottom), named ‘‘principal

poses’’ and ‘‘principal actions,’’ as a function of the

time step within a full rotation of both balls. The

activations are averaged across all the episodes of

the Baoding-SV dataset featuring a clockwise

rotation (see STAR Methods). Apart from the initial

transient period, many components exhibit a pe-

riodic behavior, suggesting the emergence of co-

ordination patterns that are repeated in the first

and second half of the rotation. Indeed, a full

Baoding balls cycle is completed when the posi-

tion of the two balls is swapped twice.

See also Figure S3.
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kinematics (Figure 2A). How does the artificial agent compare to

the intricate behavior of human motor control?

Classic motor control studies have illuminated a fascinating

phenomenon: the vast realm of possible hand poses is not occu-

pied by actual behavior; rather, actual behavior is often distilled

into a low-dimensional subspace.1–5 In other words, different

joints appear coupled. Like others,43,44 we refer to the coordi-

nated patterns of joint angles that span this low-dimensional

subspace as ‘‘motor synergies.’’ Although researchers interpret

motor synergies in various ways, it is widely accepted that

dimensionality reduction techniques can be used to identify

them.3,5,43,45 Here, we focus on analyzing these synergies and,

in the discussion, interpret our findings in relation to the litera-

ture. Analogously, we refer to the basis set of muscle-activation

patterns as ‘‘muscle synergies.’’

We hypothesize that similarly to biological agents,1–5 artificial

agents also learn to operate in a reduced kinematic (pose) and

dynamic (muscles) space. By projecting the hand poses (i.e.,

joint angles) and the policy’s actions (i.e., muscle activations)

onto the principal axes, we can qualitatively gauge the signifi-

cance of each principal component (PC) during the Baoding

balls’ rotation cycle. Comparing the top principal poses and ac-

tions between the first and second half of the cycle, we see that

the same PC is reused to swap the positions of the Baoding balls

(first row in both panels of Figure 2B), indicating that the SDS pol-

icy has effectively generalized across similar phases of the task.

We begin by comparing the SDS policy with humanmovement

data from Todorov and Ghahramani,3 who used a CyberGlove to

capture hand movements during object-manipulation tasks,

including the Baoding balls task. Their approach, using prin-
cipal-component analysis (PCA) on the hand kinematics, sought

to unveil the number of motor synergies at play. To get an upper

limit, they also considered a control task that instructed subjects

to reach all joint limits. Echoing their methodology, we estimated

the dimensionality of the movements generated by SDS

(Figures 3A and 3B, ‘‘Baoding’’) and a policy for a control task

called hand pose (Figures 3A and 3B, ‘‘control’’), designed to

span the maximum dimensionality of the hand in joint space.

Namely, to solve the hand-pose task, one needs to actuate the

joints to random target hand postures (see STAR Methods).

The CyberGlove, however, does not record muscle dynamics,

which is fully accessible in the MyoSuite simulator. Therefore,

we can also analyze which activation patterns the SDS policy

employs to control the hand, something that is more challenging

to record in humans. For both tasks, we found that just a few syn-

ergies capturemost of the variance in the posture (Figure 3A) and

muscle space (Figure 3B). Note that if the posture space was be-

ing used uniformly, the cumulative variance plot would linearly in-

crease. If it was spanned by a fixed combination of n indepen-

dent primitives, then we should see a linear increase up to N

PCs, where the cumulative variance becomes one. Given that

this is not the case, we estimated the dimensionality with the

same counting convention as in Todorov and Ghahramani,3

namely by averaging the number of dimensions needed to ac-

count for 85% and 95% of the variance (see STAR Methods).

Our findings painted a compelling picture: the dimensionality

of hand poses during Baoding ball rotation was lower than during

the control task, both in our RL controller and in Todorov and

Ghahramani3’s experiments (Figure 3C, position column). This

result also validates the experimental design of the control
Neuron 112, 3969–3983, December 4, 2024 3973



Figure 3. Dimensionality of the control pol-

icy and SDS policy in the Baoding balls task

(A) Cumulative explained variance of the PCs of the

joint angles for an artificial agent trained to rotate

two Baoding balls (SDS policy) and one trained to

reach random poses (control). For Baoding, the

results in this plot (as well as in B and C) refer to the

subset of episodes with counter-clockwise rotation

direction. Also including the clockwise rotations

gives similar results (Table 3).

(B) Same as (A), but the PCs are extracted from the

agent’s actions, corresponding to the muscle ac-

tivations. We also call those ‘‘muscle synergies.’’

(C) Left: comparison between the number of in-

dependent degrees of freedom or ‘‘synergies’’

observed in the RL model (SDS) and experimental

data (human)3 for the Baoding balls task as well as

the control (hand/joint pose) task. The values are

obtained by averaging the number of PCs neces-

sary to explain 85%and 95%of the variance of the

joint positions, the joint velocities, and the muscle

activations, respectively (A and B). Right: graphs

of the explained variance for the first 15 PCs of the

joint angles, for the SDS policy (top) and for a

human subject (bottom, reproduced from Todorov

and Ghahramani3).

(D) Pose variation corresponding to the first two

PCs of the hand poses recorded from humans

rotating two Baoding balls (figure adapted from

Todorov and Ghahramani3).

(E) Same as (D), but extracting the PCs from the

hand poses of the SDS policy rotating the Baoding

balls counter-clockwise.

(F) Impact of applying the muscle-activation pat-

terns corresponding to the first two PCs of the

control policy of theMyoChallenge competition for

15 steps (0.6 s), starting from an open hand posi-

tion.

See also Figure S4.
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task. Remarkably, despite the simulated agent being trained to

maximize performance and not to match human behavior, the

number of synergies in joint angle space computed for the simu-

lated agent closely resembles the one measured for human sub-

jects (Figure 3C, position column), an observation also sup-

ported by the fraction of explained variance of individual

components (Figure 3C, right). We also checked that our dimen-

sionality estimates are robust to the dataset size (Figure S4).

By contrast, a difference between artificial and human sub-

jects emerged when analyzing the dimensionality of the angular

velocities of the joints (Figure 3C, ‘‘velocity’’ column). However,

this may be expected. While the tasks on which we trained the

artificial agents (Baoding and control) resemble the experiments

in terms of states to be visited (ball trajectory for Baoding and

attainable hand poses for control), the instructions regarding

the speed were different. The control policy attempts to reach

the target pose as fast as possible, while for Baoding, the rota-

tion speeds are constrained by the task. By contrast, human

subjects were instructed to solve the task at an (unspecified)

comfortable speed,3 likely faster than the rotation speed of the

SDS policy (4–6 s period).
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Diving deeper, we performed an analysis that is harder with

subjects: probing the dimensionality of the control signal in mus-

cle space. Strikingly, the dimensionality of the control policy in

muscle space showed a different pattern than in joint space. Ob-

ject manipulation demanded more degrees of freedom than

pose reaching (12 vs. 7, Figure 3C). This finding introduces a crit-

ical, yet often overlooked perspective: assessing the complexity

of control solely from motion capture observations might prove

misleading.5,46–49 It is likely that this result, namely that the mus-

cle-space dimensionality during free-hand movement is lower

than during object manipulation, derives from the musculoskel-

etal structure of the hand, which has pairs of muscles antago-

nizing each other such that reaching desired hand positions

requires low-dimensional muscle-activation patterns. By

contrast, robustly manipulating objects like two Baoding balls

might require a more complex co-activation of antagonist mus-

cles, leading to a higher effective muscle-space dimensionality.

This interpretation is supported by the fact that the control policy

outputs a sparser control signal than the Baoding policy (Fig-

ure 4C). Indeed, we can assess howmanymuscles a control pol-

icy recruits by computing, for every simulation time step, the



Table 3. Detailed dimensionality estimation of the joint angular positions (position), joint angular velocities (velocity), and actions

(muscle activation)

Position Velocity Muscle activation

CW CCW Both CW CCW Both CW CCW Both

Exp. var. thresh.

0.85 4.0 3.0 4.0 6.0 6.0 6.0 9.0 9.0 9.0

0.95 6.0 6.0 7.0 10.0 11.0 11.0 15.0 15.0 15.0

Average 5.0 4.5 5.5 8.0 8.5 8.5 12.0 12.0 12.0

The values were extracted including the clockwise (CW), counter-clockwise (CCW), or both (both) episodes of the Baoding-LV dataset (see STAR

Methods) and considering different thresholds of the explained variance.
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number of muscles activated above a certain threshold. We

found that the control policy, on average, only activates around

6 muscles out of 39 above a 5% activation threshold. This value

is much larger for the Baoding policy, which activates, on

average, over 17muscles above the same 5% threshold. This in-

dicates that the Baoding policy retains a residual activity for a

large fraction of muscles, which is not present in the free-reach-

ing movements.

To better grasp the meaning of the PCs of the hand pose, we

can visualize them as shifts from the mean pose. Comparing the

first two PCs computed from a human subject (Figure 3D) and

from the SDS policy (Figure 3E), the SDS policy’s movements

appear more rigid and localized to a subset of fingers. Further-

more, we can visualize the effect of individual PCs of the muscle

activations by repeatedly applying them as actions, starting from

an open hand position (Figure 3F). In the SDS policy, the first

principal action causes a flexion of the middle finger and the

thumb and a wrist movement, while the second principal action

orchestrates a flexion pattern of the thumb away from the palm

and the other fingers toward it. The SDS policy primarily engages

four of the five fingers (see Videos S1 and S2). In particular, the

policies of phase I and of phase II seem to not involve the middle

and the ring finger, respectively. This contrasts with Todorov and

Ghahramani3’s findings, where the first two PCs of the hand

poses influenced all fingers (Figure 3D). Why are those patterns

different when the dimensionality is comparable? Unlike biolog-

ical agents, the artificial policy has been optimized exclusively for

the Baoding task, which might explain the more localized and

rigid movements. For the distribution of ball sizes, engaging

four fingers might be sufficient, and it gives rise to a similar motor

synergy dimension. Discrepancies in the biomechanical model

could also be at play.

Overall, we found that like biological agents,1–5 artificial agents

learn to operate in a reduced kinematic (pose) and dynamic

(muscles) space.

Task relevance of the low-variance PCs
It is tempting to categorize the high- and low-variance PCs as the

task-relevant and task-irrelevant muscle synergies, respectively.

Indeed, projecting the muscle activations onto the first 15 (out of

39) PCs accounts for over 95% of the variance of the control

signal (Figure 3B). Yet, the role of low-variance (muscle) PCs in

mastering the skill is unclear.

Indeed, we argue that the importance of muscle synergies is

more meaningfully evaluated based on their impact on task per-
formance rather than their contribution to the reconstruction of

the control signal. The task performance can, of course, be eval-

uated in the biomechanical simulator.5,46–49 While inactivating

specificmuscle synergies is currently impossible experimentally,

it is a straightforward procedure in our computational model.

With an experiment akin to selective modulation of ensembles

of neurons via optogenetics, we removed the component of

the control signal, which lies on a specific subspace of the mus-

cle-activation space (Figure 4A). By projecting the muscle-acti-

vation pattern output by the policy onto the subspace spanned

by a subset of the principal directions of variability, we forced

the control signal to lie in a lower-dimensional space (namely,

the lower-dimensional space that captures the largest amount

of variability). In this way, we could measure how the task perfor-

mance varied as a function of the dimensionality of the enforced

space (see STAR Methods). We call this procedure control sub-

space inactivation (CSI). Adding one PC after the other in

decreasing order of explained variance (blue curve in Figure 4B)

revealed how many directions of variability contribute to suc-

cessfully rotating the Baoding balls. We found that twelve PCs

out of 39 retain 50% of the task performance, which only satu-

rates after 25 components are allowed. Compared with the

dimensionality estimation obtained by reconstructing the control

signal (Figure 3B), this estimation in terms of task performance

returns a larger and, arguably, more meaningful value. In partic-

ular, even the components that contribute less than 5% in

explaining the variance of the muscle-activation space play a

decisive role in solving the task. Conversely, as expected, the

high-variance PCs are crucial for task performance (red curve

in Figure 4B), as just removing a few of them causes the solved

fraction to quickly drop to zero.

Comparing activity across different conditions of the task can

additionally shed light on the low-variance PCs of hand kine-

matics (CW or CCW rotation in Figure 4D). We found that low-

variance PCs of the hand pose are task dependent, as they retain

discriminative power regarding what task is being performed

(CW or CCW rotation in Figure 4D). This result is consistent

with the observations of Yan et al.,29 who showed evidence for

task relevance even in low-variance PCs for hand kinematics.

Highly task-specific kinematic synergies suggest that it might

not be possible to create a common, low-dimensional control

subspace that works across tasks. To further investigate this

question, in the next subsection, we performed CSI across tasks

to show that kinematic or muscle spaces are indeed highly task

dependent.
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Figure 4. Task relevance of the low-vari-

ance PCs of the SDS policy

(A) Illustration of the control subspace inactivation

procedure. Before being transmitted to the envi-

ronment, the action (i.e., pattern of muscle acti-

vations) is projected on the subspace spanned by

a subset of the principal vectors and is therefore

constrained to a lower-dimensional space. The

muscle-activation pattern is applied to the hand

model, which returns an observation to be pro-

cessed by the policy network.

(B) Average performance of the policy (±SEM over

100 episodes) when the actions are projected

onto progressively larger subspaces of the action

space, defined by the PCs. Blue curve: the prin-

cipal axes are added from the most to the least

important in terms of explained variance. Red

curve: the principal axes are added from the least

to the most important.

(C) Number of muscles active more than a

threshold value for variable threshold values. The

control policy outputs a sparse control signal (the

number of active muscles quickly drops for low

activity threshold levels). For high activity thresh-

olds, the control policy recruits slightly more

muscles than Baoding. This indicates that the

Baoding policy has a tendency to output interme-

diate activation values, while the control policy

outputs extreme values (either fully active or not

active at all).

(D) Average trajectory of the hand pose (500 epi-

sodes per rotation direction, see STAR Methods)

when projected onto different three-dimensional

subspaces defined by progressively less important PCs. The mean accuracy score refers to the decoding accuracy via logistic regression of the task direction

from each of the 1,000 episodes considered (see STARMethods). While the accuracy decreases with the importance of the PCs, one can also reliably decode the

task from the least important ones.
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Task dependence of the muscle synergies
We have found that a policy trained with RL finds a low-dimen-

sional kinematic and muscle space. It is unclear whether this

emerging dimensionality reduction indicates the existence of

redundant control dimensions that would allow a policy to

confine itself to a reduced space for any motor task or whether

the dimensionality reduction is instead task specific. To disen-

tangle these possibilities, we considered three additional motor

control tasks: hand reach, reorient, and pen, featured in

MyoSuite (see STAR Methods). In hand reach, a policy has to

control the MyoHand to reach five target points with the hand’s

fingertips. Unlike the control task, which requires targeting spe-

cific angles for each joint, this task involves guiding only the fin-

gertips to random targets. For reorient and pen, a policy has to

control the MyoHand and rotate an object (a die and a pen,

respectively) to achieve a target orientation. We also considered

the policy obtained at step 12 of the SDS curriculum (SDS step

12), which achieved 100% solved fraction in the Baoding ball

rotation, both CW and CCW, before any variability (rotation

speed and radius, ball mass, size, and friction) was introduced

(dashed blue line in Figure 1I). First, we evaluated the similarity

between pairs of tasks in the kinematic and muscle space. For

each of the six policies, we collected a dataset of 1,000 episodes

and extracted the PCs of the hand kinematics and of the muscle

activations, defining a task-specific subspace. We then pro-
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jected the kinematics and the muscle activations of the SDS

step 12 policy (Figures 5A and 5B) and of the final SDS policy

(Figures 5D and 5E) onto these task-specific subspaces. The

PCA of the hand kinematics (Figures 5A and 5D) confirms the

intuition that the final SDS policy and the SDS step 12 policy

are themost similar, while the hand pose and hand reach policies

are the most dissimilar from the SDS step 12 policy and the final

SDS policy. In the muscle-activation space, the SDS step 12 and

the final SDS are more different than in the kinematics space,

and the clear hierarchy among the other tasks also disappears

(Figures 5B and 5E). Thus, to accurately reconstruct the muscle

dynamics of SDS, one needs more than 20 muscle synergies

from other tasks. However, this does not answer whether one

could actually achieve the task. To tackle this, we take advan-

tage of the biomechanical simulator.

Performance is a better metric for determining whether a com-

mon low-dimensional subspace can be reused to solve multiple

tasks. This can be achieved by extracting the PCs of each task

and using them as a basis for the inactivated subspace when

applying CSI on a different task. We performed this analysis on

the SDS step 12 policy (Figure 5C) and on the final SDS policy

(Figure 5F). We can see how, remarkably, 30 or more dimensions

extracted from adifferent task are necessary to achieve high per-

formance for both the SDS step 12 policy and the final SDS pol-

icy. Interestingly, while the kinematics of SDS step 12 and of final



Figure 5. Transfer of muscle synergies from

other tasks to Baoding

(A) Cumulative explained variance of the PCs of

the joint angles for the SDS policy after 12 curric-

ulum steps, performing counter-clockwise rota-

tions. The explained variance is computed both on

the PCs extracted from the same policy (SDS step

12) and from other tasks (final SDS, hand pose,

hand reach, pen, reorient). The dashed vertical

lines indicate the number of components ex-

tracted from the same task necessary to reach

95% explained variance.

(B) Same as (A), but the PCs are extracted from the

agent’s actions, corresponding to the muscle ac-

tivations.

(C) Control subspace inactivation applied to the

SDS step 12 policy, using PCs extracted from the

policy itself and from those trained on the other

tasks. The graphs represent the average perfor-

mance (±SEM) over 100 test episodes. The

dashed lines indicate the dimensionality estima-

tion based on 95% explained variance when re-

constructing the hand pose and the muscle acti-

vations.

(D–F) Same as (A)–(C), but for the final SDS policy.

See also Figure S5.

ll
OPEN ACCESSArticle
SDS are similar, the two tasks require surprisingly different mus-

cle synergy spaces. A high number ofmuscle synergies is neces-

sary to achieve good task performance also when extracting

them from multiple tasks at the same time, although (as ex-

pected) they tend to transfer better to Baoding when all the tasks

(hand pose, hand reach, pen, and reorient) are considered at the

same time (Figure S5). Taken together, these results indicate

that, unless one uses more than 30 dimensions, the muscle syn-

ergies discovered by a policy trained on one task do not consti-

tute a useful subspace to solve a different task. This estimate of

at least 30 dimensions is close to the dimensionality of the orig-

inal space and much bigger than previous estimates based on

dimensionality reduction.43,44

Analysis of the SDS policy’s computation
Thepolicy network,with its long-short-termmemory (LSTM) layer

and two fully connected layers (Figure S1), offers a lens into how

information is transformed from the hand’s proprioceptive

state to the output control signal in terms of muscle activations.
Neuro
We embedded the activity of the

policy network into a 3D space with uni-

form manifold approximation projection

(UMAP) (Figure 6A, see STAR Methods).

We also quantified the degree to which

the state spaces of the two tasks are en-

tangled using Russo et al.’s tangling

metric Q (see STAR Methods).

First, note that in the deeper layers

(layer 1 and layer 2) and in the output (ac-

tion), the activity of the two tasks (blue and

red) is more tangled than in the input

(observation) and in theearly layers (mem-

ory and LSTM output). Furthermore, the

state spaces of the two tasks are more
separated in the memory subspace than in the observation sub-

space (compare top-right with top-left), suggesting that the sys-

tem distills the information from the observation space into two

separate state spaces, effectively separating states that are

similar in observation space but require different motor plans.

Then, the state spaces merge back together toward the action

space as the system recruits similar motor synergies indepen-

dently of the rotation direction (Figure 6A). Note that, unlike the

tasks in the previous section, in which a different neural network

was trained independently in each task, in this case, the same

neural networkwas trained to solve both theCWandCCW tasks,

likely favoring the reusability of common synergies across tasks.

The population activity of the memory layer of the LSTM block

presents the least tangled trajectories in the policy network. In

particular, it is consistently less tangled than the action and

observation dynamics (Figure 6B) when carrying out the analysis

in a per-episode manner. This result qualitatively resembles

Russo et al.’s insight that motor cortical dynamics avoid tangling

more than muscle dynamics (EMG).30
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Figure 6. Population activity of the SDS policy network

(A) UMAP embedding of the population activity of all the layers of the policy network (Figure S1), extracted from the Baoding-SV dataset (see STARMethods). The

rotational dynamics and the separation between clockwise and counter-clockwise rotation progressively disappear along the processing hierarchy. The average

tangling metric Q is displayed (see STAR Methods).

(B) Pair-wise comparison of the tangling of the population activity in the memory layer vs. the observation (left) and the action space (right). Each point indicates

the average tangling of one episode (see STARMethods). Thememory layer consistently untangles the input observation, while the deeper layers transform it into

more tangled actions.

(C) Decoding analysis of the policy network, showcasing where task-relevant quantities are best encoded in each layer. Each time point is separated by 25 ms.

The error bars indicate the standard deviation across 5-fold cross validation.
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Finally, we sought to determine if and where in the network

different task-relevant quantities are encoded (Figure 6C). While

certain variables, like joint angular positions, can be directly de-

coded from the observation, others that are not part of the obser-

vation space, like the physical properties of the balls, are better

decoded from the LSTM layer’s memory layer. This suggests

that the SDS policy accumulates data over time to form a repre-

sentation of the system’s non-observable state, which then con-

ditions the control signal, and several variables cannot be well

decoded, suggesting that they are implicitly represented.

DISCUSSION

The intersection of efficient musculoskeletal simulators and

powerful learning algorithms heralds a new era of understanding
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in the realm of biological motor control. By leveraging these

models, we can delve deeper into the core principles of biolog-

ical skill learning. This approach can not only offer insights into

how animals, including humans, learn and execute complex mo-

tor tasks but also generate both behavioral and neural predic-

tions. The SDS curriculum, inspired by human learning, empha-

sizes the significance of reinforcement and curriculum learning in

training motor control policies for complex tasks. This show-

cases the potential of RL in developing high-fidelity sensorimotor

models and provides a platform to juxtapose artificial and biolog-

ical control systems. Such comparisons, as we have demon-

strated, can yield insights into emergent movement dynamics,

offering a fresh perspective on motor learning and control.

Yet, as we push the boundaries of what is possible with digital

simulations in deep RL, we are confronted with a deeper, more
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fundamental challenge: model alignment in sensorimotor sys-

tems. How do we bridge the gap between artificial systems

and the intricate, naturalistic movements of a living organism?

While supervised learning offers some solutions, allowing us to

enforce specific movement repertoires, as demonstrated in pre-

vious models of the motor,50 visuo-motor,51 and proprioceptive

system,40,52 RL presents a unique conundrum. Without explicit

guidance, a model must bootstrap itself to discover viable solu-

tions. Our SDS curriculum is more than just a technical achieve-

ment in that it is a step toward aligning artificial and biological

motor control.

Indeed, the SDS policy exhibits a number of properties that

have been observed in primates. First, we found that the SDS

policy, without any explicit constraint, discovers a low-dimen-

sional posture and control space, reminiscent of humans per-

forming the Baoding ball task.3 While the specific synergies are

not the same, it is worth noting that the SDS policy has only

been trained on this single task. Second, we found that the

controller is robust to activity perturbations and that low-vari-

ance PCs still contain task-relevant signals, akin to Yan et al.’s

experimental result.29 Third, we found lower tangling of the dy-

namics in the learned controller than in the action space, akin

to what Russo et al.30 found for the motor cortex vs. EMG dy-

namics. We observed this last result in a different task and archi-

tecture, suggesting it might be a general characteristic of RL

policies.53

Our policy analysis further illuminates the complexities of mo-

tor control. Low-dimensional control emerges both in SDS and

human subjects. Yet, the dimensionality of control in muscle

space and joint space offers a nuanced perspective, suggesting

that assessing complexity solely frommotion observationsmight

be misleading.5,46–49 This highlights the importance of delving

deeper into the underlying representations of control, beyond

observations.

Are muscle synergies an emergent property of
successful control?
The terms motor synergies, muscle synergies, and motor primi-

tives have been used with diverse connotations in the neurosci-

entific literature.5,45,48 The concept of motor and muscle syn-

ergies gained popularity when studies on the frog’s spinal cord

showed that the forces generated by stimulating individual sites

of the spinal cord combine according to vector summation when

the sites are stimulated together.54 Analogous results were

found in spinalized rats55 and through the electrical microstimu-

lation of themotor cortex ofmacaques.56 These findings suggest

that motor commands might result from a linear combination of

muscle-activation patterns, forming a ‘‘basis’’ (in the algebraic

sense) of the motor control space, defined at the spinal cord

level. These muscle patterns were also referred to as ‘‘motor

primitives.’’57 Other studies, instead, propose that motor primi-

tives are combined by the human motor control system into

complex motion through juxtaposition in time, similarly to letters

in a sentence.58,59 In this line of work, motor primitives are some-

times called ‘‘movemes’’ (since they are to motion what pho-

nemes are to speech). Whether motor and muscle synergies

are a fundamental mechanism of motor control to deal with a

large control space, the result of optimizing for a specific task,
or explained by other hypotheses is an ongoing debate in the

motor control community.3,5,45,47,48

We found that like biological agents,1–5 RL-trained agents

learn to operate in a reduced kinematic (pose) and dynamic

(muscles) space. However, our dimensionality estimates are

larger than in a classic behavioral grasping study by Santello

et al.43 and closer to estimates for corresponding object-manip-

ulation tasks by Todorov.44 Taking advantage of the biomechan-

ical simulator, like others for different purposes,5,46,48 we

showed evidence that for successful control, one needs many

more dimensions than suggested by classic signal reconstruc-

tion methods (20 vs. 5). This insight from our computational

model is consistent with prior analyses of isometric tasks.47,49,60

One popular explanation for this dimensionality reduction is

that it provides evidence that the nervous system might simplify

the control problem.3,5 We remark that the dimensionality reduc-

tion for our RL policies was not imposed by the design of the pol-

icy network but was instead discovered purely through struc-

tured learning via the maximization of the reward, reminiscent

of a hypothesis proposed by Loeb.5 The poor transfer of motor

synergies from one task to another (Figure S5) reinforces this

interpretation. In fact, the same neural network architecture,

trained with the same RL algorithm to control the same hand

model, but on different tasks, learns to use different muscle syn-

ergies. Our results with RL are also consistent with arguments

based on optimal feedback control.10,44,60 Overall, our results

speak against the necessity for muscle synergies as a simplifying

constraint to tame the complexity of the biomechanical system.

In other words, motor synergies are a signature of good control

reflecting plant (biomechanical) and task properties while not

providing evidence for a general simplifying strategy.

Is curriculum learning necessary for RL?
Despite recent successes in machine learning, optimizability re-

mains a key concern for deep learning, and many innovations

seek to target this challenge, such as LSTMs,61 ResNet’s skip-

ped connections,62 reward shaping,63 and sensorimotor

priors,53,64 the true potential of RL lies in its adaptability. Our

SDS curriculum, inspired by human learning paradigms, curricu-

lum learning,33,34 and elements of deliberate practice,36,38 ex-

emplifies this adaptability, offering a structured learning pathway

that aligns with biological motor control. The success of curricu-

lum learning, mirrored by other top-performing models for the

2022 MyoChallenge, underscores its efficacy.28 We note that

A.S.C., A.M., as well as Alessandro Marin Vargas won the

MyoChallenge in 2023, with a solution also relying on curriculum

learning, suggesting that it is a necessary ingredient for

mastering complex skills with RL, despite recent advances in

exploration and reward shaping for musculoskeletal sys-

tems.42,65 Thus, we currently believe curriculum learning is

necessary for acquiring complex musculoskeletal skills, and

perhaps the same is true in biology. Additionally, self-play,66,67

a framework in which an agent competes against itself, can be

regarded as a form of implicit curriculum.

Do humans use curriculum learning for skill acquisition?
Practice is essential for learning motor skills, and the order in

which one practices greatly impacts success.6,37,38,68
Neuron 112, 3969–3983, December 4, 2024 3979
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Importantly, humans can learn (certain) skills in a few trials without

requiring a curriculum.37 We speculate that for Baoding balls in

particular, humans already have extensive prior experience

manipulating objects with their hands and thus will rely on a

mechanism akin to transfer learning. This differs from the learning

framework we used to train the SDS policy network, which starts

learning from scratch (i.e., randomly initialized weights). The arti-

ficial model that starts from randomweights can be considered a

purely exploratory agent without prior knowledge. This scenario

aligns more with the acquisition of novel or ‘‘unnatural’’ skills

(like learning to do a backflip), or at early development stages, sit-

uations in which humans greatly benefit from structured practice

depending on one’s skill level.35–38 SDSprovides evidence for the

utility of those ideas in a challenging RL setting. At the brain level,

practicing with increasing task difficulty based on the individual’s

skill level gives rise to greater performance and increased cortico-

spinal excitability,69 comparedwith practice at constant difficulty.

Going forward, there are many exciting questions at the interface

of skill learning and motor neuroscience. Advances in pose esti-

mation,70 biomechanics as well as curriculum learning, as pre-

sented here, open up new possibilities. For instance, how do

EMG patterns change when humans learn a novel, complex mo-

tor skill?

Limitations of the study
Our study has several limitations. First, like any biomechanical

model, the MyoHand is an imperfect, simplified imitation of a hu-

man hand.71 As all the environments in MyoSuite, it does not

consider some features of the human musculoskeletal system,

such as the elasticity of the tendons and the pennation angles

of the muscular fibers (see STAR Methods). Furthermore,

anatomical components such as the skin are not part of

the model.

Second, the SDS policy network is an abstraction of the

sensorimotor system, with important limitations. It provides a

general sensorimotor transformation that receives sensory feed-

back as an input, processes it with recurrent transformations,

and then projects it to muscle activations. Its design is similar

to what was used in previous modeling studies,30,50,51 but it is

of course not a reflection of the known anatomy of themotor sys-

tem. For instance, it is not hierarchical and does not include

reflexes.5,9,13,72

Third, the type of sensory feedback provided to the SDS policy

is different from the one received by the motor control system. In

fact, in the Baoding balls task (as part of the NeurIPS competi-

tion), proprioceptive feedback is provided in joint coordinates,

which is unbiological.39,40 As the SDS policy was part of a

competition, we were not allowed to change the input signals,

which had to be the same for all the participants. We provided

evidence that SDS can also be trained with feedback of muscle

lengths, muscle velocities, and muscle forces (Figure S2). Future

work should consider providing the control policy with proprio-

ceptive information more closely resembling the output of mus-

cle spindles and Golgi tendon organs.5 Last but not least, the

Baoding balls environment directly provides the state of the balls

to the policy network in the form of their instantaneous position

and velocity. In this way, touch and vision are bypassed. While

inferring the state of the balls from those senses is in principle
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doable, it is beyond the scope of this study. Furthermore, be-

sides achieving a higher score than the other solutions, the

SDS policy required 40% less energy than the closest compet-

itor.28 However, future work could explore how patterns of mus-

cle recruitment and metabolism relate to humans.

In conclusion, our work demonstrates the potential of realistic

biomechanical simulation-based approaches in motor control

research. We showcased several techniques that help us under-

stand the workings of the artificial motor control agent, such as

CSI and inter-tasks tangling metrics across the processing pipe-

line. Of course, this analysis departed from the existence of a

successful artificial motor policy in the complex Baoding task,

which we achieved by combining a coaching-inspired curricu-

lumwith deep RL. The result of the training was a successful mo-

tor policy that, while it significantly differs from its biological

analog, retains important aspects of it. Crucially, as the gap be-

tween the artificial and biological policies closes, analysis tech-

niques like the ones in this paper will offer increasingly powerful

insights to complement experimental findings in biological motor

control. As we continue to push the boundaries of musculoskel-

etal simulations in RL, the quest for model alignment in sensori-

motor systems remains at the forefront, promising a future where

the intricate movements of living organisms can be seamlessly

replicated and understood in the digital realm.
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B Decoding the environment variables from the population activity
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Deposited data

Weights for trained RL policies This paper https://zenodo.org/records/13332869

Rollouts for RL policies (analysis) This paper https://zenodo.org/records/13332869

Human data Todorov and Ghahramani3 https://doi.org/10.1109/IEMBS.2004.1404285

Software and algorithms

Repository for training baoding balls policies This paper https://github.com/amathislab/myochallenge

Repository for analysis of policy and agent’s behavior This paper https://github.com/amathislab/MyoChallengeAnalysis

Repository for training Control policy (Hand Pose) Chiappa et al.42 https://github.com/amathislab/lattice

Repository for training Hand pose policy Chiappa et al.42 https://github.com/amathislab/lattice

Repository for training Reorient policy Chiappa et al.42 https://github.com/amathislab/lattice
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Scikit-learn Scikit-learn developers73 https://scikit-learn.org/stable/

Pytorch Pytorch Developers74 https://www.tensorflow.org/
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MuJoCo Todorov et al.27 https://github.com/google-deepmind/mujoco

Stable Baselines 3 Raffin et al.75 https://github.com/DLR-RM/stable-baselines3
METHOD DETAILS

Musculoskeletal model of the forearm (MyoHand)
The simulation environment of the Baoding balls task is part of the library MyoSuite.26 The musculoskeletal model of the forearm is

called MyoHand, previously used in the library MyoSim.71 MyoSim is a library of biomechanical models ported to the MuJoCo phys-

ics simulator27 from models in OpenSim.14 MyoSuite defines environments based on these models (that also include reward func-

tions, etc.), where policies can be trained with RL. MyoHand comprises of 29 bones, 23 joints and 39muscle-tendon units. It is based

on widely used models of the human hand (2nd-Hand76) and of the human forearm (MoBL-ARMS77), as implemented in the biolog-

ically-accurate simulator OpenSim.14 Caggiano et al.26merged the twomodels and enhanced themwith the addition of anOpponens

Pollicis muscle, to obtain a complete model of the human forearm apt for object manipulation. Differently fromOpenSim, MyoSuite is

implemented in the MuJoCo physics simulator, which enables faster execution by up to three orders of magnitude. Compared to

OpenSim, MyoSuite adopts a simplified muscle model, which, e.g., does not consider tendon elasticity and fiber pennation angles.

The muscle activation dynamics and the force-velocity relationship used in MyoSuite are identical to those used in OpenSim. The

muscle models of MyoSuite obtain accurate force-length-velocity curves, by optimizing the available parameters in order to match

the more detailed model of OpenSim.71 This optimization process happens in three steps: 1) Matching forward kinematics, which

ensures that the joint and limb positions align accurately with biomechanical data from OpenSim 2) Matching moment arms of

each muscle, which verifies that the leverage effects of muscles across joints are consistent with OpenSim, and 3) Matching

force-length validation curves, which adjusts the muscle models to replicate force generation behaviors as observed in OpenSim.

Wang et al.71 report a relative root mean squared error (RMSE) for the muscle moments of 0.38 ± 0.57% and of 4.1 ± 2.0% compared

to the OpenSim model. This OpenSim model was chosen as the benchmark for the MyoHand as it provides a highly accurate repro-

duction of the biological moment arms for all the intrinsic and extrinsic muscles of the hand (1.5 mm average RMS error across the

moment arms of all muscles, and 7.1% relative error between artificial and biological muscle attachment points76). Importantly, how-

ever, OpenSim still cannot model all the details of a human hand, and further improvements in our understanding of motor control

may come from improvements in the accuracy of the musculoskeletal models.

Baoding balls challenge
The interaction between the control policy and the MuJoCo physics simulator can be formulated as a Partially-Observable Markov

Decision Process (POMDP)M = CS;A;O;T ;R;g;D. The processM is identified by the state space S, the observation function O, the

action spaceA, the transition function T , the reward functionR and the discount factor g. The action spaceA3R39 is the space of

the possible activations of the 39 muscles controlling the human arm model. The observation function O : S/R86 maps the state to
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the observation vector, which includes the angular position of each joint (23 elements), the positions (6 elements) and velocities (6

elements) of the two balls, the positions (6 elements) and the distances (6 elements) of the targets and the activation of each muscle

at the previous time step (39 elements). The transition function T : S3A/S maps a state and an action to a new environment state,

defining how the environment evolves depending on the agent’s decision. An agent seeks to maximize the discounted cumulative

reward R =
PN

t = 0 g
trt, where rt is the reward at time step t, associated by the reward function R : S3A3S/R to the transition

from the state st to the state st+1 via the action at.

The performance of the agent for the Baoding ball challenge (Figures 1G and 1H) is evaluated in terms of the solved fraction (SF),

corresponding to the number of steps in which both balls are in proximity of the two moving target balls:

SF =

PT
t = 1 Ix < ε

�
kpðtÞ

B1
� p

ðtÞ
G1
k
�
Ix < ε

�
kpðtÞ

B2
� p

ðtÞ
G2
k
�

T
; (Equation 1)

where T is the maximum number of time steps in the episode, I$ðxÞ is the indicator function, ε is the distance threshold between the

balls and the targets (1.5 cm), while p
ðtÞ
Bi

and p
ðtÞ
Gi
, i˛ f1; 2g correspond to the position vector of the ball and the goal i at time step t,

respectively.

Phase I of the MyoChallenge had the objective of rotating the two balls counter-clockwise, with a constant rotation period of 5

seconds. The simulation was chunked into episodes of 200 time steps, corresponding to 5 seconds of simulation. This means

that the agent had sufficient time to complete a full rotation of the two balls, before the simulation terminated. An early termination

condition was set to accelerate the training, when the balls fell below the palm. In this way, no computation waswasted simulating the

environment with the balls in a hopeless position (namely, too far from the hand), which would not provide any useful experience. At

the beginning of every episode, the balls started from the same initial location, corresponding to the first target position.

Phase II of the MyoChallenge introduced many complications compared to Phase I. At the beginning of every episode, a random

task was sampled (clockwise or counter-clockwise rotation, holding the balls in place) and a target trajectory generated accordingly.

Differently fromPhase I, the starting point of the target trajectorymight be different from the initial position of the balls. Thismeant that

in Phase II it was impossible for themodel to score 100% ‘‘solved,’’ because inmost episodes the targets would spawn away from the

initial position of the balls, and the model would require some time steps before being able to reach them. This complications were

addressed with several intermediate curriculum steps (Figure 1I, Phase shift). Besides the random task selection, further variability

was provided by the randomization of the task parameters, namely: target rotation period, ellipse axes of the rotation trajectory,

mass, size and texture of the balls. Each of these parameters was sampled independently, uniformly at random in a predefined range

(Table 1). The MyoChallenge is described by Caggiano et al.28

Reward engineering
The performance score (Equation. 1) provided a too sparse signal to be directly optimized via reinforcement learning, as an agent

which had not yet learnt how to rotate the balls would almost always collect a vanishing score. For this reason, we designed a dense

reward functionR : S/R, which associates a meaningful performance score to all states. The reward was computed as a weighted

sum of four values: the distance between each ball and the corresponding target (2 values), the indicator function representing

whether both balls are at most 1.5 cm away from the respective target and the indicator function representing whether the balls

are still on the palm. This last reward component proved fundamental for the agent to learn not to drop the balls, which would cause

an early termination of the episode (and thus a lower cumulative reward). We penalized the distance between the balls and the targets

(weight: -1) and promoted the balls being on the palm (weight: 1) and close to the targets (weight: 5).

Reinforcement learning details
We used the on-policy RL algorithm PPO18 from the Stable Baselines 3 library75 with a recurrent architecture that has LSTM layers61

in both the actor and critic, which allowed us to deal with the partially observable environment (Figure S1). The neural networks of the

actor and the critic were implemented in PyTorch.74 The parameters of PPO and of the network architecture are listed in Table 2. This

policy was trained as a baseline. To win the challenge we developed the following curriculum learning strategy.

Static to Dynamic Stabilization curriculum
The schematic of the SDS training curriculum is illustrated in Figure 1F. For clarity we only show the CCW trials, but the full curriculum

includes CW and Hold trials. The key idea of the SDS curriculum is to learn stable postures at intermediate states along the desired

trajectory before having to learn how to reach those states. The benefits of learning stable intermediate postures are twofold: (1) they

serve as safe arriving and departing subgoals for an increasingly complex and unstable policy and (2) they robustly shape the value

function of the RL agent such that it assigns a high value to these intermediate states, effectively acting as attractors for the final

policy. The SDS curriculum imposes several subtasks that the agent must solve before moving to the next subtask. In the first sub-

task, the balls are initialized at random phases along the desired rotation cycle, and the goal of the agent is simply to hold them still at

the initial position (Figure 1F, first panel). In the following subtasks, the balls are also initialized randomly, but now the task of the agent

is to move them following the desired trajectory, gradually increasing the target speed from subtask to subtask. As the curriculum

advances and the targets speed up, at one point it is not beneficial to use random initialization anymore, as the policy can benefit
Neuron 112, 3969–3983.e1–e5, December 4, 2024 e2
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from exploiting the inertia of the balls. At this point, SDS initializes the balls at the original initial position of the task (Figure 1F, second

to last panel) and continues speeding up the targets until it reaches the final task.

The code for training the policy including all hyperparameters is available at online (see key resources table).

Control task
To contextualize the analysis of the Baoding policy, we considered the policy trained by Chiappa et al.42 for the Hand Pose task of

MyoSuite.26 The environment uses the same musculoskeletal model of the forearm as the Baoding balls environment, but rewards

the agent when it reaches a certain target pose (i.e., an angular position of each joint). At the beginning of each episode, a new

(randomly sampled) target pose is selected. Each target joint angle is sampled independently from the others, uniformly at random

in half of the attainable range of the corresponding joint, in a neighborhood including the resting position. This makes the task hard, as

some pose configurations might not be achievable due to mechanical coupling. As for Baoding, the training also relies on PPO and

recurrent networks, with the same network architecture (Figure S1).

One episode includes 100 simulation steps, corresponding to 2.5 s of simulation time. Each episode starts with the hand in a resting

position and with a new target pose. The reward function is maximized when the hand achieves the target pose as fast as possible

and maintains that pose for the longest time. The function is an equally-weighted sum of three components:

d ‘‘pose’’ corresponds to the euclidean distance between the hand pose and the target hand pose.

d ‘‘solved’’ assigns a positive reward when the root mean squared error (RMSE) between the hand pose and the target hand pose

is smaller than 7.34 degrees.

d ‘‘penalty’’ assigns a negative reward when the RMSE between the hand pose and the target pose is larger than 57.65 degrees.

The Control policy achieves a solved fraction of 68.3%,meaning that the hand successfully maintains the target pose for more than

2/3 of the simulation time.

Additional tasks: Hand Reach, Reorient, Pen
To evaluate the similarities between control policies trained on different tasks, we considered the Hand Reach, Reorient and Pen

environments from MyoSuite, and in particular the policies trained by Chiappa et al.42 All these environments feature the same

musculoskeletal model (MyoHand). These policies present the same architecutre as all the other policies analyzed in this paper,

and were trained with the same RL algorithm (PPO). We refer to Chiappa et al.42 for the details of the training setup, while we provide

a description of the tasks below.

Hand Reach is a free movement task, which does not involve object manipulation. The objective of the policy is to control the

MyoHand and reach five target points, one per finger tip, at the same time and as fast as possible. The target positions are sampled

at the beginning of every episode within a range specified by the environment. One episode includes 100 simulation steps, corre-

sponding to 2.5 s of simulation time. The policy achieves 0.654 solved fraction, meaning that it manages to keep the finger tips at

the target positions 65.4% of the time. Reorient and Pen, on the other hand, are object manipulation environments. The policy

has to use the MyoHand to move and rotate a die (Reorient) and a pen (Pen) to achieve a target orientation. One episode lasts

150 simulation steps (3.75 s) for Reorient and 100 simulation steps (2.5 s) for Pen. A new target orientation is sampled at the beginning

of each episode. The solved fraction is 0.685 for Reorient and 0.648 for Pen.

Dataset generation
For analyzing the SDS policy, we created two datasets including 1000 episodes each, in which the artificial agent trained for the

MyoChallenge rotates the two Baoding balls for 5 seconds. In the first dataset, Baoding-SV (small variations), we sampled in

each episode the size and the mass of the balls within a small range of values, to introduce some variability in the task while main-

taining consistent movements. This dataset is used for the analyses illustrated in Figures 2, 3, 4, 5; in Figures 6A and 6B.

The second dataset, Baoding-LV (large variations), features the same experimental conditions as the Phase II of theMyoChallenge.

Baoding-LV was used to linearly decode the unobservable environment variables from the policy’s neural population (Figure 6C).

Furthermore, we created a third dataset (Control) comprising 1000 episodes collected with the control policy trained in the Hand

Pose environment, where in each episode a new target pose is sampled from the training distribution (although the specific pose was

not observed during the training). Data extracted from the Control dataset are utilized in Figures 3A and 3B.

Finally, we created datasets comprising 1000 episodes using the policy resulting from the twelfth SDS curriculum step and the

policies trained on Hand Reach, Reorient and Pen. These datasets have been used to generate the plots in Figures 5 and S5.

In each dataset, we recorded the joint angles, the joint velocities and themuscle activationswith a frequency of 40Hz. Furthermore,

we recorded all the internal activations of the policy network, namely, the memory state and the output of the LSTM layer, and the

output of the two fully connected layers (Figure S1). We validated the size of the dataset verifying that the dimensionality of the joint

angle, joint velocity and muscle activation trajectories was stable when only using a subset of the data (Figure S4).
e3 Neuron 112, 3969–3983.e1–e5, December 4, 2024
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Estimation of the number of motor synergies
We analyze synergies as in previous works.43,44 The coordination between muscle activations, hand poses or hand velocities was

quantified via principal component analysis (PCA). The first principal components capture the (linear) basis that maximally explain

the variability of the dataset. We applied PCA on the hand poses, hand velocities and muscle activations of the episodes included

in the Baoding-SV, Control and other datasets. For the Baoding-SV dataset, we also analyzed how these quantities change when

considering the sub-dataset of episodes where the balls rotate in the same direction (Table 3). For consistency with Todorov and

Ghahramani,3 we calculated the number of degrees of freedom by averaging the number of principal components necessary to

achieve an explained variance higher than 85% and 95%. The same steps were applied to the Control dataset, to estimate the motor

synergies emerging from free hand motion (target pose reaching).

Control subspace inactivation (CSI)
Control subspace inactivation (Figure 4A) is a procedure to evaluate the impact that removing certain muscle synergies has on the

task performance. Given a policy p : RN/RM, N being the size of the observation space and M the size of the action space, we

consider an orthogonal matrix W ˛RM3M, whose columns wi; i = 1;.;M; define an orthonormal basis of the action space (in this

paper, the space of all the possible muscle activations). Given an observation o˛RN, the policy returns a muscle activation pattern

a = pðoÞ˛RM. Control subspace inactivation modifies themuscle activation before it is transmitted to the physics simulator, select-

ing a subset I of the indices of the basis vectors wi, whose contribution to the control signal is removed. The resulting activation

pattern is

~a =
X

i˛ f1;.;Mg\S
Ca;wiDwi; (Equation 2)

where C$; $D indicates the canonical inner product of RM. A reward and a new observation are then returned by the environment, ac-

cording to the transition dynamics of the POMDP. In the experiments illustrated in Figures 4B, 5C, 5F, and S5, control subspace inac-

tivation used the orthonormal basis defined by the principal components extracted by one of the datasets of this paper, inactivating

components in order of importance.When all the components are inactivated (left most point in the plots), the performance is 0, since

a constant action is applied at all times. When no component is inactivated (right most point in the plots), the full task performance is

recovered.

Decoding the rotation direction from the PCs of the hand pose
We assessed whether progressively less important principal components retain information about the rotation direction by decoding

it via logistic regression. To this end, we considered four different subsets of three principal components of the hand pose, extracted

from the Baoding-SV dataset (Figure 4B). One data point of the training dataset consisted in a flattened vector of three principal com-

ponents of the pose for all the 200 time steps of one episode (600 features in total). Themean accuracywas obtained by averaging the

logistic regression score via 5-fold cross validation on random shuffles of the Baoding-SV dataset. We used the Python library Scikit-

Learn.73

Time-dependent importance of the PCs
The relative importance of the PCs of the hand pose and of themuscle activations varies throughout the rotation of the Baoding balls.

To visualize the point at which each component is more relevant, we considered the subset of the Baoding-SV dataset featuring

clockwise rotations and averaged the hand poses and the actions. In this way we obtained the average hand pose and muscle acti-

vation across episodes at each time step. For clearer visualization, these coefficients were then rescaled between � 1 and 1 (Fig-

ure 2B). A full rotation of the Baoding balls corresponds to two periods in the hand pose and muscle dynamics, which are evident in

several principal components. In fact, approximately the same PCs swap the first and the second ball and vice versa, to complete a

rotation. The re-utilization of PCs is indicative that the RL policy has achieved appropriate generalization capabilities: if the identity of

the balls is ignored in the input (which is irrelevant for task performance), the states at the beginning of the first and second half of the

cycle are similar, so the PCs that achieve the desired goal should also be similar.

Visualization of the network activations
We embedded the observations, the actions and the network activations into a 3-dimensional space using UniformManifold Approx-

imation Projection (UMAP).78 Each point of the graphs of Figure 6A corresponds to a single time step.

Tangling of the population activity at variable depth
We quantified the tangling of the observations, actions and population activity of each layer of the SDS policy (Figures 6A and 6B)

employing a metric introduced by Russo et al.30 They propose to measure the time-dependent tangling of a trajectory x : R/ Rd

with the scalar function QðtÞ, defined as

QðtÞ = max
t0

k _xðtÞ � _xðt0Þk2
kxðtÞ � xðt0Þk2+ε ; (Equation 3)
Neuron 112, 3969–3983.e1–e5, December 4, 2024 e4
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where _xðtÞ is temporal derivative of the trajectory, while ε is a small constant such that division by 0 is avoided (ε = 10� 10 in our anal-

ysis). The tangling was computed on a lower-dimensional projection of the signal (8 dimensions), obtained via PCA like in Russo

et al.30 A single value per plot (Q value in Figure 6A) is computed by averaging QðtÞ over M trajectories and N = 200 time steps:

Q =
1

MN

XM
i = 1

XN
j = 0

Qmi
ðtjÞ: (Equation 4)

We also report Q values per trial (episode) by averaging across N = 200 time steps (Figure 6B).

Decoding the environment variables from the population activity
Some unobservable (i.e., not part of the observation provided to the agent) parameters of the environment, such as the mass of the

balls, have an impact on the dynamics of the environment and thus on the task performance. Such parameters are encoded with

variable accuracy in the population activity of the different layers of the SDS policy. Using the Baoding-LV dataset, we computed

the encoding score of each environment parameter proportionally to how well such parameter could be linearly decoded from

each layer of the policy network (Figure 6C). For continuous parameters (Mass, Size, Friction, Radius, Joint Positions, Joint Velocities)

we considered the coefficient of determination R2 of a linear regression, while for the only categorical parameter (Task) we consid-

ered the mean accuracy of a logistic regression. To compute robust scores and estimate their variability, we used 5-fold cross vali-

dation on random shuffles of the Baoding-LV dataset, using the Python library Scikit-Learn.73
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