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Week 3 - Exercises on Bayesian Perception - Solutions

The brain needs to integrate multiple sensory streams to obtain a representation about of the world.
As we saw in today’s lecture, a typical example is the integration of haptic and visual feedback.
Furthermore, inference is also important for motor control and learning. Bayesian statistics offers a
theoretical framework to interpret how humans and animals solve the sensory integration problem.
Overall, the goal of today’s exercise is to:

• Learn to derive step-by-step the rule used by a decision making system to fuse different
sensory information, according to the Bayesian interpretation.

• Compare the Bayesian and the maximum likelihood interpretation of sensory integration.

• Find the minimum variance weighted average of the sensory inputs.

Exercise 1.1 - Integration of two sensory channels

Let us consider the two Gaussian random variables t and v, corresponding to the (noisy)
estimation of the width w of an object through tactile and visual feedback. We assume that
the two variables are independent, and that they are distributed according to the following
conditional density function:

p(t|w) = 1√
2πσ2

t

exp

(
− (w − t)2

2σ2
t

)
p(v|w) = 1√

2πσ2
v

exp

(
− (w − v)2

2σ2
v

) (1)

Show that, assuming a flat prior distribution p(w), the posterior is proportional to the product
of the likelihoods, i.e.,

p(w|t, v) ∝ p(t|w)p(v|w) (2)

Solution:
p(w|t, v) = p(t, v|w)p(w)

p(t, v)
=

p(t|w)p(v|w)p(w)
p(t, v)

∝ p(t|w)p(v|w) (3)

In the first step we used the Bayes rule, in the second the independence of t and v, in the third that
p(w) is uniform and that p(t, v) does not depend on w.

Exercise 1.2

Re-write the analytical expression of p(t|w)p(v|w) to show that it is the density function of a
Gaussian distribution of variable w (up to a normalization coefficient independent of w).
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Solution: Simply complete the square:

p(t|w)p(v|w) = C exp

(
− (w − t)2

2σ2
t

− (w − v)2

2σ2
v

)
= C exp

(
− (σ2

v + σ2
t )w

2 − 2(σ2
vt+ σ2

t v)w + σ2
vt

2 + σ2
t v

2

2σ2
t σ

2
v

)

= C exp

−
w2 − 2

σ2
vt+σ2

t v

σ2
v+σ2

t
w +K

2
σ2
tσ

2
v

σ2
t+σ2

v


(4)

Here, C and K indicate two terms not depending on w. The values of the two constants must be
such that the numerator of the exponential is a square and that the integral of the density amounts
to one, but their actual expression is irrelevant for the rest of the exercise.

Exercise 1.3

Given the density function derived in Exercise 1.2, extract the mean µw and the variance
σ2
w of w as a function of t, v, σt and σv, and show that µw is the weighted average of t and

v, with weights proportional to the inverse of their variance.

Solution:
In the expression found in Exercise 1.2 we just need the coefficient of w at the numerator of the

exponential to find µw and the denominator to find σ2
w. In fact, in a Gaussian distribution, we have:

p(x) =
1√
2πσ2

exp

(
−x2 − 2µx+ µ2

2σ2

)
(5)

It follows that:

−2µw = −2
σ2
vt+ σ2

t v

σ2
v + σ2

t

(6)

and

2σ2
w = 2

σ2
t σ

2
v

σ2
t + σ2

v

(7)

from which we have

µw =
σ2
vt+ σ2

t v

σ2
v + σ2

t

=

(
1

σ2
v

+
1

σ2
t

)−1(
1

σ2
t

t+
1

σ2
v

v

)
(8)

and

σ2
w =

σ2
t σ

2
v

σ2
t + σ2

v

=

(
1

σ2
v

+
1

σ2
t

)−1

(9)

Exercise 1.4

Show that the variance of W is smaller than both the variance of V and of the variance of
T , for any value of σt > 0 and σv > 0.
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Solution: We show this fact for σt, but the procedure is identical for σv. We write the claim and we
prove that it can be reduced to a true inequality:

σ2
t >

σ2
vσ

2
t

σ2
t + σ2

v

⇔ σ4
t + σ2

t σ
2
v − σ2

t σ
2
v

σ2
t + σ2

v

> 0 ⇔σ4
t > 0 ⇔ σt ̸= 0 (10)

which is true by assumption.

Exercise 2.1 - Extension to multiple sensory channels

Consider a new estimator u of w, through another sensory input (or sensor), independent
of v and t, and also following a Gaussian distribution:

p(u|w) = 1√
2πσ2

u

exp

(
− (w − u)2

2σ2
u

)
(11)

Write the new expression of µw and σ2
w.

Solution: Without repeating all the computation, we observe that the old estimation of µw̃ is also
distributed as a Gaussian, with mean and variance derived in Exercise 1.3. Therefore, the new
variance of the estimator is given by:

σ2
w =

(
1

σ2
w̃

+
1

σ2
u

)−1

=

(
1

σ2
t

+
1

σ2
v

+
1

σ2
u

)−1

(12)

Similarly,

µw =

(
1

σ2
w̃

+
1

σ2
u

)−1(
1

σ2
w̃

µw̃ +
1

σ2
u

u

)
=

(
1

σ2
t

+
1

σ2
v

+
1

σ2
u

)−1
((

1

σ2
t

+
1

σ2
v

)(
1

σ2
t

+
1

σ2
v

)−1(
1

σ2
t

t+
1

σ2
v

v

)
+

1

σ2
u

u

)

=

(
1

σ2
t

+
1

σ2
v

+
1

σ2
u

)−1(
1

σ2
t

t+
1

σ2
v

v +
1

σ2
u

u

)
(13)

Exercise 2.2

Provide the expression of µw and σ2
w given an arbitrary number N of independent Gaussian

estimators t1, ..., tN , normally distributed with mean w and variance σi, i = 1, ..., N .

Solution: The proof of the induction step is the same as the proof of 2.1. Without rewriting all the
details, we can conclude that N estimators lead to the following expressions:

σ2
w =

(
N∑
i=1

1

σ2
i

)−1

and µw =

(
N∑
i=1

1

σ2
i

)−1( N∑
i=1

1

σ2
i

ti

)
(14)
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Exercise 3.1 - Maximum likelihood approach

Let us now consider the problem of multisensory integration from a different point of view.
Instead of the Bayesian approach, we want to estimate w through maximum likelihood.
Consider the conditional distributions p(v|w) and p(t|w) as before and compute the maxi-
mum likelihood estimator for µw. Derive the variance of such estimator and show that you
retrieve the same result as in Exercise 1.3. Can the variance of an unbiased estimator of
µw be lower than the value you have found?

Solution:

L(w) = p(t|w)p(v|w) = C exp

(
− (t− w)2

2σ2
t

− (v − w)2

2σ2
v

)
d

dw
L(w) = C

(
− t− w

σ2
t

− v − w

σ2
v

)
exp

(
− (t− w)2

2σ2
t

− (v − w)2

2σ2
v

)
= 0 ⇔

− σ2
vt+ σ2

vw − σ2
t v + σ2

tw = 0 ⇔

w =
σ2
v

σ2
t + σ2

v

t+
σ2
t

σ2
t + σ2

v

v

(15)

With simple manipulation it is possible to show that we have obtained the same estimator for
the parameter w, and its variance corresponds to σw as found before. It is the minimum variance
for an unbiased estimator, as it is at the Cramer-Rao limit (you can verify that the inverse of the
variance is the sum of the Fisher information of v and t, as shown in the lecture).

Exercise 3.2

In the derivation through maximum likelihood, we have implicitly assumed that all the infor-
mation about w is provided by v and t. How was this hypothesis included in the Bayesian
multisensory integration?

Solution: In the Bayesian formulation we had assumed a flat prior for w, which is equivalent to
assigning an equal probabilty to every value.

Exercise 4.1 - Minimum variance weighted average

We consider once again the problem of sensory integration from a different point of view.
Let us consider a weighted sum of noisy ”measurements” of w, defined as W =

∑N
i=1 αiTi,

in which the index i indicates a sensory channel. The measurements ti are independent
random variables for Ti with mean w and variance σ2

i , i = 1, ..., N . First, show that the
necessary and sufficient condition for W to be unbiased is that

∑N
i αi = 1. Second, use

the technique of the Lagrange multiplier to show that the coefficients αi are the ones found
in Exercise 2.2.

Solution: First we show that
∑N

i=1 αi = 1. We just need to compute the expected value of W :

Ew[W ] = E[
N∑
i=1

αiTi] =

N∑
i=1

αiE[Ti] = w

N∑
i=1

αi (16)
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which is equal to w if and only if
∑N

i=1 αi = 1. We can therefore cast the minimization problem as:

Minimize V[W ] =

N∑
i=1

α2
iσ

2
i subject to

N∑
i=1

αi = 1 (17)

This problem can be solved minimizing the Lagrangian

L(α0, ..., αN ) =

N∑
i=1

α2
iσ

2
i − α0

(
N∑
i=1

αi − 1

)
(18)

We compute the partial derivatives w.r.t. αk, k = 1, ..., N :

∂

∂αk
L = 2αkσ

2
k − α0 = 0 (19)

which implies that αk = α0

2σ2
k

. As we have that
∑N

i=1 αi = 1:

N∑
i=1

α0

2σ2
i

= 1 ⇒ α0 = 2

(
N∑
i=1

1

σ2
i

)−1

⇒ αk =

(
N∑
i=1

1

σi

)−1

1

σ2
k

(20)
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