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Week 1 - Neural code and Fisher information

The goal of the first week is to:
+ Get familiar with the Fisher information and its application to neuronal tuning

» Compute the Fisher information for a single neuron and population of neurons with unimodal
tuning curves

+ Understand the scaling rules for neuronal tuning width

1 Welcome to NX-414: some notes on organization

A note on formatting

We will provide additional pointers and materials (also from the lectures) in the problem
sets. To make clear which parts are actually exercises that you should work on, we put
them as blue boxes.

2 Fisher information

When studying parameter estimation problems, we obtain information about the parameter from a
sample of data coming from the underlying probability distribution. We wonder how much informa-
tion can a sample of data provide about the unknown parameter. Fisher information is a measure
of the amount of information that an observable random variable X carries about an unknown
parameter 6.

We consider a random variable X for which the probability density function (pdf) or probability
mass function (pmf) is P(z|f), where 6 is an unknown parameter and 6§ € ©, where O is the
parameter space. We define L(6|z) = log P(z|#) as a log-likelihood function, therefore:
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Intuitively, if an event has small probability, then the occurrence of this event brings us much

information. For example, if P is sharply peaked with respect to changes in 6, it is easy to indicate

the “correct” value of 6 from the data, or equivalently, that the data X provides a lot of information

about the parameter 6. If P is flat and spread-out, then it would take many samples of X to estimate
the actual "true” value of 8 that would be obtained using the entire population being sampled.

Below, we present three methods to calculate Fisher information.

Fisher information (for 6) contained in a random variable X is defined as:

1(0) = Ex (jawm)z -/ (gelomP(xw»)QP(mmczx @)
1(6) = Vary [(%K(HX)] 3)
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We remark that the expected values and the variance listed in (2), (3) and (4) are computed
with respect to X (in fact, 8 is a parameter and not a random variable). In the rest of the document,
we indicate random variables with capital letters.

Suppose a random variable K has a Bernoulli distribution for which the parameter 6 is
unknown (0 < 6 < 1). Find the Fisher information 1(0) in K.

Solution:
P(k|0) = {f_ ) :::} where 0 < 6 < 1 (5)

P(k|0) = 0F(1 — )1 =R (6)

log(P(k|0)) = klog(0) + (1 — k) log(1 — 0) 7)

dlog(P(kl0) k 1-k k-0

a0 6 1-0 6(1-0)
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Suppose a random variable X has a Gaussian distribution for which p is unknown, but the
value of o2 is given. Find the Fisher information I(x) in X.

Solution:

Plal) =~ exp (; (5*) ) (10)
T — )2
log((P(z|p) = félog(27m2) ¢ 20;‘) (11)
dlog(P(z|p)) = —p
=" (12)
I(s) =E {(X;f‘) ] = VarlX] =% =5 (13)
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Suppose a random variable K has a Poisson distribution for which the mean 6 is unknown
(0 > 0). Find the Fisher information I(6) in K.

Solution:
P(k|A) = Ak}jﬁ (14)
log(P(k|X\)) = klog(A\) — A — log(k!) (15)
Olog(P(k[N)) Kk
— . ! (16)
2 2
IV =E (W;W) _E <KAA> ] _ ;21/@7«[;(} -5 (17)

3 Fisher information of a Poisson neuron with a Gaussian tun-
ing curve

Compute the Fisher information for a Poisson neuron with Gaussian tuning curve in 1D.
More details are given below. The number of spikes K emitted by a certain neuron in a
fixed interval is a random variable approximately following a Poisson probability distribution:

k
Pe(k1e) = 2OV oy (- x(0) (18)
where \(0) indicates the average number of spikes emitted by the neuron and is a function
of the encoded variable 8 € RP2. For example, if the firing rate of the neuron depends on
the location of the animal in space, 6 would include, among others, the Cartesian coordi-
nates of the animal. For the first part of the exercise, we assume that x is a scalar value
(i.e. D =1) and that \() has the following expression:

(6 — p)*
A0 = furesp (-2 (19)
where 1 is the value of 6 at which the spiking probability is maximum (sometimes called
preferred stimulus), o is a measure of how concentrated the firing probability is around ,
and fy, is the average number of spikes emitted when 6 = . Overall, A follows a rescaled
Gaussian distribution.

Comcrj)ute the expressions of 2120 ang 20 a5 functions of § and of the parameters 1,
oand fy

4In neuroscience publications the variable 6 is often indicated as x. Here we use 6 for consistency with our
previous notation and with the statistics literature.
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Solution: 0 )2
— K
log(A(0)) = — 572 +C (20)
where C is constant with respect to 6.
dlog(A(®) _ 0 —p
00 T g2 (21)
o) _ (0 —p)? 0—p\ _ 0 —p
00 Furexp < 202 o2 ) A6) o2 (22)

Use the expressions computed at the previous point to find the Fisher information () in
the number of spikes K emitted by a single neuron. Report the result as a function of the
variable 6.4

aHint: the variance of a Poisson distribution with parameter X is A. It might be convenient to isolate the
expression of the variance of a Poisson random variable to easily compute the expectation in the definition of the
Fisher information).

Solution: We want to compute the information that the observable random variable representing
the number of spikes emitted by the neuron (in this solution we call such random variable K) carries
about the unknown parameter 6. K is distributed as a Poisson of parameter \(6), therefore it
depends on 6 through its parameter \. For this purpose, we use the definition of Fisher information
and the derivatives computed at the previous point:

(810gP(K|9)>2

1(0) =E 5 =E

2
Q;um%uw»—mm—bme)]:

E KK‘)“ +)\(9)0M)2] _0-—wty [(fo(a))r"] - M/\(a)

(23)

o2 o2 ot o4

where in the last step we have used the fact that K is a Poisson of parameter \(6), whose variance
is in fact A(6).

| Berse2s

We now want to compute the average Fisher information across multiple neurons. For sim-
plicity, we assume that the activities of all neurons are independent from each other, that all
neurons have identical tuning parameters and that their tuning centers p are distributed with
constant density 7 in the space of the encoded variables R”. Under these assumptions,
the Fisher information can be computed with the following integral:

+oo
1=n [ L) (24)

— 00

Compute the Fisher Information I as a function of the parameters 7, f); and ¢.2

aHint: remember that X follows a rescaled Gaussian distribution. You might find it convenient to manipulate the
integral as to isolate the expression of the variance of a Gaussian distribution of mean x and variance o2.
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Solution:
+oo +oo (9 o ’u)2 +oo (9 _ /~L)2 (9 _ ’u)2
10 =n [ n@di=n [0 d=n [ O e (<O Y=
V21 [T 1 —u)? V2
77fMS m 0 — p)? exp (_(9 g) )dﬂz nfmv2m
o —c0 27w o2 20 o

(25)
In the last step we used the fact that the integral is the expression of the variance of a Gaussian
distribution with mean # and variance o2.

Let's now consider a multi-dimensional encoded variable space (D > 1). In this case,
0, u € RP. We consider the following tuning curve for \:

2
Y G g — (—”9"”) (26)

202
where we have assumed that the average number of spikes emitted by the neuron depends
on D independent encoded variables with the same variance. With the same assumptions
as in the case D = 1, compute the Fisher information matrix for whole neural population,
knowing that the element (4, j) of the Fisher information matrix as a function of the encoded
variable 0 is defined as:
0log(P(K|0) Olog(P(K|0)

I;;(0) =E 27
where K is the random variable associated to the number of spikes emitted by a single
neuron.

Does the result reflect the findings by Zhang and Sejnowksi (Neural Computation, 1999)
about the relation between tuning width and Fisher information, also reported in the lesson
slides?

Solution: Proceeding similarly to the case D = 1, we have

o - LRI - (3) (%5

- () (5)

we now need to integrate such function of 8 over the whole space R”, again, under the as-
sumption of constant density . We perform the following partial computation:

(28)

/Rexp (W) = JMA \/2177@@ ((920’;)2> = oV2r (29)

where we used the fact that the integral of a density function over its support is 1. We then observe

that:
/R(@i — i) exp (—W> = U\/%/R(@ - Ui)\/zi_? exp (— (& Q_J/;i)2> =0 (30)
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Here we used the fact that the integral computes the mean of a Gaussian distribution with mean
equal to 0. Finally:

/R(@ — pi)* exp (-W) ZU\/%/R(& —Ni)Q#eXp (—W> =o3V2r  (31)

202 29702 202

where we used the fact that the integral is the variance of a Gaussian distribution with variance o?2.

Therefore:
0; — 1 0; — 1;
Iij=n/ Iij(@)du1-~-duD=77/ /\(0)( 2” ) ( J Q'uJ) duy -+ dup
RD RD g o
na 16 — p?
= /]RD (0 — ps) (05 — pz) exp (—%2 dur -+ dup (32)

_ 0 0 s (zr — p)? d d
=T RD(i_Ui)(j—,uj)HQXp — ) d - duo
k=1

In the last step we simply manipulated the exponential function, using the definition of norm. We
can observe that the integrand is the product of functions depending on one of the integration
variables each, so it can be solved as the product of D integrals in one dimension. When i # j,
then the product is 0, as the integral along both ¢; and §; is 0 (Eq. 30). When ¢ = j, then the integral
in all directions but p; is given by Eq. 29, while in direction ; it is given by Eq. 31. Therefore, we
have:

L = %wmw—lﬁm = nfar(2m)P 2P (33)

independently of the index i. The Fisher information matrix is thus I = nfy (27)P/2¢P 21,
where I is the identity matrix.
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