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What is a 2D material?

« Graphene as an example:

 Best electrical conductor (RT mobility 100.000 cm2/Vs)

« Strongest material (Stength 130 GPa)
« Exceptional heat conductor (2000 W/mK)

« Almost transparent (absorbance 2%)

« Light weight and flexible (Stretchability (20%))

« Unique physics

» Electrons behave as massless particles

 Klein tunneling

» Half-integer quantum Hall effect
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2DLM and van der Waals heterostructures
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Van der Waals heterostructures and devices. Nature Reviews Materials, 2016.



Motivation and challenges

» Control
» Generation
* Transportation
 Recombination

* Unique electronic and photo-electronic devices
 Ultrathin
« High power

« Straintronics -

 Challenge

« Scalable synthesis



Conventional vs van der Waals epitaxy
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Lateral and Vertical heterostructures
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Assembly Techniques



Assembly of 2D materials and heterostructures

Mechanically-assembled stacks

* Various assembly techniques
* Their Comparison
 Stacking with a twist
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K. S. Novoselov et. al., Science (2016), 353, 6298



Mechanical exfoliation

* "First demonstration of graphene in 2004

* Yields highest quality material

« Scalability is an issue (quantity and size of flakes)
* Nevertheless, fundamental studies

Optical __

K. S. Novoselov et. al., PNAS (2005), 102 (30) 10451-10453

Another example:

Micromechanical cleavage: A fresh surface
of layered crystal rubbed against another
solid surface

*K. S. Novoselov et. al. Science (2004), 666-669



PMMA carrying layer transfer
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PDMS deterministic transfer method
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van der Waals pick-up method
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Comparison of various techniques

Table 1 Comparison between the different deterministic placement methods. Qualitative comparison in terms of cleanness, easiness and speed
between the different deterministic placement methods described in the text. Comments about their main drawbacks are also included in the table

Method Cleanness Easiness Speed Notes
PMMA carrier layer e i i Spin-coating is needed, direct contact with polymer, it can transfer large-area flakes.
Elvacite sacrificial layer * b e Capillary forces, spin-coating is needed, direct contact with polymer.
Wedging o i i Capillary forces, dip-coating is needed, difficult alignment, direct contact
with polymer, transfer over curved or uneven surfaces is possible.
CPDMS dry transfer > el Sk **#xx*  Direct contact with polymer.
van der Waals pick-up = ***** N i Spin-coating is needed, several steps involved, only works to transfer

heterostructures, direct contact with the polymer only for the topmost layer.

Frisenda R. et. al. Chem.Soc.Rev.,2018,47,53--68



Transfer setups in the lab

(a) - Digital camera

.
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Frisenda R. et. al. Chem.Soc.Rev.,2018,47,53--68



CVD growth

« Growth of individual layers
« Different deposition conditions for different layers

H WSe, 2"‘:“’“' e % e e o . MoS,growth
at 950 °C ; & A 0 " at 750 °C

Epitaxia; (I';‘raphene.\msz - WSe, growth
at 750 °C E——

K. S. Novoselov et. al., Science (2016), 353, 6298



Example of a wafer-scale technique

a b

Wafer-scale growth of MoS, on
7.62 cm - sapphire substrate PDMS/MoS, on sapphire substrate

Complete dry-transfer of MoS,
on SiN, wafer

Water-assisted lift-off process

Thakur, M. et. al., Small Methods 2020, 2000072.



Example heterostructure: Multilayer stacks

MoS,-WSe,

BN-graphene stacks

Intensity
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Liu, Y., Weiss, N., Duan, X. et al. Nat Rev Mater 1, 16042 (2016).
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Control of twist angle

BN
raphene

* One layer is rotated w.r.t. another

* New control knob
* Removes symmetry restrictions (imposed by thermodynamic stacking)

 Fabrication using variation of vdW pick-up method

Frisenda R. et. al. Chem.Soc.Rev.,2018,47,53--68



Twistronics

Moiré pattern in graphene
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« Hosts exotic Moiré physics
* Quantum tunnelling of electrons between layers C}Q
« Emergence of superconductivity o
. : ” Band structure in twisted
» “Magic angle” (1.1°) bilayer graphene

1. Liu, Y., Weiss, N., Duan, X. et al. Nat Rev Mater 1, 16042 (2016).
2. Georgios A Tritsaris et al 2020 2D Mater.7 035028



Some examples of 2D
heterostructures



A quick
overview

2D heterostructures and applications.

Heterojunction type Layer structure Application Device performance Ref
Semi-metal/ Graphene/MoS,; DNA biosensor Detection DNA concentration 1 atto mole Loan et al. [60].
semiconductor Graphene/WS, Solar cells Power conversion efficiency 3.3% Shanmugam et al. [67]
Graphene/WS,/graphene/ Vertical FETs ON/OFF ratio =1 x 10° Georgiou et al. [75]
h-BN
Graphene/MoS, Vertical FETs Current density 5000 A cm ? Yu et al. [76]
ON/OFF ratio =10°
Graphene/MoS, Vertical FETs Current density ~ 10* Acm ? Moriya et al. [77]
ONJ/OFF ratio ~10°
Graphene/h-BN/MoS,/ FETs Electron mobility ~33 cm?/V s. Roy et al. [68]
graphene ON/OFF current ratio =10°
Graphene/MoS,/graphene Photodetector External gquantum efficiency 55% Yu et al. [80]
Internal quantum efficiency 85%
Photoresponsivity 0.22 A/W
Graphene/WS,/graphene Photodetector External gquantum efficiency ~30% Britenall et al. [79]
Photoresponsivity 0.1 A/W
Graphene/MoS: Photodetector Photogain =10" Zhang et al. [89]
Internal quantum efficiency ~15%
Photoresponsivity =107 A/W
Graphene/MoS, Photodetector Gain ~5-10 x 10" Roy et al. [90]
Quantum effidency ~32%
Photoresponsivity 1 x 10" A/W at
130K, 5 x 10* A/W at room temperature
Graphene/h-BN/MoS,(WS,)/ Electroluminescence Extrinsic quantum efficiency ~10% Withers et al. [88]
h-BN/graphene
Semi-metal/insulator Graphene/h-BN FETs Mobility 60,000 cm’/V s Dean et al. [42]
h-BN/Gra./h-BN/Gra./h-BN; Vertical FET B/G/B/G/B: ON/OFF ratio 50 Britnell et al. [74]
h-BN/Gra/MoS,/Gra./h-BN B/G/M/G/B: ON/OFF ratio 1 x 10*
Graphene/h-BN/graphene Thermoelectrical Seebeck coefficient - 99.3 pV/K Chen et al. [92]
power ZT=1.05x10 ¢
Semiconductor/ WSe,/MoS, Solar cells Power conversion efficiency 0.2% Furchi et al. [63]
semiconductor External quantum efficiency 1.5%
p-WSe,/n-WSe, CMOS Full logic swing voltage gain up to 38 Yu et al. [76]
p-MoSz/n-MoS; Solar cells Power conversion efficiency 2.8% Wi et al. [65]
MoS,/p-Si Solar cells Power conversion efficiency 5.23% Tsai et al. [66]
WSe,/MoS, Solar cells Photoresponsivity is ~2 mAW ' Lee et al. [64]
Gra/WSez/MoS;/Gra. Photoresponsivity is ~10 mAW !
External quantum efficiency 2.4%,
12% and 34% for monolayer,
bilayer and multi-layer TMDs
WSe,/MoS, p-n diode Current rectification factor 1.2 Cheng et al. [81]
Photodetector External gquantum efficiency 12%
Electroluminescence
Black phosphorus/MoS; p-n diode Current rectification factor 10° Deng et al. [82]
Photodetector External guantum efficiency 03%
Photoresponsivity 418 mA/W
MoS,/WS, Charge transfer Ultrafast hole transfer time <50 fs. Hong et al. [93]
WS,/MoS, Solar cells Open-loop voltage 0.12V Gong et al. [49]
Close-loop current 5.7 pA
WSe, /WS, Solar cells Open-loop voltage ~047V Duan et al. [53]
Close loop current ~1.2 nA
WSe2/MoS2 Solar cells Open-loop voltage ~022V Li et al. [55]
Close loop current ~7.7 pA
WSe2/MoSe2 Solar cells Power conversion efficiency 0.12% Gong et al. [56]
MoS,/p Ge Band to-band Subthreshold swing minimum of Sarkar et al. [/78]
tunneling FET 3.9 mV/decade, average 31.1 mV/decade
MoS2/p-Si Solar cells External gquantum efficiency 4% Lopez Sanchez et al. [83]
Electroluminescence
Semiconductor/ MoS,/h-BN/graphene FETs Mobility =45 cm’/V s Lee et al. [94]

insulator

ON/OFF ratio 10*-10°

10.1016/j.matto
d.2015.11.003



Example 1a: High quality substrate

e SIO2 is an inferior substrate for

graphene Graphenelfil

SiO2




Example 1a: High quality substrate

e SIO2 is an inferior substrate for

graphene Grapheneffiil .

 Solution: few layers of h-BN as

SiO2
substrate

Graphene
h-BN

SiO2




Example 1a: High quality substrate _

White dashed region_ i it '
corresponds to '

* SiO2 is an inferior substrate for graphene  gzpheneontopof
« Solution: few layers of h-BN as substrate
« Structures assembled by exfoliation Eloctrodes for

transport
measurement

Contact
Graphene
h-BN

SiO2

DOI: 10.1038/NNANO.2010.172



Example 1a: High quality substra | ,
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* SiO2 is an inferior substrate for graphene  gzpheneontopof
« Solution: few layers of h-BN as substrate
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Example 1b: High quality substrate (CVD)

» Challenge example 1a: size and
thickness

h-BN

Graphene.
|

SiO2




Example 1b: High quality substrate (CVD)

» Challenge example 1a: size and
thickness

 Solution: layer by layer growth H.BN

Graphene.
|

SiO2




Example 1b: High quality substrate (CVD)

» Layer 1
« High temperature and low pressure
* N-hexane precursor
« Growth of graphene on Cu foil

n-hexane molecule (PubChem)

LT A

vapor

Graphene

Copper

Graphene transferred to SiO2/Si stack

Graphene

Nano Lett. 2011, 11, 5, 2032—-2037



Example 1b: High quality substrate (CVD)

 Layer 2
« High temperature and low pressure
« Ammonia borane precursor h-BN
« Growth of h-BN on graphene Graphene

* Transfer to SiO2/Si substrate

H H

H e |\\| g B/' il H
{ \
H H

Ammonia borane (wikipedia)

Nano Lett. 2011, 11, 5, 2032-2037



Example 1b: High quality substrate (CVD)

 Final results

Graphene
h-BN

SiO2

Nano Lett. 2011, 11, 5, 2032-2037



Example 1c: High quality substrate (MBE)

Graphene

e Challenge example 1b: low performance h-BN

of graphene

« Solution: van der Waal epitaxy of
heterostructures

« hBN exfoliation and transfer to SiO2/Si

L

« Graphene grown on hBN flakes
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Example 2: 2D heterostructure based
electronics

MoS2
» Challenge for atomic scale electronic WSez_ﬂ_

IS selective doping

 Solution: Vertically stacking separately
doped 2D layers

* Assembled using exfoliation and
transfer

SiO2

LRI

' "X\i‘gmfn‘w

Schematic
10.1021/n1502075




Example 2: 2D heterostructure based
electronics

PL mapping
of MoS2
* Results fake o
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Summary

* Introduction to 2D heterostructures
» Assembly techniques

« Some practical examples



