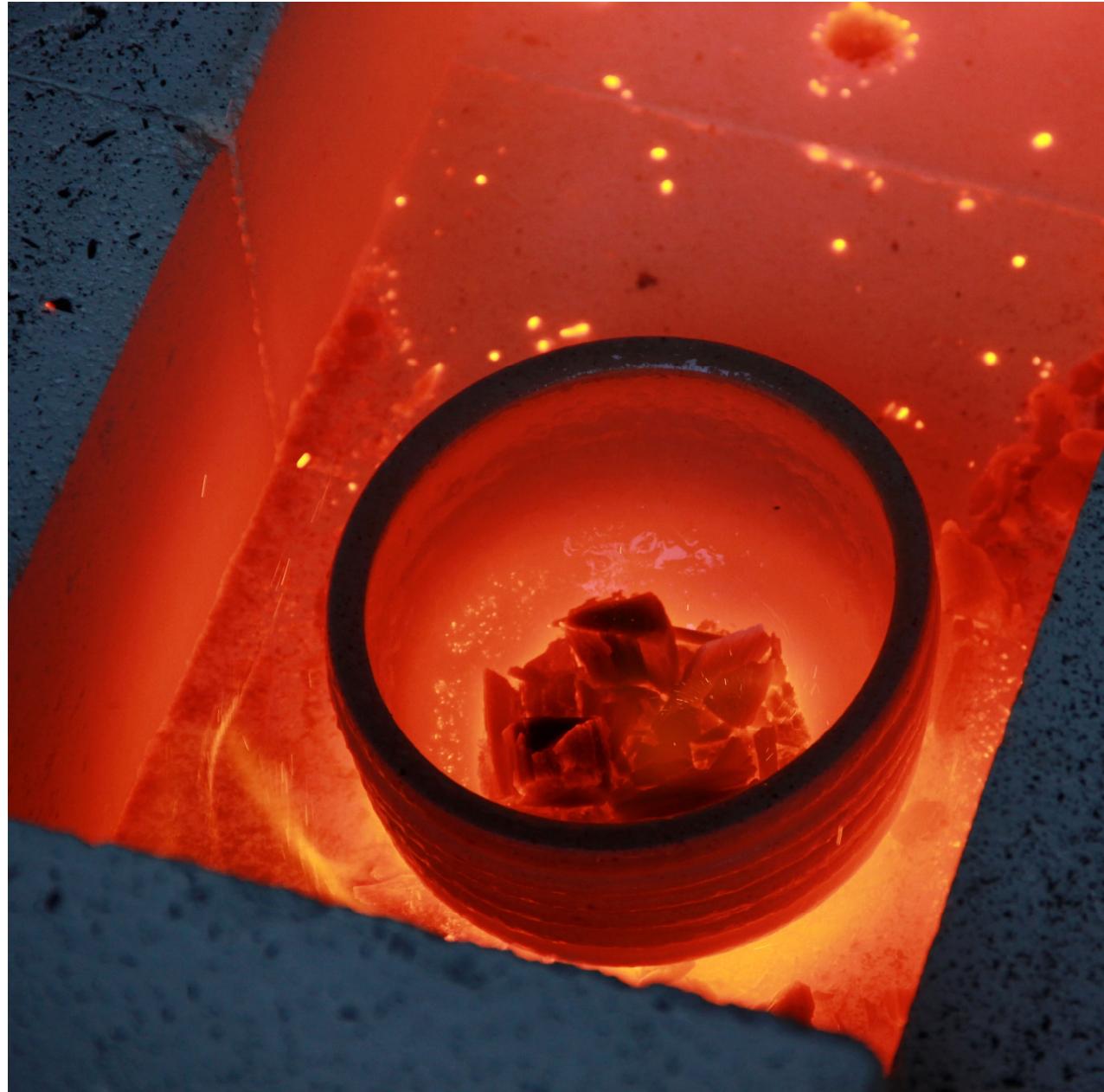


Sintering



*What's on the
- MENU -
today ?*

Outline

- ◆ Two major sintering classes
- ◆ Driving force for sintering
- ◆ Material transport mechanisms
- ◆ Grain growth mechanisms
- ◆ Microstructural control
- ◆ Sintering process analysis
 - Iso-density analysis
 - Master sintering curve

Learning objectives:

- ◆ Refresh sintering mechanisms and learn about the shortcoming of the Coble model
- ◆ Understand the grain growth mechanisms and how to modify grain growth during sintering
- ◆ Analysis of sintering

Sintering: Types, driving forces and mechanisms

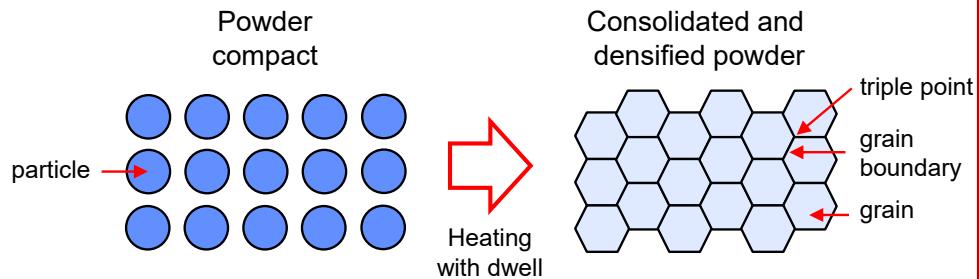
M. Stuer

General sintering aspects

- ◆ **Sintering:** Heat treatment leading to the **formation of solid bonds** between particles **without total melting**.

One distinguishes between **two sintering classes**:

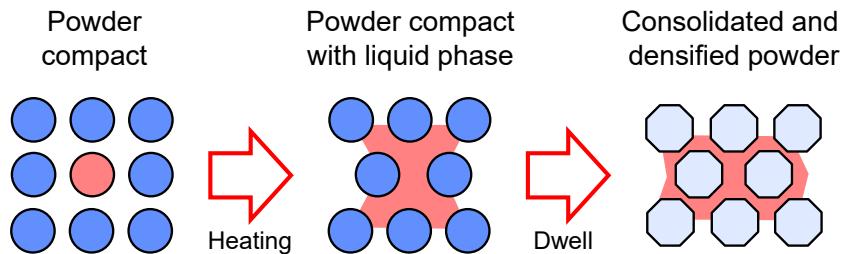
Solid state sintering



Temperatures **between 0.5 and 0.8 times** the fusion temperature of the material

Example: $\text{Al}_2\text{O}_3 \rightarrow T_{\text{fusion}}: 2072^\circ\text{C}$
 $\rightarrow T_{\text{sintering}}: 1500^\circ\text{C}$ ($=0.72 \cdot 2072^\circ\text{C}$)

Liquid state sintering



Temperatures **above T_g** (glass transition temperature) **or T_s** (solidus) of the material (here: red circle) intended to liquefy

Sintering driving forces

- ◆ Sintering **driving forces**:

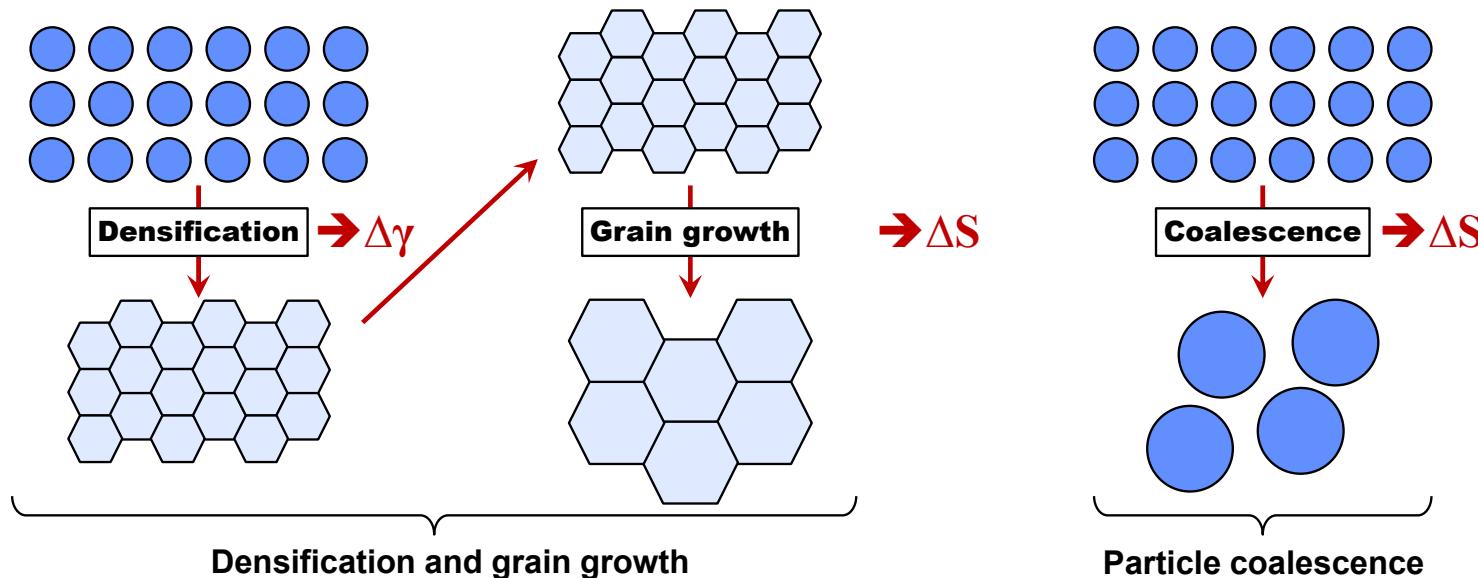
- **macroscopic**:

- **thermodynamic**:

Excess energy associated with the **solid-vapor surface**

Free energy reduction of the system by replacing solid-vapor with solid-solid interfaces and reduction of the **total interface area**

- ◆ **Mechanisms** reducing the excess interfacial energy:



Estimation of the surface energy in a green body

- ◆ Number of particles N with radius r in a green body having a mass equivalent to 1 mole of the material:

$$N = \frac{3M}{4\pi r^3 \rho} = \frac{3V_m}{4\pi r^3}$$

- M : molar mass
- ρ : density
- V_m : molar volume

- ◆ Surface area (solid-vapor) of the N particles in the green body:

$$S = (4\pi r^2) \cdot N = 3 \frac{V_m}{r}$$

- ◆ Total surface energy E_s of the particles in the green body:

$$E_s = S \cdot \gamma_{sv} = \frac{3V_m \gamma_{sv}}{r} \left[\frac{J}{mol} \right] \Rightarrow E_s \propto \frac{1}{r}$$

- γ_{sv} : solid-vapor surface energy

- ◆ Since the solid-solid interface energy is “low”, the **overall sintering driving force** can be approximated by:

$$E_s \approx \Delta E \text{ (corresponds to energy reduction of the system during sintering without grain growth)}$$

Liquid state sintering

M. Stuer

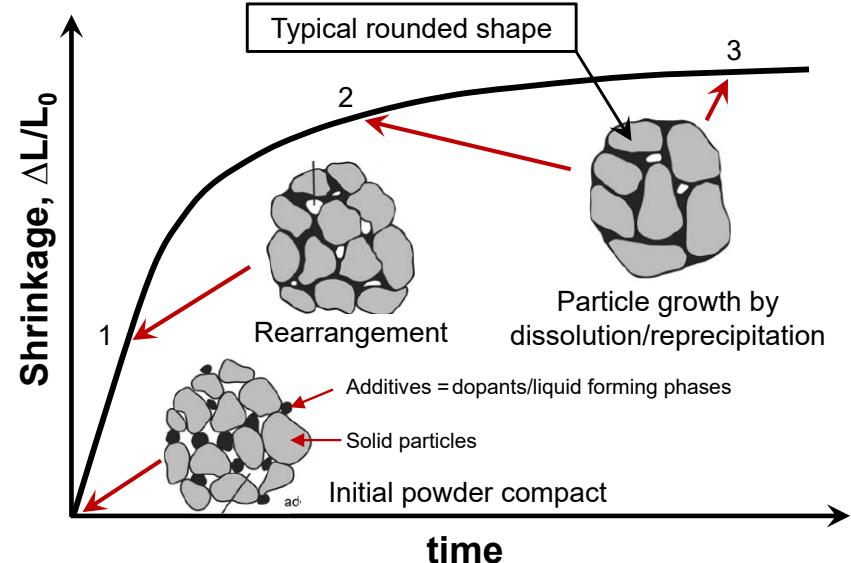
Liquid state sintering

◆ Principle:

- Sintering takes place under conditions where **solid grains coexist with a liquid**
→ The liquid needs to wet the solid!
- Upon cooling, **liquid solidifies** to produce a **composite microstructure**
- **Capillary forces** during sintering lead to high packing density of particles

◆ Stages (overlapping):

- Melting and redistribution of liquid leading to **rearrangement/compacting** of solid particles by capillary forces
- Densification and rounding of particles by **dissolution-reprecipitation**
- **Particle growth** by Ostwald ripening (c.f. Laplace's law) and residual porosity reduction



◆ Applications:

- Multiphase ceramics (ex. porcelain)
- Densification of materials that cannot or are difficult to be sintered:
 - WC/Co (eutectic @ 1310°C) → drilling/cutting tools
 - Si_3N_4 → bearing balls

solid state sintering

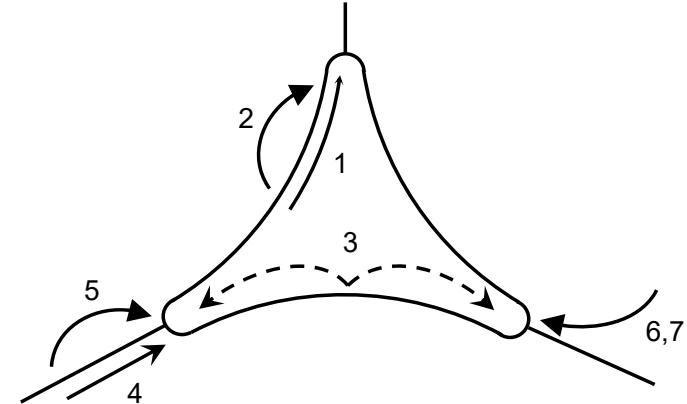
Mass transport mechanisms

M. Stuer

Mass transport mechanisms

- ◆ **Mass transport** during sintering takes place by:
 - **diffusion**
 - **plastic deformation** (under pressure)
- ◆ Diffusion may take place:
 - at the surface
 - at grain boundaries
 - within volume
- ◆ A distinction is made between consolidation and densification:
 - **Consolidation:** all sintering mechanisms are consolidating
 - **Densification:** only mechanisms with material **source** in the **volume** or at the **grain boundaries** are densifying (e.g. sintering shrinkage)

} **interfaces**



Mass transport mechanisms

Consolidating but not densifying:

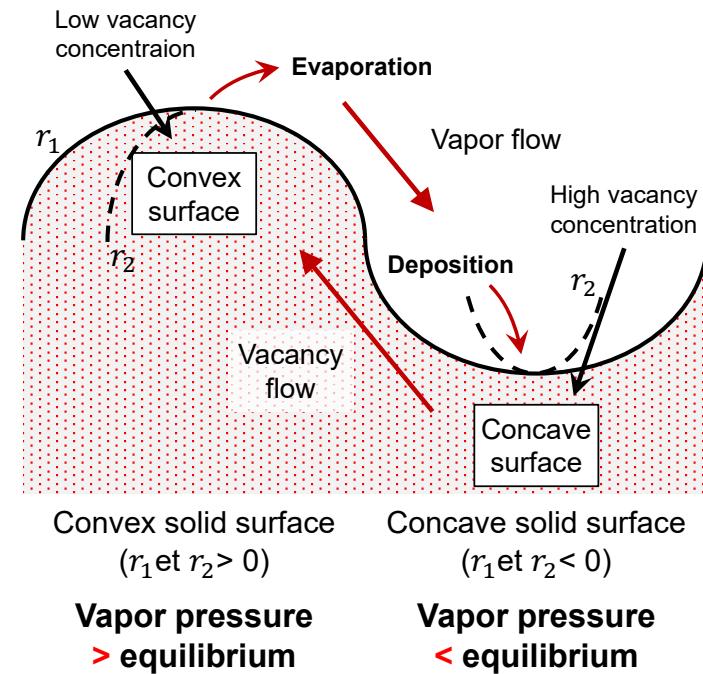
1. Surface diffusion from the surface
2. Volume diffusion from the surface
3. Vapor diffusion from the surface

Consolidating and densifying:

4. Grain boundary diffusion from the grain boundaries
5. Volume diffusion from the grain boundaries
6. Volume diffusion of dislocations
7. Plastic or viscous flow

Driving force for diffusion mechanisms

- ◆ Driving forces for diffusion are
 - **Vapor pressure** (Laplace law)
 - **Vacancy concentration gradients** between convex and concave surfaces
- ◆ Mass transport occurs from areas with « high » to areas with « low » potential energy
 - Material flux **from convex to concave** surfaces
- ◆ **What happens at the triple points?**



$$P - P_\infty = \gamma_{sv} \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

Laplace law

solid state sintering

Sintering states (Coble model)

M. Stuer

Three Coble sintering stages

#1_initial stage

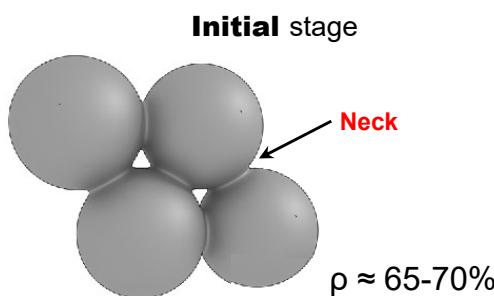
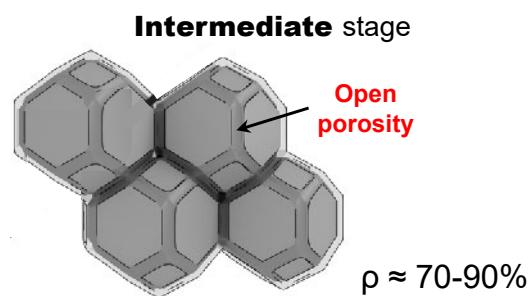
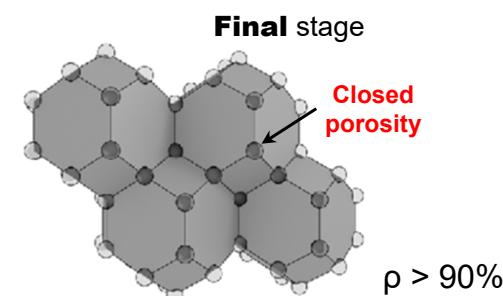
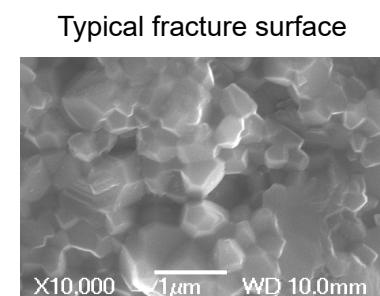
- ◆ The powder compact is **consolidated** by rapid neck **formation and growth** between particles.
- ◆ **Curvature differences** between convex and concave surfaces are **rapidly reduced**.

#2_intermediate stage

- ◆ There is a strong **densification** of the structure by **reduction of the porosity** located along the grain edges.
- ◆ **Grains** are **polyhedral**
- ◆ There is only **open porosity** (e.g. open pore channels)

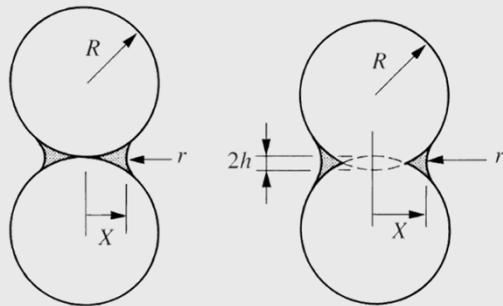
#3_final stage

- ◆ The **pores** are **closed** (isolated) and located mainly at the **corners** of the grains
- ◆ The **densification** is accompanied by more or less substantial **grain growth**.



Models of the three Coble sintering stages

#1_initial stage



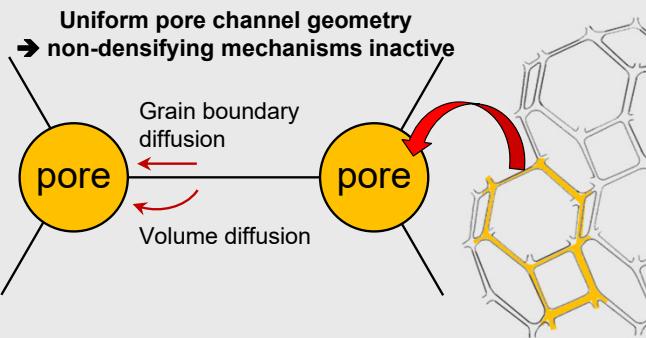
Phenomenon: Bridge formation between particles

- ◆ **Grains:** spheres with radius R
- ◆ **Pores:** not considered
- ◆ **End state:** $r = \sim 0.5 R$

Mechanisms

- ◆ **Densifying:** active
- ◆ **Non-densifying:** active

#2_intermediate stage



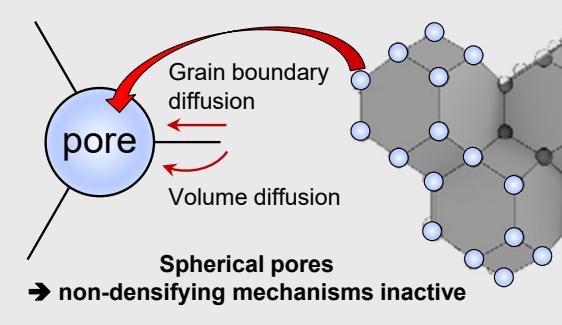
Phenomenon: Densification by reduction of the cross-section of the porous network

- ◆ **Grains:** tetrakaidecahedral
- ◆ **Pores:** channels at edges
- ◆ **End state:** pore closure

Mechanisms

- ◆ **Densifying:** active
- ◆ **Non-densifying:** inactive

#3_final stage



Phenomenon: Densification by reduction of the pore radius (note: grain growth not taken into account, as regular arrangement of uniform grains)

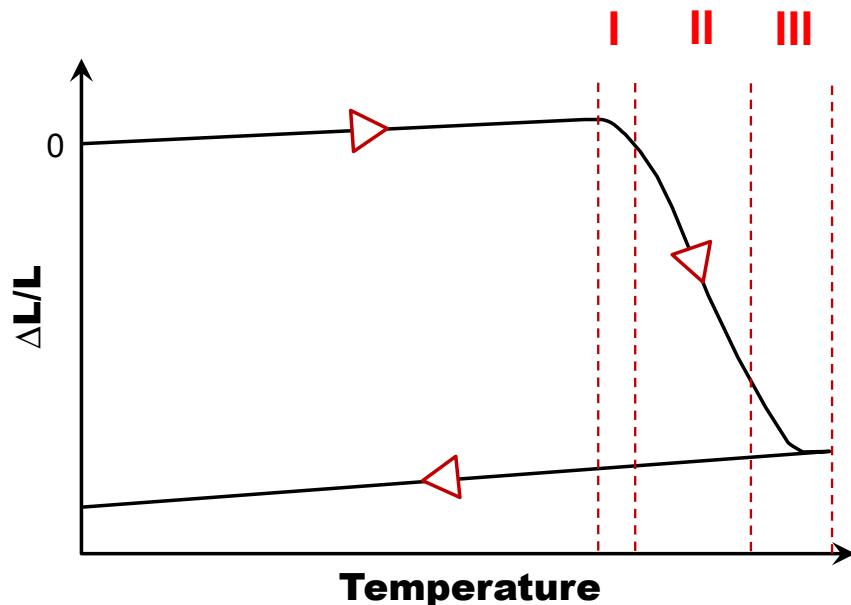
- ◆ **Grains:** tetrakaidecahedral
- ◆ **Pores:** spherical at the grain tips

Mechanisms

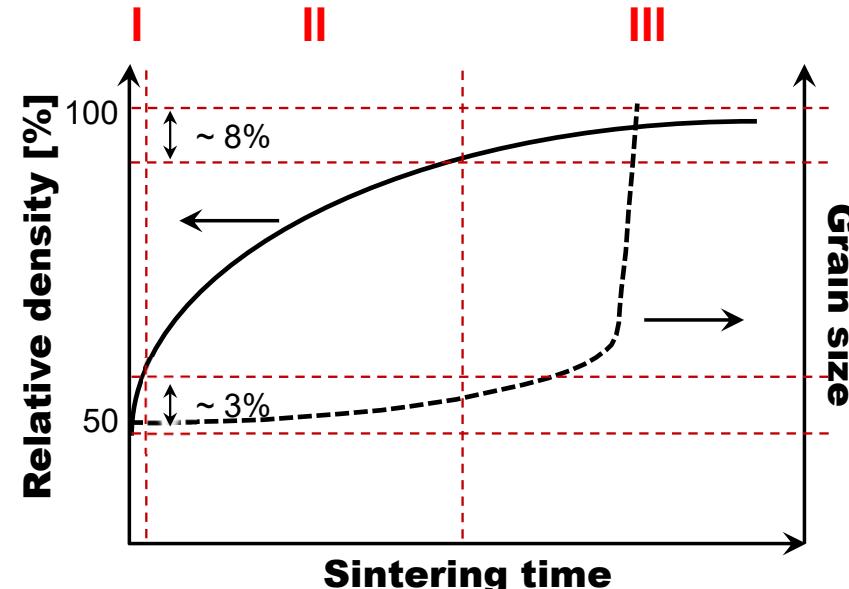
- ◆ **Densifying:** active
- ◆ **Non-densifying:** inactive

Shrinkage and grain growth at different sintering stages

Dilatometry = measurement of dimensional change as a function of temperature and/or time



Significant densification occurs at stage II



Significant grain growth occurs at stage III

EPFL

solid state sintering

Grain growth

M. Stuer

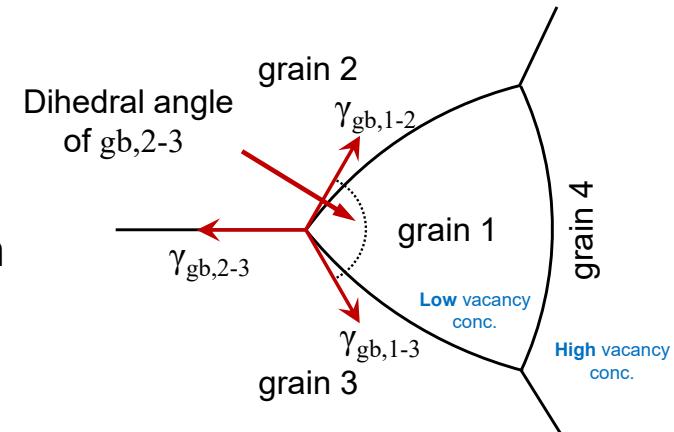
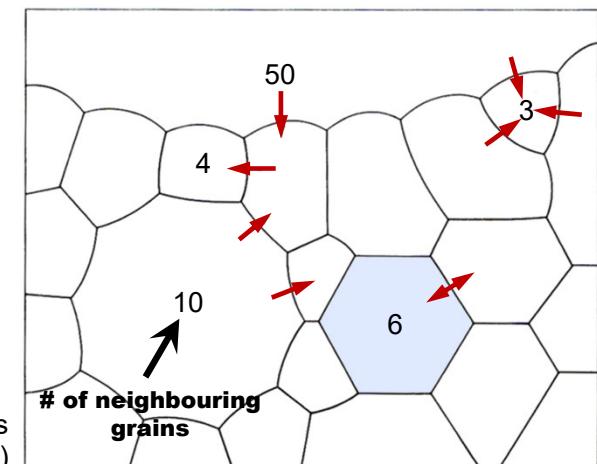


Local driving force for grain growth

- ◆ **Balance of interfacial tensions** at triple junctions **imposes/defines** grain boundary **curvature**
- ◆ **Consequences:**
 - **Centre of curvature** of grain boundaries is located on the side of the **smaller grain**
 - Following the **Laplace law**, diffusion occurs across the grain boundaries from the small towards the large grains.
→ **Grain boundaries move towards their center of curvature !**

Small grains disappear in favor of larger grains

Grain boundary migration (e.g. microstructure evolution) based on # of neighboring grains
(assuming that the **grain boundary energy** is **independent of the orientation**)



Von Neumann-Mullins law (e.g. n-6 rule)

- Assuming **isotropic** grain boundary energies and **uniform** grain boundary curvature, n-6 rule states that:

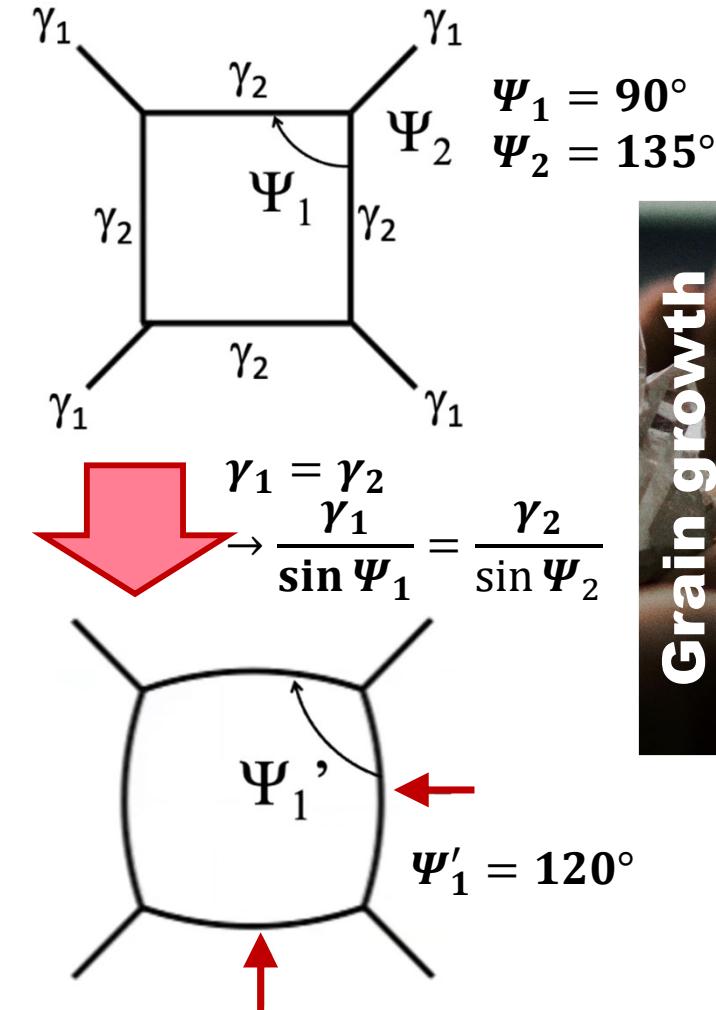
$$\frac{dA}{dt} = \frac{\pi k}{6(n-6)}, k = M\gamma$$

- M : grain boundary mobility
- γ : grain boundary energy
- n : number of triple junctions
- A : grain surface area
- t : time

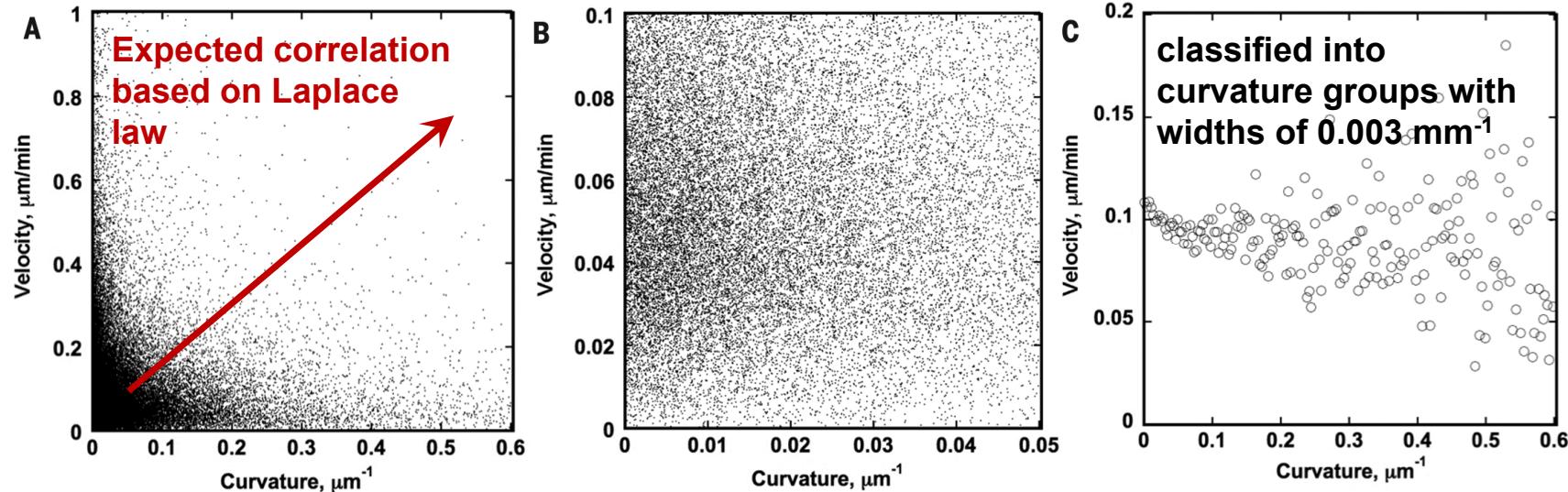
- If the number of triple junctions is
 - < 6 , center of curvature inside grain \rightarrow it shrinks
 - $= 6$, grain boundary is flat \rightarrow stable grain
 - > 6 , center of curvature outside grain \rightarrow it grows

→GBs move towards center of curvature

→GB mobility and curvature are correlated

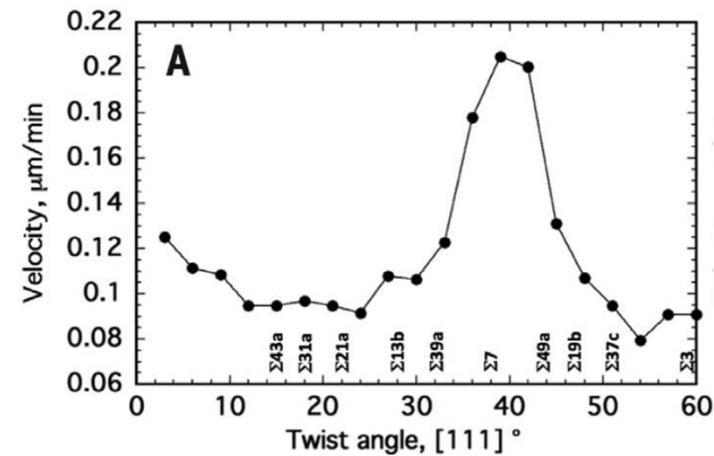


No correlation between GB velocity and curvature



- ◆ **No correlation** can be observed **between GB curvature and GB velocity!**
- ◆ But, GB velocity significantly changes depending on GB type.

→ **Other mechanisms affect GB mobility**



Anisotropic grain boundary energies

- ◆ **Boundary energies do not have to be isotropic,**

nor must they have a uniform curvature !

- ◆ Under which condition can a 4-sided grain grow?

- For simplicity assume the grain boundary energy of the 4-sided grain with its neighbors is γ_2 and between the neighboring grains γ_1
 - Grain boundary energy of a square grain:

$$4L\gamma_2$$

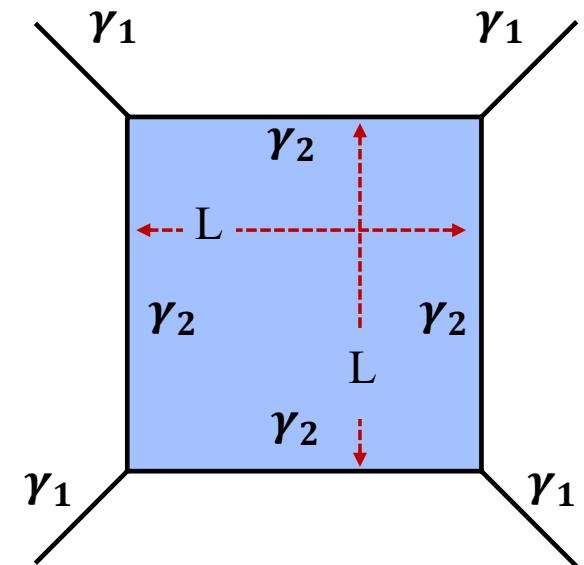
- If grain disappears this grain boundary energy is replaced by:

$$\frac{4\sqrt{2}}{2}L\gamma_1$$

- Square grain grows when

$$4L\gamma_2 < \frac{4\sqrt{2}}{2}L\gamma_1 \rightarrow \frac{\gamma_1}{\gamma_2} > \sqrt{2}$$

→ **Grains can grow, independently of the grain boundary curvature!**



Nucleation of new grains at grain boundary

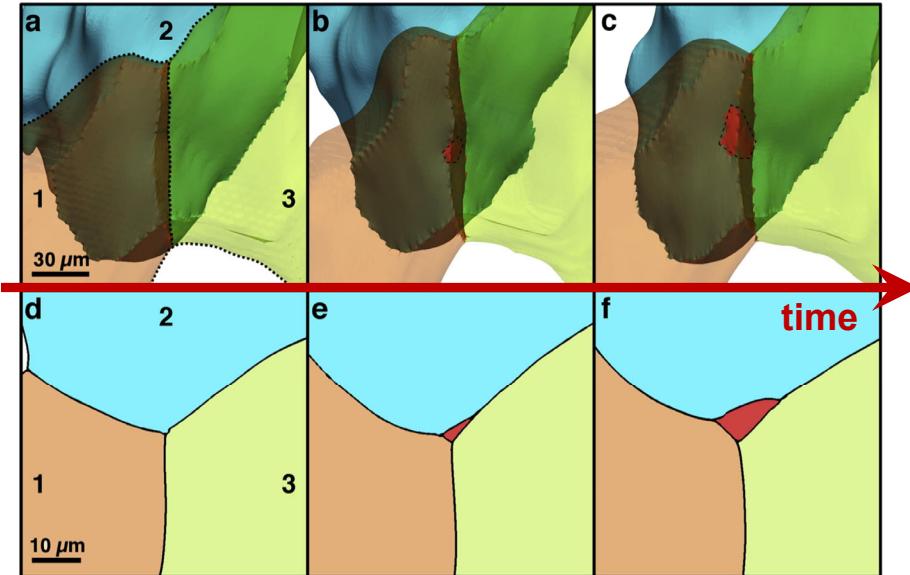
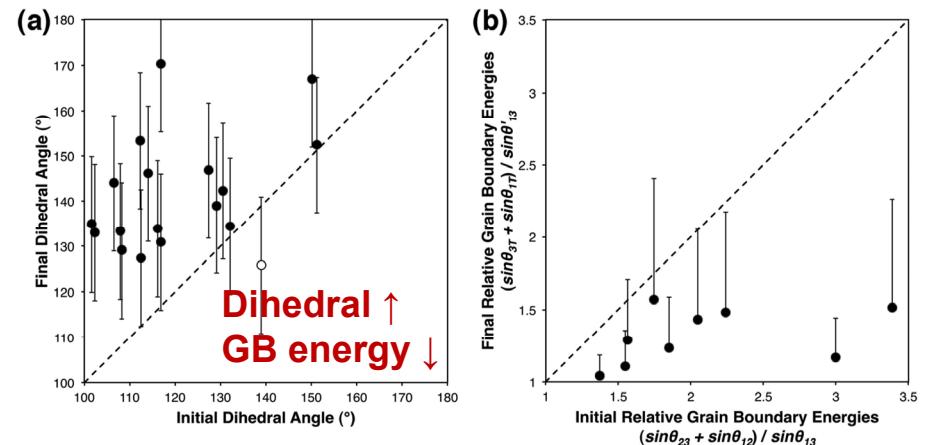
- ◆ **New grains can nucleate** at grain boundaries, despite associated **increase of the total grain boundary area!**

- ◆ **How can this occur?**

When the nucleation and growth of a new grain reduces the total **grain boundary energy**.

→ **It is all about the lowering of the system free energy!**

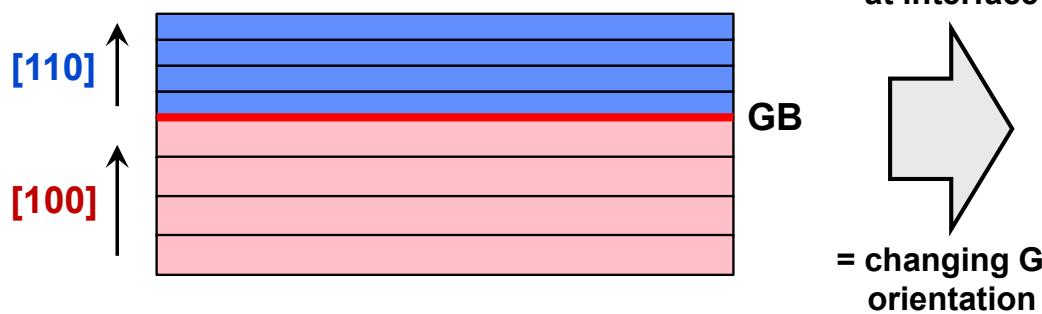
→ **Left to answer: Why can some grain boundaries move faster ?**



Disconnects

- ◆ One approach to explain different GB velocities in coincident site lattice (CSL) GBs refers to disconnections

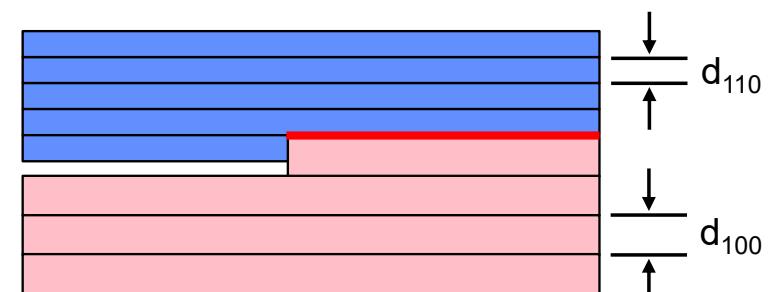
Example: Cubic crystal structure



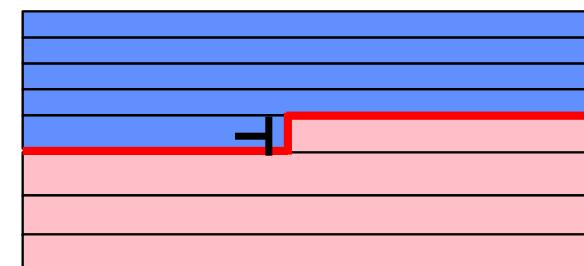
- ◆ To **close the gap** Δ a lattice distortion, i.e. a **dislocation** with Burgers vector Δ , has to be introduced. This is a disconnection with:

$$\text{Step height: } h = (d_{100} + d_{110})/2$$

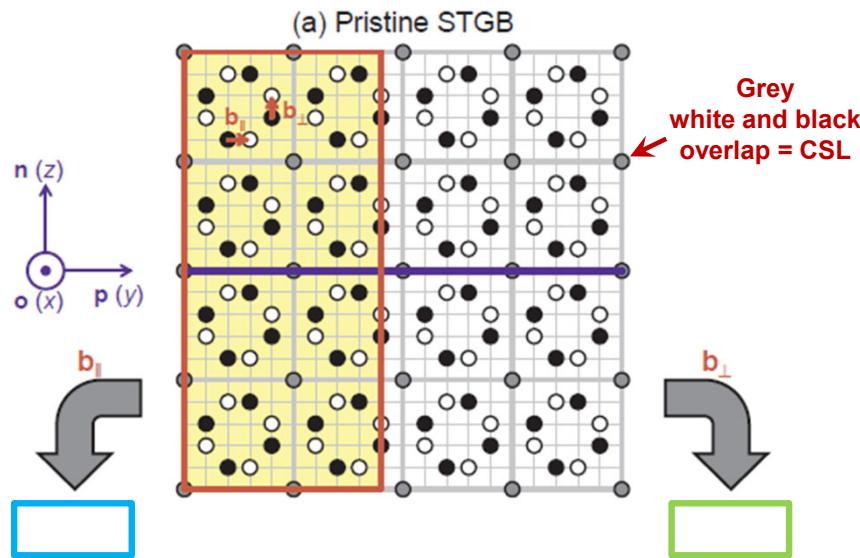
$$\text{Burgers vector: } \mathbf{b} = d_{100} \left(1 - \frac{1}{\sqrt{2}}\right) [100]$$



$$d_{110} = \frac{d_{100}}{\sqrt{2}} \rightarrow \Delta = d_{100} \left(1 - \frac{1}{\sqrt{2}}\right)$$

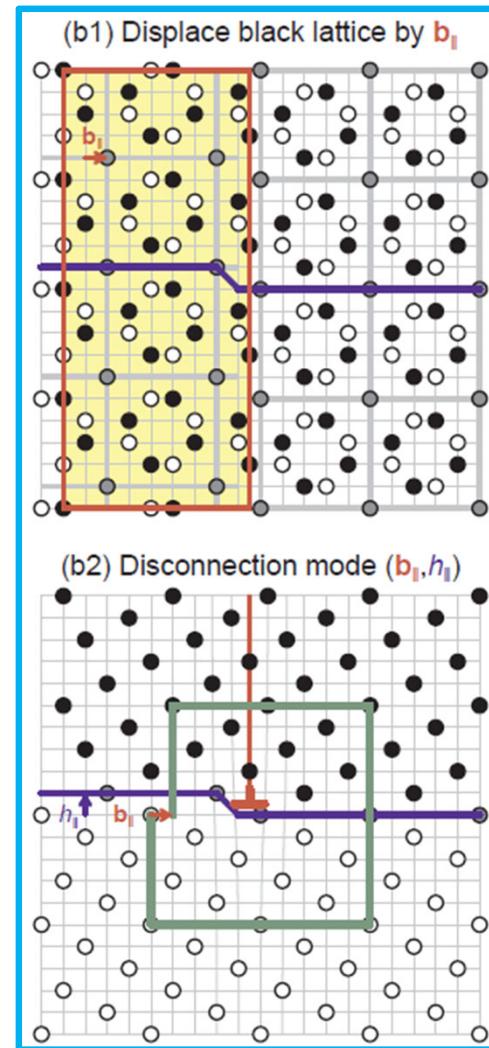
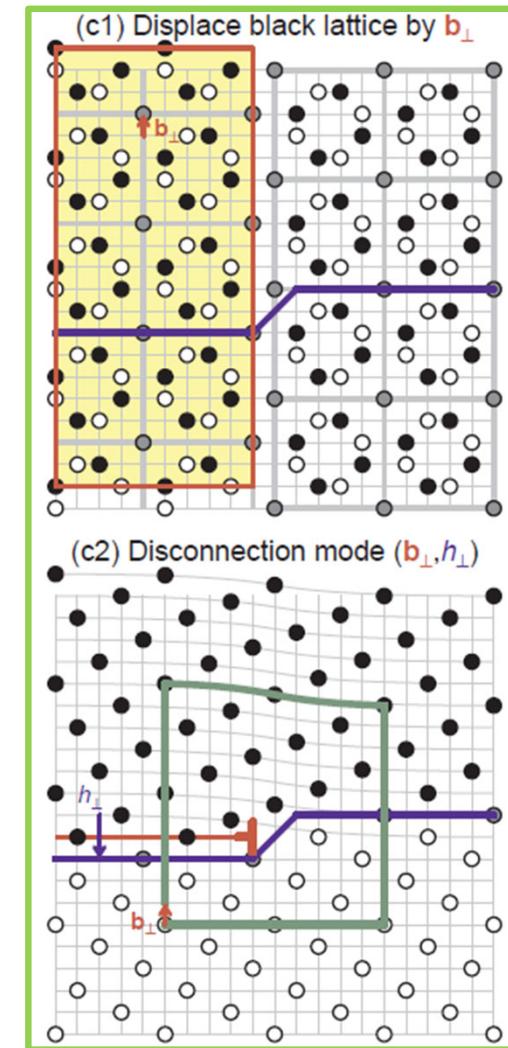


Disconnection modes



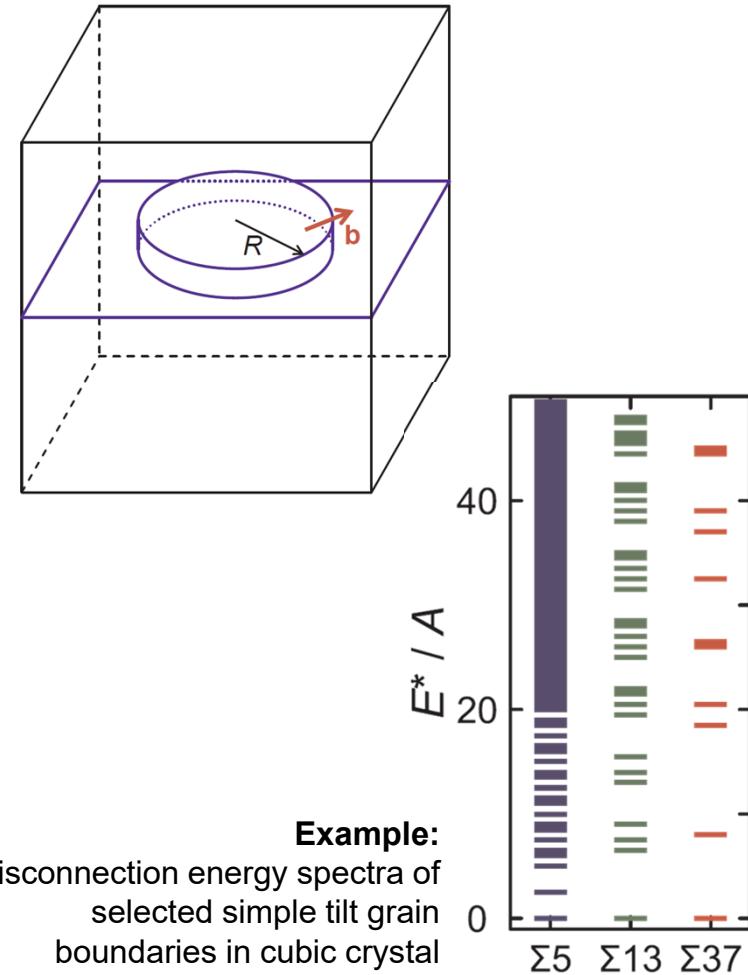
Disconnections in a $\Sigma 5$ [100] simple tilt GB (STGB) by the operation of translational symmetry related to the DSC (displacement shift complete) lattice.

Example: (b1) Based on (a), displace the black lattice in the yellow region with respect to the white lattice by the red vector parallel to the GB plane $b_{||}$; the blue line is the new GB plane after such displacement. (b2) A disconnection $b_{||}, h_{||}$ is formed by removing the black lattice below the GB plane and the white lattice above the GB plane in (b1).



Disconnection model for grain boundary migration

- ◆ **Migration** of GBs controlled by **nucleation and expansion of disconnections** across the grain boundary
- ◆ For a given GB there are different disconnection modes associated with different **nucleation energies** which primarily depend on h and b
- ◆ Multiple modes are needed for a GB to move continuously
- ◆ The **more disconnection modes** there are and the **lower** their **nucleation energies**, the higher (in principle) the associated GB mobility
(shear stresses and GB stiffness may play a significant role as well! ==> ongoing debate in literature)



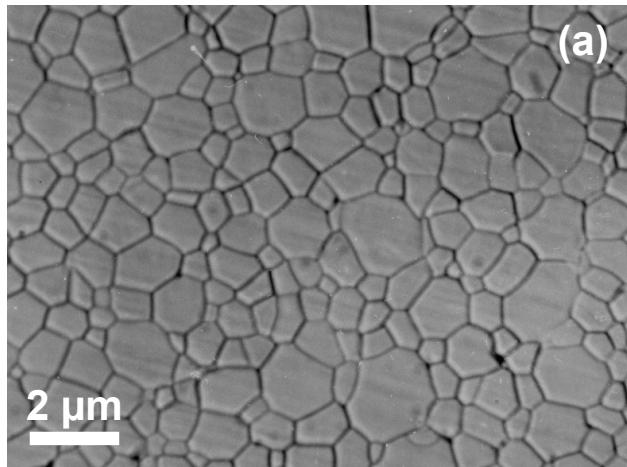
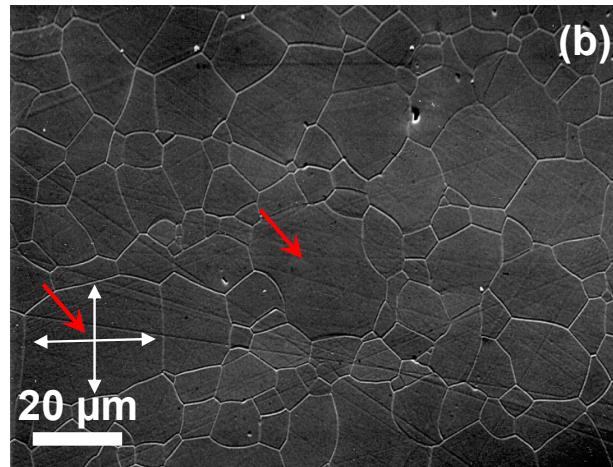
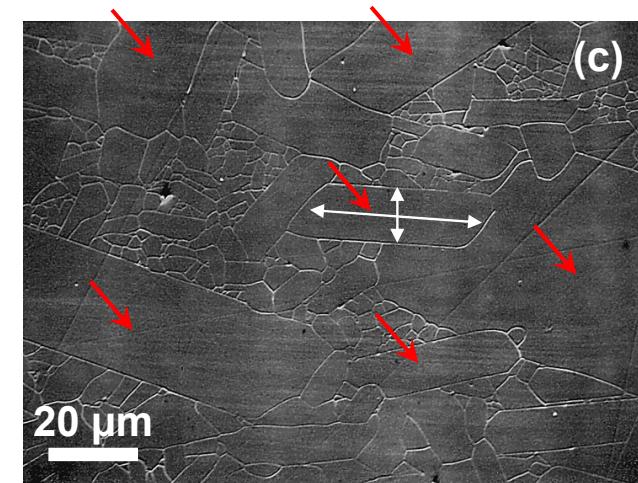
Normal and abnormal grain growth

- ◆ Examples of microstructures after different grain growth modes

a) **Normal** grain growth

b) **Isotropic abnormal** grain growth ($d_{F_{max}} \approx d_{F_{min}}$)

c) **Anisotropic abnormal** grain growth ($d_{F_{max}} \gg d_{F_{min}}$)



Normal isotropic

Abnormal isotropic

Abnormal anisotropic

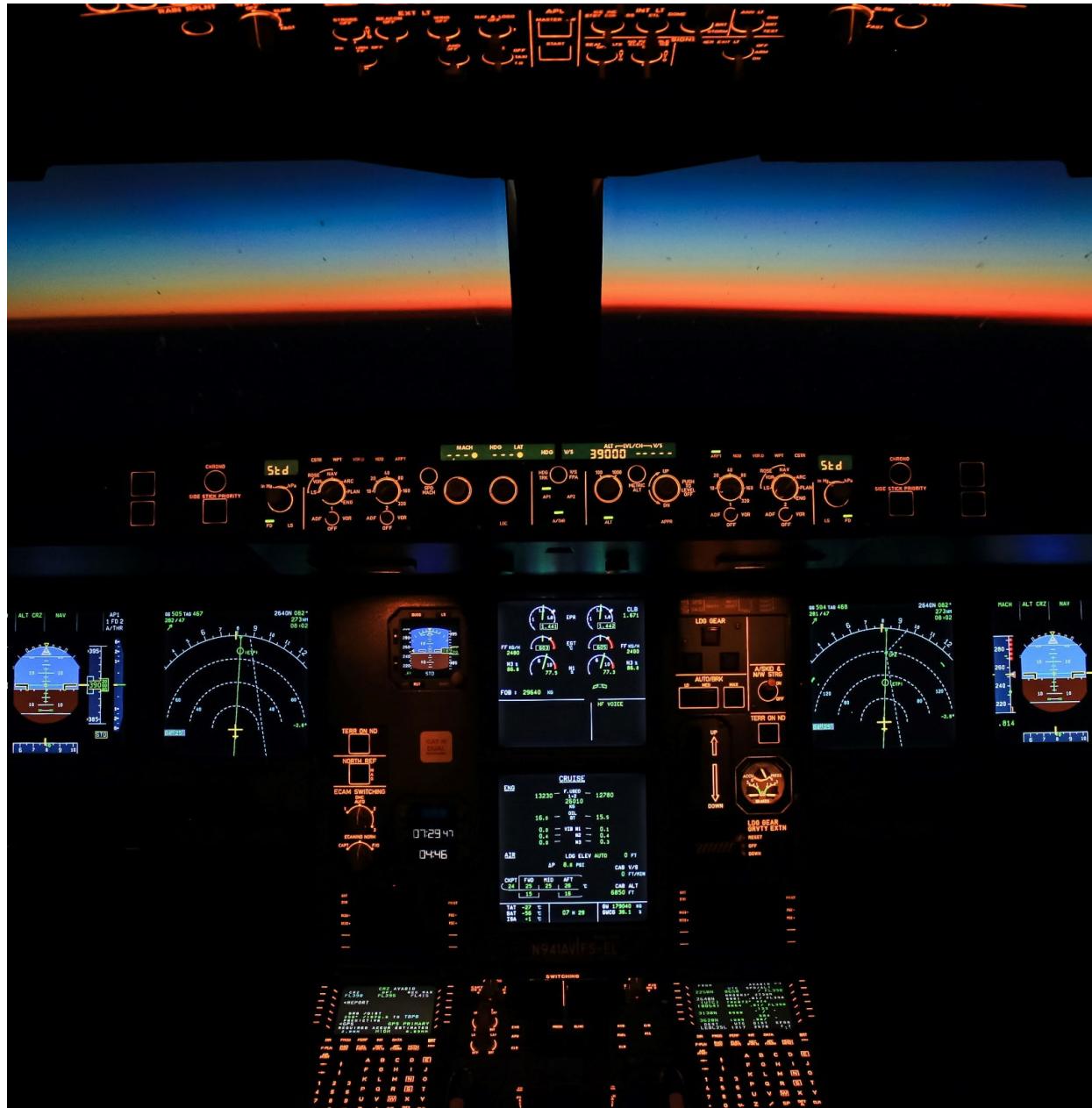
The grain growth and thus microstructural development can be modified through the **sintering cycle** (time, temperature, pressure, ...) and **doping strategy**

solid state sintering

Microstructural development control

- Basic concepts -

M. Stuer



Influence of temperature on active diffusion mechanisms

- ◆ **Temperature** has a major **influence** on **diffusion kinetics** and thus on sintering

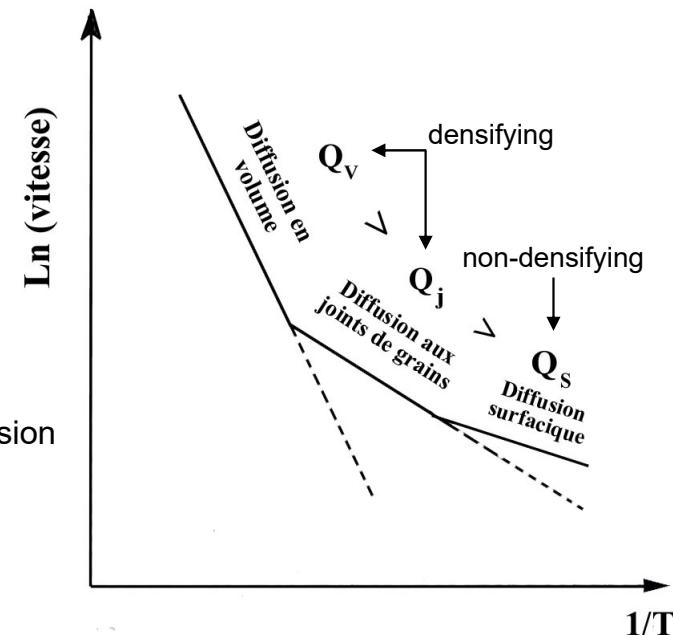
- ◆ Each diffusion mechanism is:

- Thermally activated → **Arrhenius law:**

$$D_i = D_{0,i} e^{-Q_i/RT}$$

- Q_i : activation energy of mechanism i
 - $D_{0,i}$: Diffusion constant of mechanism i
(~Diffusion at infinite T)
 - i : s surface, v volume and j grain boundary diffusion

- Has its specific **activation energy**



The **thermal cycle** has a direct influence on the **microstructural development** controlling the predominant diffusion mechanisms

Influence of particle size on sintering speed

Herring's scaling law

- ◆ The **ratio of sintering times** t_1 et t_2 to achieve the **same sintering advancement** from powders with **particle sizes** R_1 et R_2 respectively is given by:

$$\frac{t_1}{t_2} = \left(\frac{R_1}{R_2}\right)^m \rightarrow \text{if } R \uparrow \text{ then } t \uparrow$$

m depends on the predominant mass transport mechanism

- $m = 1$: viscous flow
- $m = 2$: evaporation and condensation
- $m = 3$: volume diffusion
- $m = 4$: surface or grain boundary diffusion

- ◆ Herring's scaling law is **only valid if dominant sintering mechanism remains the same** for the particle size range considered!

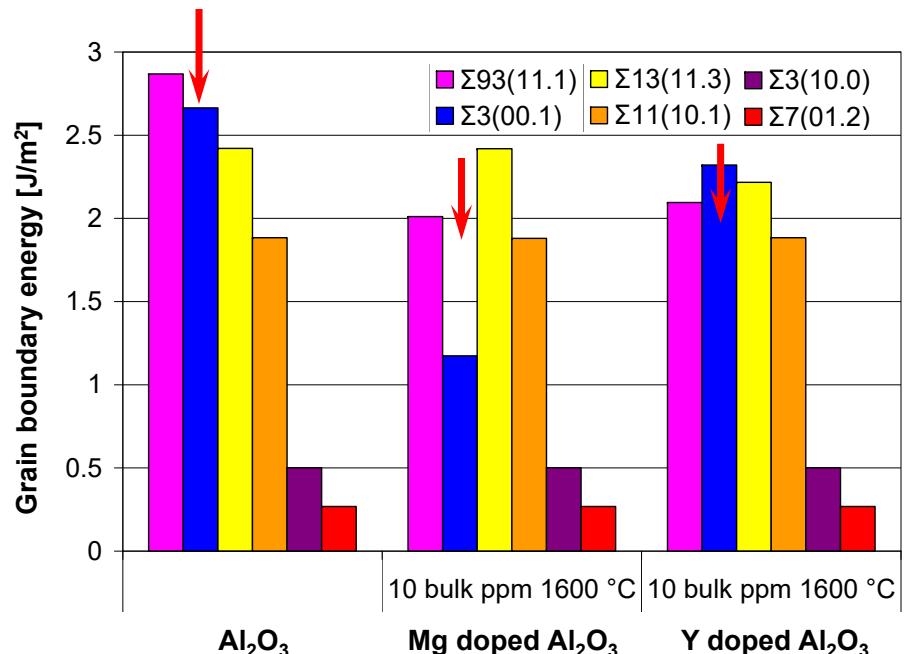
(the dominant mechanism could change, for example, if the size ratio is high enough to significantly change the ratio between volume diffusion and surface/grain boundary diffusion)

Effects of dopants on sintering

Dopants

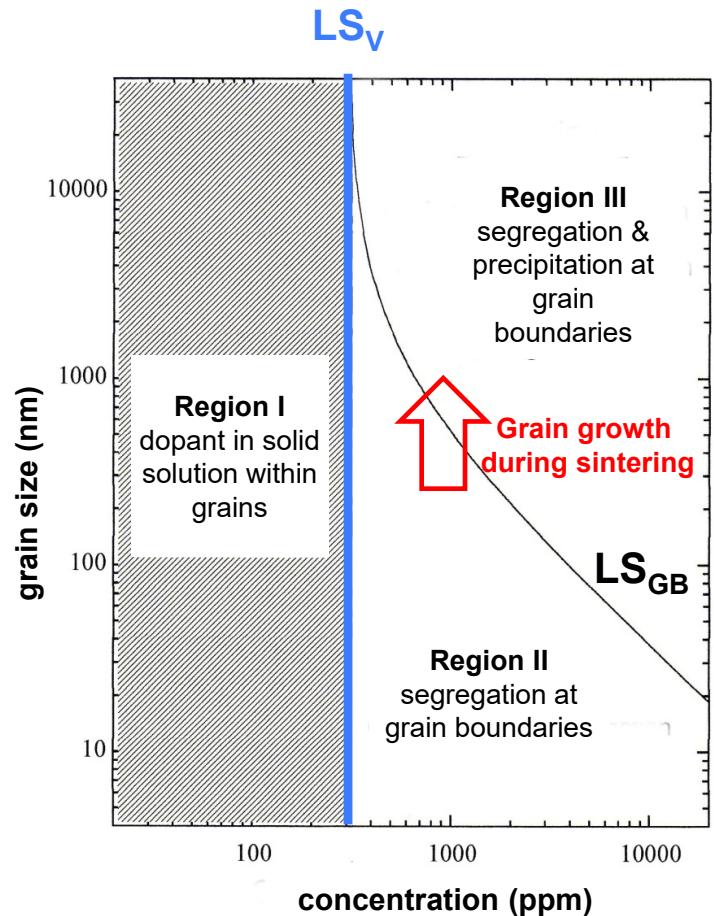
- ◆ Modify **interface energies** and thus:
 - Change the **driving forces** for sintering and grain growth
 - Change **grain morphology** by modifying the energy ratios between interfaces (e.g. system aims for energy minimization)
- ◆ Modify **activation energies and diffusion kinetics** and thus:
 - Change **sintering kinetics**
 - Change **ratios between consolidation, densification and grain growth**
 - May reduce the grain boundary mobility via the so-called solute drag effect

Examples of dopant effects on selected grain boundary energies following doping with Mg and Y



Segregation and precipitation of dopants at grain boundaries

- ◆ **Doping** used to modify the **microstructural development** during sintering
- ◆ **Doping level**, i.e. dopant concentration, chosen based on **segregation/precipitation diagrams**
 - If the **overall dopant concentration** is above the **volume solubility limit** (LS_V), then **grain growth** during sintering can lead to **second phase precipitation** at the grain boundaries.
- ◆ **Upon appearance of precipitates**, grain growth is impinged by **Zener pinning**



Zener pinning

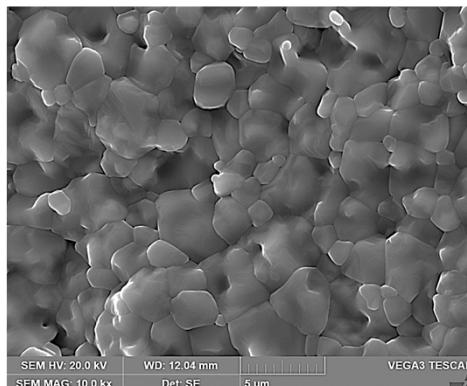
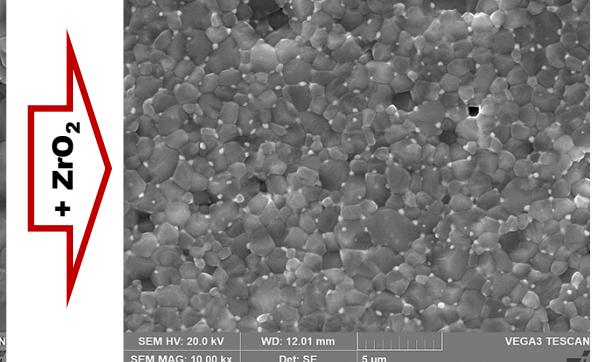
- ◆ Small **secondary phases impair grain boundary migration** by exerting a counteracting pinning pressure.
- ◆ The **Zener pinning pressure** is maximum at an angle of 45° and given by:

$$P_{zener} = \frac{3\gamma f}{3r}$$

- γ : grain boundary energy
- f : volume fraction of secondary phase
- r : secondary phase radius



Al_2O_3



solid state sintering

Apparent activation energy for densification and Master sintering curve

M. Stuer

Apparent activation energy from iso-density analysis

- ◆ Assuming no mass loss during sintering

$$\rho_{(T)} = \frac{\rho_0}{\xi^2 \left[1 + \frac{\Delta L_{(T)}}{L_0} \right]^3}$$

- $\rho_{(T)}$: volume mass at temperature T
- ρ_0 : green body volume mass at starting temperature T_0
- ξ : shrinkage anisotropy
- $\Delta L_{(T)}$: $L_{(T)} - L_0$ the sample height variation at T compared to T_0

- ◆ For precise density analysis, sample thermal expansion α has to be considered

$$\alpha = \frac{1}{L_{(T)}} \frac{\partial L_{(T)}}{\partial T} \rightarrow L_{(T)} = L_0 e^{\alpha(T-T_0)}$$

- ◆ The relative density D at T is defined as

$$D_{(T)} = 100 \frac{\rho_{(T)}}{\rho_{(T)}^{th}}$$

- $\rho_{(T)}$: actual density at T
- $\rho_{(T)}^{th}$: theoretical density at T

- ◆ Assuming no mass loss during sintering $\rho_{(T)}^{th}$ can be written as a function of ρ_0^{th}

$$\rho_0^{th} = \frac{m}{L_0^3} \xrightarrow{\text{at } T} \rho_T^{th} = \frac{m}{L_{(T)}^3} = \frac{m}{L_0^3} e^{-3\alpha(T-T_0)}$$

- ◆ Thus, the instant relative density at T can be written as a function of the densities at T_0 :

$$D_{(T)} = 100 \frac{\rho_0}{\rho_0^{th}} \frac{1}{\xi^2 \left[1 + \frac{\Delta L_{(T)}}{L_0} \right]^3} e^{3\alpha(T-T_0)}$$

Apparent activation energy from iso-density analysis

- ◆ The instantaneous densification rate can be separated into temperature, grain size and density dependent quantities

$$\frac{dD(T)}{dt} = \frac{dD(T)}{dT} \frac{dT}{dt} = A \frac{f(D(T))}{G^n} \frac{e^{-Q_d/RT}}{T}$$

- A : constant
- $f(D(T))$: function of density
- Q_d : apparent activation energy for densification
- R : perfect gas constant
- G : grain size
- n : grain size exponent function of diffusion mechanism

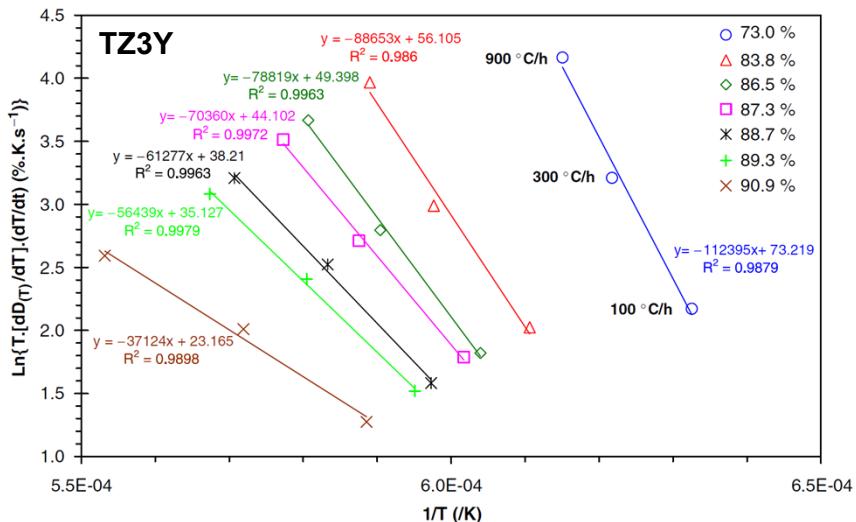
- ◆ Applying \ln and multiplying by T one finally obtains

$$\ln \left[T \frac{dD(T)}{dT} \frac{dT}{dt} \right] = -\frac{Q_d}{RT} + \ln[f(D(T))] + \ln A - n \ln G$$

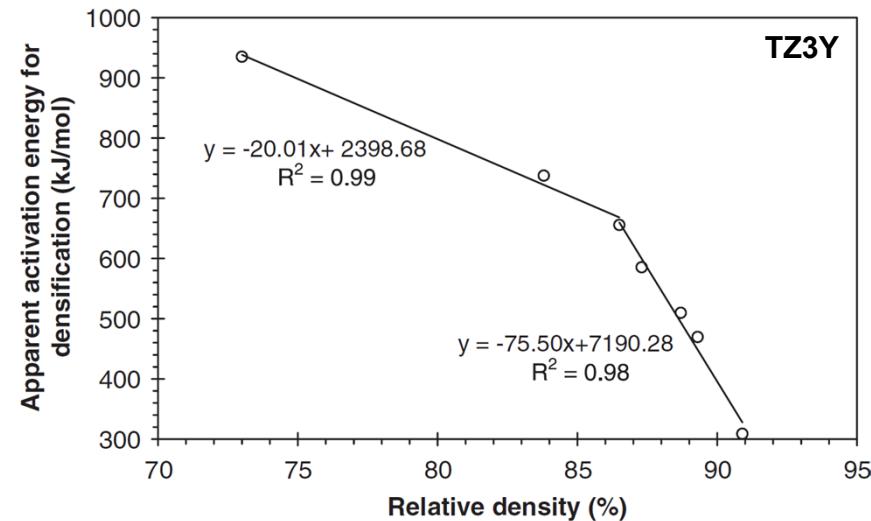
- ◆ A plot of the left-hand side versus $1/T$ for different heating rates ($\frac{dT}{dt}$) allows obtaining Q_d
 - if taken at constant $D(T)$
 - grain size G is only dependent on the density (may not always be the case!)

Apparent activation energy from iso-density analysis

- ◆ Find Q_d at different densities $D_{(T)}$



- ◆ Plot Q_d as a function of density $D_{(T)}$

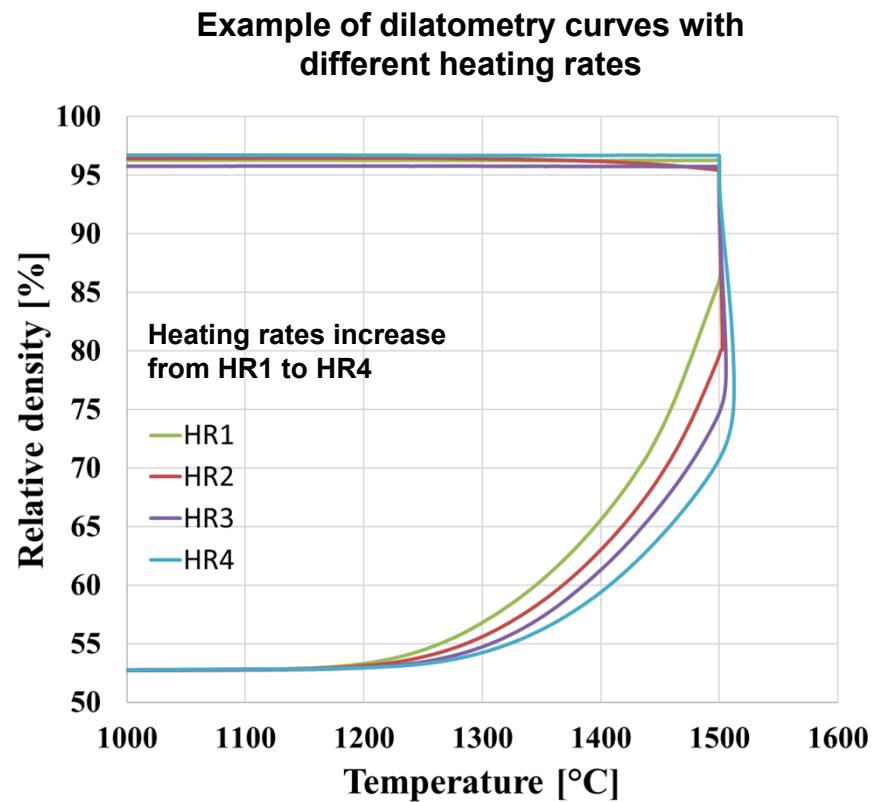


- ◆ Changes in the apparent activation energy Q_d as a function of $D_{(T)}$ may be indicative of:
 - Changes in the mass transport mechanisms or their individual contribution to densification
 - Changes in point defect generation energies
 - Breakdown of $G = f(D_{(T)})$ hypothesis

→ Do not determine Q_d at a single $D_{(T)}$ only

Iso-density analysis vs Master sintering curve analysis

- ◆ **Iso-density analysis** method
 - **Only densities** reached during **constant heating rate** regime can be investigated
 - To analyze full density range
 - Use dilatometer with (very) high temperature limit
 - Use heating series with **slow heating rates** (i.e. higher densities at dwell start)
- ◆ **Master sintering curve** analysis is an alternative method which (theoretically) allows the full density range considering **time-temperature dependence** to be covered

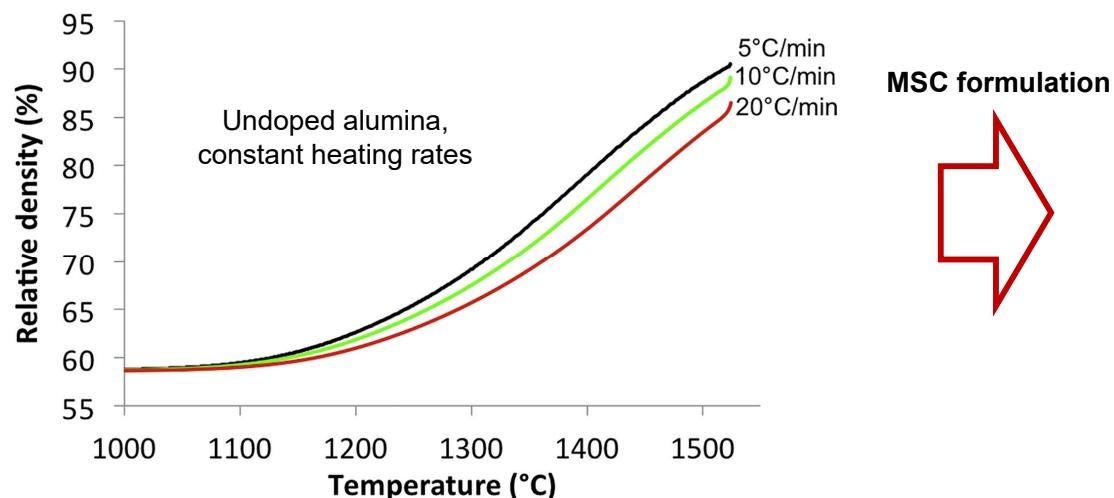
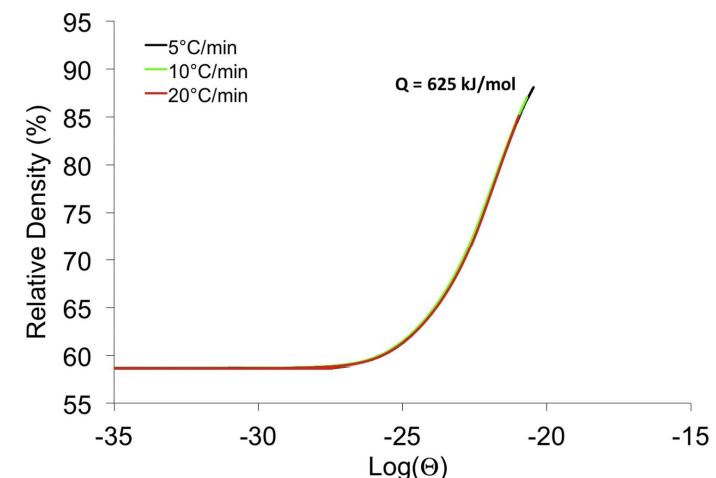


Master sintering curve: Big picture

- ◆ **Master Sintering Curve (MSC)**

describes densification during sintering as a **universal function of temperature and time, independent of the heating profile**.

It enables prediction and optimization of densification by combining sintering kinetics into a single curve



Master sintering curve analysis

- ◆ The normalized $\left(\frac{1}{\rho}\right)$ densification rate $\left(\frac{d\rho}{dt}\right)$ can be written as:

$$\frac{1}{\rho} \frac{d\rho}{dt} = \frac{3\gamma\Omega}{k_B T} \left(\frac{\Gamma_v D_v}{G^3} + \frac{\Gamma_{gb} D_{gb}}{G^4} \right)$$

↑
term for
volume
diffusion
↑
term for grain
boundary
diffusion

- ρ : instantaneous density
- γ : surface energy
- Ω : atomic volume
- k_B : Boltzmann constant
- T : absolute temperature
- D_v : volume diffusion coefficient

- D_{gb} : grain boundary diffusion coefficient
- G : mean grain size diameter
- Γ_v : scaling parameter (ρ and G dependent)
- Γ_{gb} : scaling parameter (ρ and G dependent)

- ◆ **If there is:** Single dominant diffusion mechanism

Grain size is only density dependent $G(\rho, T, t) \approx G(\rho) \rightarrow \Gamma_i(\rho, G) = \Gamma_i(\rho)$
 then, using $D(T) = D_0 \exp\left(-\frac{Q}{RT}\right)$, the above expression simplifies to:

$$\frac{1}{\rho} \frac{d\rho}{dt} = \frac{3\gamma\Omega}{k_B T} \left(\frac{(\Gamma(\rho))D}{G(\rho)^m} \right) = \frac{3\gamma\Omega}{k_B T} \frac{(\Gamma(\rho))D_0 \exp(-Q/RT)}{G(\rho)^m} = \frac{3\gamma\Omega}{k_B T} \frac{(\Gamma(\rho))D_0}{G(\rho)^m} \exp\left(-\frac{Q}{RT}\right)$$

Master sintering curve analysis

- ◆ Rearranging the terms to separate density ρ from $T(t)$ terms:

$$\frac{1}{\rho} \frac{d\rho}{dt} = \frac{3\gamma\Omega}{k_B T} \frac{(\Gamma(\rho))D_0}{G(\rho)^m} \exp\left(-\frac{Q}{RT}\right)$$
$$\Rightarrow \frac{k_B}{3\gamma\Omega D_0} \frac{1}{\rho} \frac{G(\rho)^m}{\Gamma(\rho)} d\rho = \frac{1}{T} \exp\left(-\frac{Q}{RT}\right) dt$$

Entire time-temperature dependence is contained here!

- ◆ Integrating over t defines the *master sintering variable* $\theta(t, T(t))$:

$$\theta(t, T(t)) \equiv \int_0^t \frac{1}{T} \exp\left(-\frac{Q}{RT}\right) dt$$

This function combines the effects of time and temperature into a single master variable

- Q : apparent activation energy for densification
- ρ : instantaneous density
- γ : surface energy
- Ω : atomic volume
- k_B : Boltzmann constant
- T : absolute temperature
- D_0 : diffusion coefficient for dominant mechanism
- G : mean grain size diameter
- Γ : scaling parameter (depends on ρ)
- m : 3, grain volume and 4, grain boundary diffusion

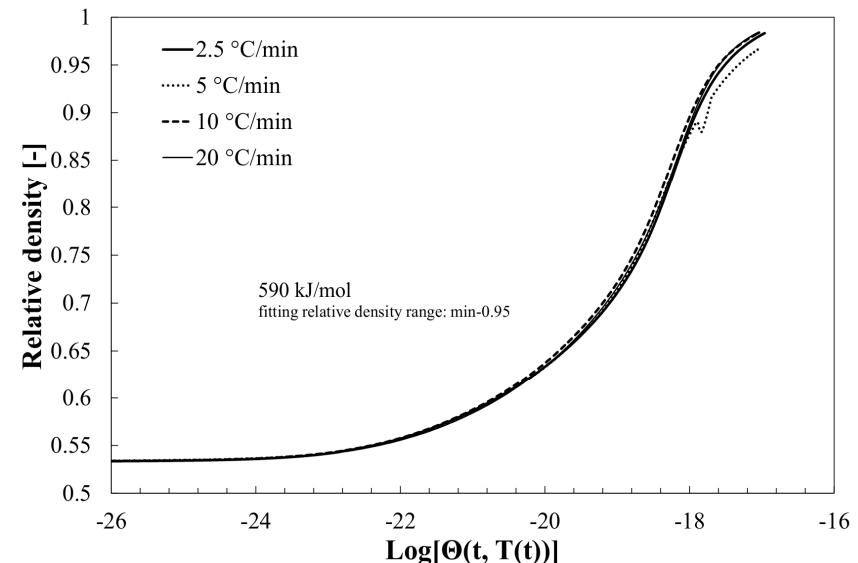
Master sintering curve analysis

- ◆ Integrating the density side of the equation from previous slide:

$$\frac{k_B}{3\gamma\Omega D_0} \underbrace{\int_{\rho_0}^{\rho} \frac{1}{\rho} \frac{G(\rho)^n}{\Gamma(\rho)} d\rho}_{\text{master sintering curve}} = \int_0^t \frac{1}{T} \exp\left(-\frac{Q}{RT}\right) dt \equiv \Theta(t, T(t))$$

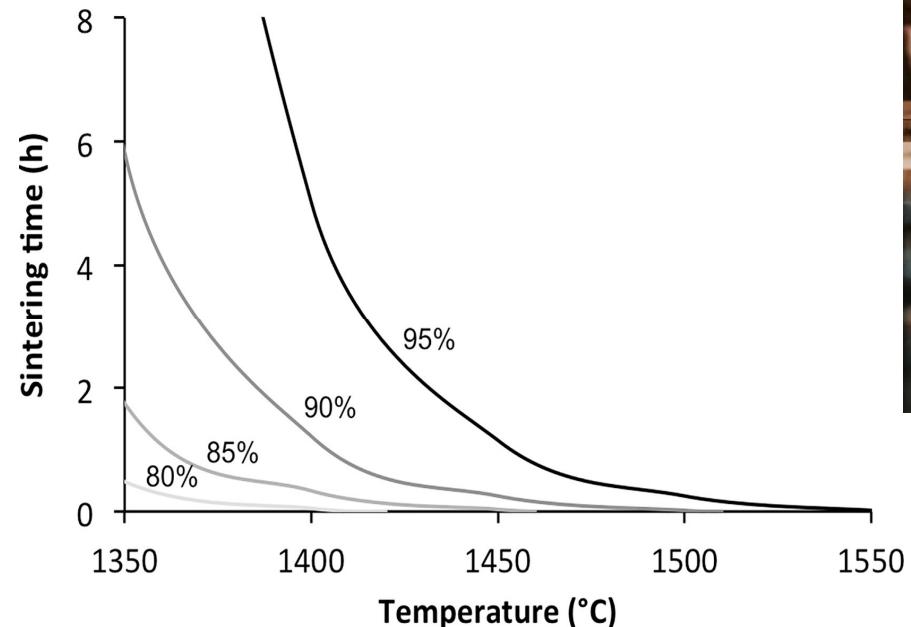
$\cdot \rho_0:$ green body volume mass
 $\cdot \rho:$ density at time t

- ◆ **Master sintering curve (MSC)** contains all microstructure and material properties (e.g. grain size); lower integration limit starts at green density ρ_0
- ◆ From dilatometry, relative density, time and temperature are known
- ◆ Q has to be determined via a fitting procedure!



Master sintering curve analysis: time-temperature curves

- ◆ MSC $\rho(\Theta)$ is **unique** for a **given powder and given (reproducible!) green body forming technique**
- ◆ Allows density prediction based on the combined time-temperature variable $\Theta = \Theta(t, T)$, which can be considered as an accumulated thermal load
 - Density $\rho(\Theta)$ is **independent of the sintering path**
 - Given density can be reached for any sintering path t, T giving the same
- ◆ **Iso-density t-T curves** can be calculated for a given powder and green body preparation method



Master sintering curve analysis: Practical approach

- ◆ How to obtain apparent activation energy for densification Q ?
 - Run a **series of sintering dilatometry measurements** with different temperature profiles
 - Calculate the sintering curves for each measurement as a function of $\log(\Theta(t, T))$
 - **Vary Q over expected value range** and determine residual between the set of sintering curves
 - Q value corresponding to minimum residual:
 - allows overlaying all individual $\rho(\log(\Theta(t, T)))$ sintering curves into a single master sintering curve
 - corresponds to the apparent activation energy for densification

Master sintering curve analysis: Error minimization

- ◆ Two error minimization methods for Q optimization are used

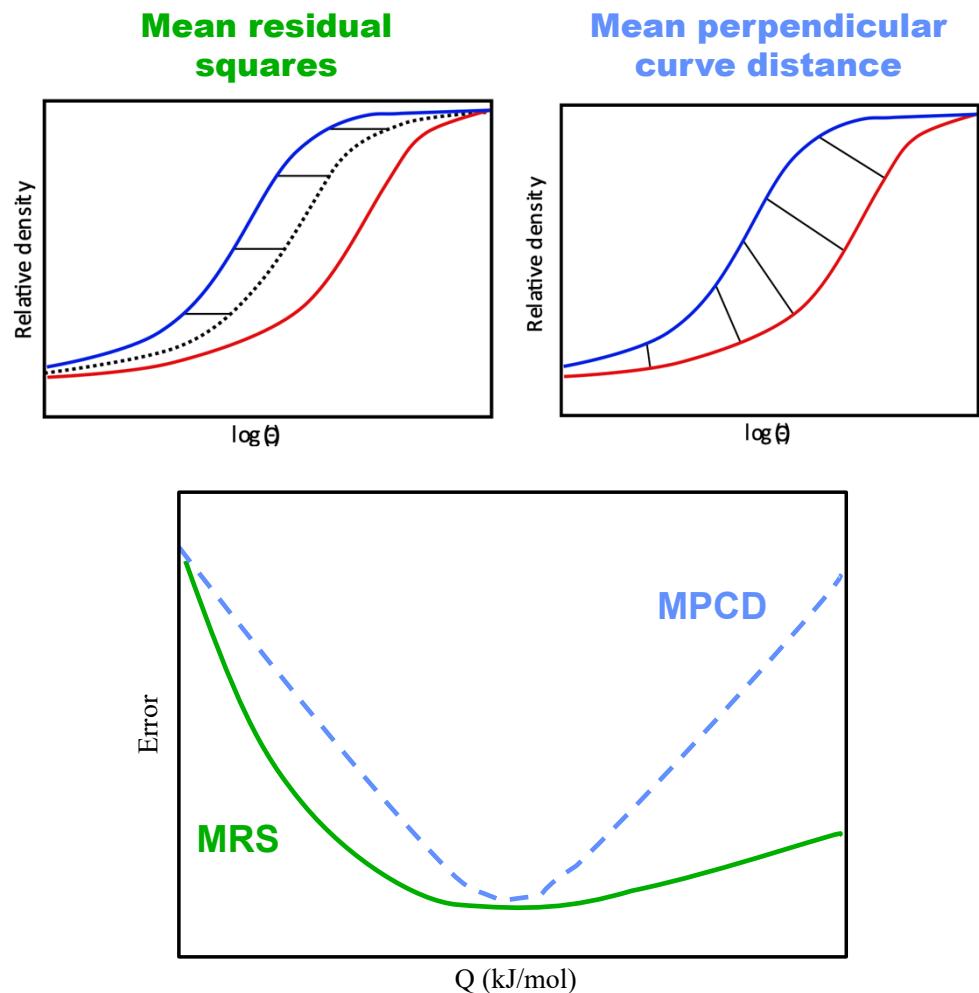
$$MRS = \sqrt{\frac{1}{\rho_f - \rho_0} \int_{\rho_0}^{\rho_f} \frac{1}{N} \sum_{i=1}^N \left(\frac{\Theta_i}{\Theta_{avg}} - 1 \right)^2 d\rho}$$

$$MPCD = \sqrt{\frac{1}{\rho_f - \rho_0} \int_{\rho_0}^{\rho_f} PD(\rho) d\rho}$$

- ◆ $MPCD$ gives sharper minimum and may improve MSC convergence on extremities

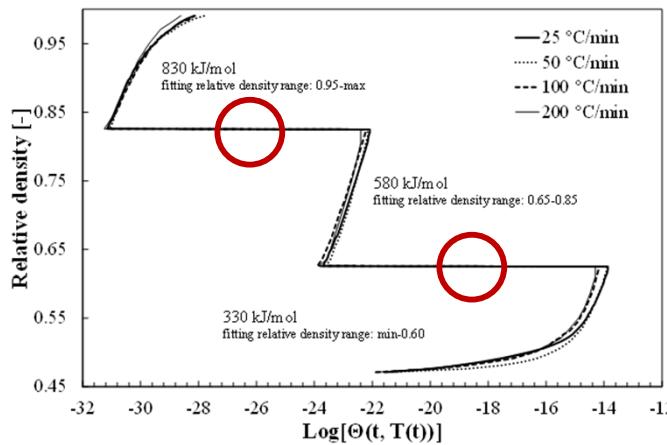
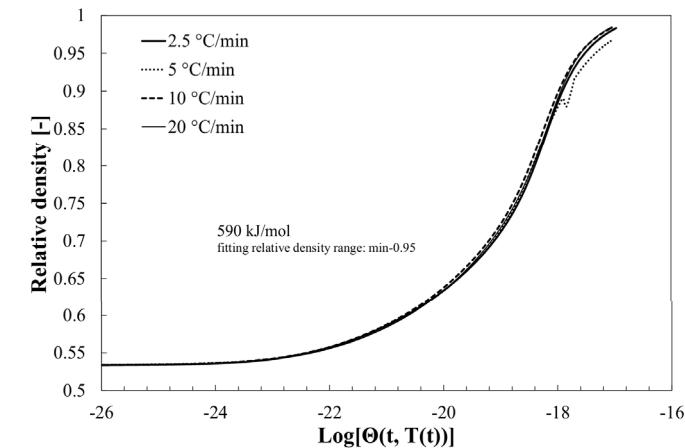
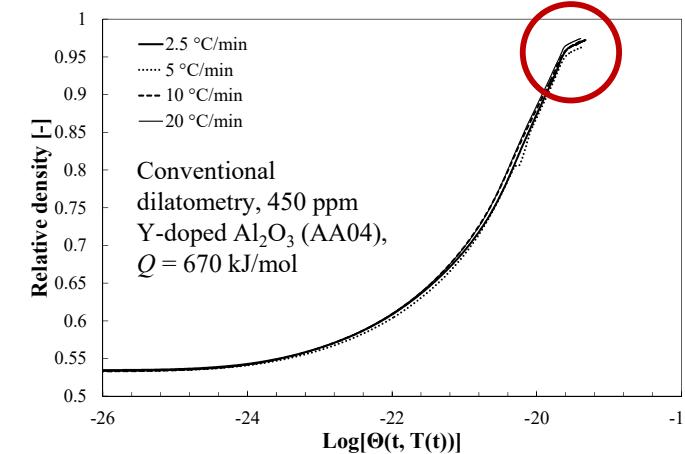
- ◆ **Note:**

At extremities requirements for MSC approach are sometimes not respected (see next slide)



Master sintering curve analysis: Limitations

- ◆ Essential to the MSC approach are the assumptions that allow for a separation of ρ - and (T, t) -dependent variables
 - ➔ Q can be reasonably interpreted as apparent activation energy when the data are well-collapsed onto single MSC
 - ➔ otherwise, it implicitly includes other unmodeled contributions (e.g. dominant mechanism change, abnormal grain growth, plastic deformation)
- ◆ Changes of dominant mechanisms may be accounted for by splitting the MSC
- ◆ Construction of iso-density t - T curves does not account for nucleation-growth dependent processes (e.g. complexion transitions)



The end

What was on the
- MENU -
today ?

◆ Summary

- Sintering classes
- Driving forces for sintering
- Mass flow mechanisms
- Sintering stages and grain growth dynamics
- Analysis of sintering process by dilatometry

◆ Questions?

Sintering driving force – Surface energy calculation example

- ◆ **Example:**

Green body Al_2O_3

- $r = 1 \cdot 10^{-6} \text{ m}$ (particle radius)
- $M = 101.6 \text{ g/mole}$ (molar mass)
- $\rho = 3.987 \text{ g/cm}^3$ (density)
- $V_m = 25.6 \cdot 10^{-6} \text{ m}^3/\text{mol}$ (molar volume)
- $\gamma_{sv} = 0.7 \text{ J/m}^2$ (solid-vapor surface energy)

$$\rightarrow E_{s, \text{green}} = 53.8 \text{ J/mol}$$

- ◆ If the surface is reduced by sintering a dense cube without pores or grain boundaries, the surface energy becomes $E_{s, \text{sintered}} = 0.02 \text{ J/mol}$