
Understanding the behaviour of spins and charges in 
materials is at the heart of condensed matter physics. 
In the past few decades, a wide range of new materials 
displaying exciting physical phenomena has been dis-
covered and explored. Examples include van der Waals 
materials1, topological insulators2,3 and complex oxide 
interfaces4. There is intense ongoing activity focused 
on developing and understanding these materials and 
on creating new ones. The success of these efforts relies 
on advances in theory and materials synthesis and on 
the development of sensitive measurement techniques. 
Because spins and moving charges generate stray mag-
netic fields, a local and non-perturbative magnetic field 
sensor that can operate over a broad temperature range 
could be used to characterize the growing number of 
correlated and topological electron systems.

The spin of an elementary particle such as an elec-
tron or a nucleus can be used as an atomic-scale magnetic 
field sensor. Thus, spin-based magnetometry techniques, 
such as muon spectroscopy, nuclear magnetic resonance 
(NMR) and neutron scattering5–7, give access to the 
magnetic structure of a material on the atomic scale. 
However, these techniques do not provide real-space 
imaging or sensitivity to samples with nanoscale vol-
umes. By contrast, techniques such as magnetic force 

microscopy, magnetic resonance force microscopy and 
scanning superconducting quantum interference devices 
(SQUIDs)8–12 allow real-space imaging of the magnetic 
fields emanating from nanoscale devices, but they have 
a finite size and act as perturbative probes and/or over a 
narrow temperature range. Magnetometry based on the 
electron spin associated with the nitrogen-vacancy (NV) 
defect in diamond (FIG. 1a) combines powerful aspects 
of both worlds. The NV spin is an atomic-sized sensor 
that benefits from a large toolbox of spin manipulation 
techniques and can be controllably positioned within a 
few nanometres of the system under study. In the dec-
ade since it was first proposed13,14 and implemented15,16, 
NV magnetometry has demonstrated a combination of 
capabilities that sets it apart from any other magnetic- 
sensing technique: room-temperature single-electron17 
and nuclear18 spin sensitivity; spatial resolution on the 
nanometre scale19; operation under a broad range of 
temperatures (from ~1 K to above room temperature20,21) 
and magnetic fields (from zero to a few Tesla22,23); and 
non-perturbative operation. However, only in the past 
few years has NV magnetometry begun to be used to 
explore condensed matter systems.

In this Review, we describe the application of NV 
magnetometry to the exploration of magnetic and 
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Abstract | The magnetic fields generated by spins and currents provide a unique window into 
the physics of correlated-electron materials and devices. First proposed only a decade ago, 
magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is 
emerging as a platform that is excellently suited for probing condensed matter systems;  
it can be operated from cryogenic temperatures to above room temperature, has a dynamic 
range spanning from direct current to gigahertz and allows sensor–sample distances as small 
as a few nanometres. As such, NV magnetometry provides access to static and dynamic 
magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has 
focused on proof‑of‑principle demonstrations of its nanoscale imaging resolution and 
magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron 
physics of magnets and superconductors and to explore the current distributions in 
low-dimensional materials. In this Review, we discuss the application of NV magnetometry to 
the exploration of condensed matter physics, focusing on its use to study static and dynamic 
magnetic textures and static and dynamic current distributions.
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electron-transport phenomena in condensed matter 
systems. We begin by briefly summarizing key NV 
properties and measurement techniques but refer the 
reader to existing reviews for more details24–29. This 
Review focuses on the material properties that can be 
extracted from the nanoscale magnetic fields accessi-
ble with NV magnetometry. The theoretical formalism 

for doing so is presented in BOX 1 (for static fields) and 
BOX 2 (for dynamic fields). The text is structured accord-
ing to four NV magnetometry application areas (FIG. 1a).  
We first describe NV magnetometry studies of static 
magnetic textures, highlighting recent experiments that 
focused on determining the nature of non-collinear 
ferromagnetic spin textures. In the following section, 

Figure 1 | Probing condensed matter physics using NV magnetometry. a | The S = 1 electron spin of the 
nitrogen-vacancy (NV) defect in diamond is a point-like magnetic field sensor that can be optically initialized and read 
out through its spin-dependent photoluminescence. As shown in the energy level structure, the spin is pumped into 
the |0〉 state by off-resonance optical excitation, the |±1〉 excited states can decay non-radiatively through metastable 
singlet states, and the ground-state spin can be manipulated by microwave excitation. The spin state can be detected 
through the emitted fluorescence, which is higher for the |0〉 state than for the |±1〉 states. In the context of probing 
condensed matter systems, NV magnetometry has been used to study static magnetic textures such as domain walls 
and skyrmions, magnetic excitations such as spin waves in ferromagnets, and static current distributions such as 
superconducting vortices and electrical noise currents in metals. b | The energy levels of the NV spin undergo a Zeeman 
splitting as a function of a magnetic field applied along the NV axis. c | NV centres can be brought within a few 
nanometres of the sample using different approaches. Three examples are shown: the sample can be fabricated directly 
on diamond89, a diamond nanostructure can be positioned on the sample100 or an NV centre can be used in a 
scanning-probe configuration21,58. ms, spin quantum number; ω±, electron spin resonance frequencies. Panel a is 
reproduced with permission from REFS 139,140, Macmillan Publishers Limited and Institute of Physics, respectively. 
Superconducting vortices image courtesy of www.superconductivity.eu.
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Box 1 | Measuring static fields

Here, we describe elementary considerations for the use of 
nitrogen-vacancy (NV) centres for imaging magnetic fields generated by 
static magnetic textures and current distributions.

Reconstructing a vector magnetic field by measuring a single field 
component
Because the NV electron spin resonance splitting is first-order sensitive to 
the projection of the magnetic field B on the NV spin quantization axis B||, 
this is the quantity typically measured in an NV magnetometry 
measurement16. It is therefore convenient to realize that the full vector 
field B can be reconstructed by measuring any of its components in a 
plane at a distance d from the sample (provided this component is not 
parallel to the measurement plane). This results from the linear 
dependence of the components of B̂ in Fourier space67,135, which follows 
from the fact that B can be expressed as the gradient of a scalar 
magnetostatic potential. Moreover, by measuring B||(x, y; z = d) we can 
reconstruct B at all distances d + h through the evanescent-field analogue 
of Huygens’ principle, a procedure known as upward propagation67. As an 
example, the out‑of‑plane stray-field component Bz(x, y; z = d + h) can be 
reconstructed from B||(x, y; z = d) using

Bz(k; d + h) = e–kh uNV · u
B||(k; d)ˆ

ˆ 	 (1) 

where uNV is a unit vector in the direction of the NV quantization axis, 
k = (kx, ky) is the 2D wavevector and u = (−ikx/k, −iky/k, 1). The full vector 
field follows from B̂(k) = uB̂z(k). We note that reconstructing the field at 
distances h < 0 (a procedure known as downward continuation) is 
hampered by noise for large wavevectors111,112.

Magnetic field generated by planar magnetic textures and current 
distributions
To illustrate which sample properties may be extracted from a magnetic 
field measurement, we consider the field generated by a surface 
magnetization m(ρ) = (mx,y(ρ), mz(ρ)) in the z = 0 plane, with ρ = (x, y).  
In Fourier space, the field is given by

B̂i(k, d) = Dij
m(k, d) m̂j(k), with Dij

m(k, d) = (μ0/2) uiujke−dk, (d >0)	 (2) 

where we use the Einstein summation convention for repeated indices. 
The corresponding real-space expression for Bz clearly illustrates its 
relation with the local spatial variations of the magnetization59:

Bz(ρ, d) = −μ0/2 [αz(ρ, d) • ∇2mz(ρ) + αx,y(ρ, d) • ∇ ∙ mx,y(ρ)], (d >0) 	 (3)

Here, the symbol • denotes a 2D convolution, and  
αz(ρ, d) = ℱ2

−1(e−kd/k) = 1/[2π(ρ2 + d2)1/2] and αx,y(ρ, d) = ℱ2
−1(e−kd) = d/[2π(ρ 2 + d2)3/2] 

are resolution functions’, with the NV–sample distance d determining 
the resolving power. 
Using a similar formalism, we can describe the field generated by a planar 
current distribution. We have denoted with ℱ2 the 2D Fourier transform. 
Any line current density can be expressed as the curl of an effective 
magnetic texture through J = ∇ × meff. For currents confined to the z = 0 
plane, we have meff = mz,eff ẑ and, consequently, ∇ × J = −∇2 mz,eff ẑ. In Fourier 
space, the last equation is equivalent to m̂z,eff = −εzljul Ĵj/k, where εzqr is the 
Levi-Civita symbol. Using equation 2 with mz,eff we get

B̂i(k, d) = Dij
J (k, d) Ĵj(k), with Dij

J (k, d) = −(μ0/2)uiulεzlje
−dk, (d >0)	 (4)

Similarly to equation 3, we arrive at the real-space expression

Bz(ρ, d) = (μ0/2) αz(ρ, d) • (∇ × J(ρ))z	 (5)

Extracting the quantities of interest
There is a crucial difference between magnetometry of planar 
magnetic textures and current distributions: whereas equation 5 
resembles Poisson’s equation for mz,eff and can be uniquely solved for 
J(ρ) from the stray field measured in a plane above the sample, this is 
not the case for m(ρ) in equation 3, because an infinite number of 

different magnetic textures can give rise to the same magnetic field 
(see the figure). An interesting parallel can be drawn with the familiar 
concept of gauge freedom in electromagnetism: equation 3 resembles  
Gauss’ equation Bz(ρ, d) = −∇ ∙ F, where Bz, F, mz and mx,y play the roles of 
the effective charge density, electric field, and scalar and vector 
potential, respectively59. Solutions can therefore be obtained via 
gauge-fixing, where the condition ∇ ∙ mx,y = 0 resembles the Coulomb 
gauge. Fixing the gauge implies fixing the helicity γ, which denotes the 
angle between the wavevector and the plane of rotation of the 
magnetic moments. For the Coulomb gauge, γ = ±π/2.

The figure shows two magnetic textures and a current distribution 
producing the same stray field. The out‑of‑plane magnetic texture 
mz(ρ) and the in‑plane magnetic texture mx,y(ρ) give rise to the same 
stray field. The two spin textures are related through a gauge 
transformation. The in‑plane current distribution Jx,y(ρ) giving rise to the 
same field can be expressed as the curl of mz. These plots also illustrate 
that fast modulations in the magnetization or current density are 
suppressed at distances larger than the wavenumber of the 
modulation; the inset in the figure shows a representation of this 
filtering process in Fourier space.
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we discuss the dynamic magnetic fields produced by 
the excitations of magnetic systems, highlighting the 
application of NV magnetometry to probing spin waves 
in ferromagnets. We then examine the fields generated 
by static current distributions and the first attempts to 
use NV defects to image current distributions in con-
densed matter systems. In the next section, we consider 
the magnetic field fluctuations created by current fluc-
tuations in electrical conductors, which can reveal the 
nature of electron transport at the nanoscale. Finally, we 
present an outlook for future experiments.

Magnetometry with NV centres in diamond
The NV centre is a lattice defect in diamond (FIG. 1a) with 
remarkable properties. The negatively charged NV state 
has an S = 1 electron spin that can be initialized through 
incoherent optical excitation and read out through 
spin-dependent photoluminescence26,28,30. The electron 
Zeeman interaction provides sensitivity to magnetic fields 
(FIG. 1b). Three complementary magnetic-sensing proto-
cols24–29 yield a dynamic frequency range spanning from 
direct current (DC) up to ~100 GHz. First, a measurement 
of the NV electron spin resonance (ESR) frequencies ω±, 
typically done by sweeping the frequency of a micro-
wave drive field and monitoring the spin-dependent  
photoluminescence30, yields the DC magnetic field  
B through the relation ω± = D ± γB (for a magnetic  
field oriented along the NV axis), where D = 2.87 GHz  
is the zero-field splitting and γ = 2.8 MHz G−1 is the elec-
tron gyromagnetic ratio. Second, the transverse spin 
relaxation rate, which can be characterized by period-
ically flipping the phase of a spin superposition using 
microwave π‑pulses (a technique known as dynamical 
decoupling31–34), is sensitive to magnetic fields at the spin-
flip frequency. Third, the longitudinal spin relaxation 
rates, typically measured by preparing a spin eigenstate 
and monitoring the spin populations as a function of 
time (a technique known as NV relaxometry), are sen-
sitive to the magnetic field power spectral density g(ω±). 
The final technique makes the NV centre a field-tunable 
spectrometer that allows measurements of frequencies  
all the way up to ~100 GHz (REF. 35).

The frequency resolution of the NV centre as a mag-
netic field spectrometer depends on the sensing proto-
col. Dynamical decoupling schemes provide a frequency 
resolution that is typically in the order of kilohertz, lim-
ited by the decoherence time and ultimately by the life-
time of the NV spin26,36–38. Recently developed protocols 
that store information in proximal nuclear spins with 
longer coherence times (such as correlation spectro
scopy39) or that synchronize the repetition of a meas-
urement sequence with a target frequency40,41 have been 
able to resolve Hz‑broad lines. The spectral resolution 
of NV relaxometry is typically limited by the NV spin 
dephasing rate36, which is approximately 100 kHz.

The typical sensitivities of magnetic sensing based on 
single NVs range from tens of μT Hz−1/2 for DC fields to 
tens of nT Hz−1/2 for alternating current (AC) fields, but 
these numbers strongly depend on experimental param-
eters such as the NV centre coherence time (which can 
be substantially reduced by fluctuating spin baths at the 
diamond surface for near-surface NV centres19,42), the 
NV spin manipulation technique, the photon collection 
efficiency and the use of specialized spin readout pro-
tocols43–51. Examples of such protocols include nuclear- 
spin-assisted readout48,52–54, in which the electron spin 
state is mapped onto the state of a nearby nuclear spin 
that is subsequently read out with high fidelity, and 
spin‑to‑charge-state conversion50, in which the NV spin 
state is mapped on the NV charge state, which can be 
read out with high fidelity. Using large ensembles27,55,56 
of NV centres can also enhance the sensitivity of NV  
magnetometry, bringing it to the picoTesla level.

Box 2 | Measuring dynamic properties

The nitrogen-vacancy (NV) centre can act as a magnetic noise sensor and therefore 
allows the extraction of spectral information from a target system. Here, we relate 
the magnetic noise spectrum to the spin and current fluctuations in a material.

The NV centre as a probe of a magnetic power spectral density
For a stationary stochastic process, the power spectral density of the component i of 
the magnetic field is given by

gi(ω) = Bi(τ)Bi(0)e–iωτdτ∫∞

– ∞ 	 (6)

where the horizontal bar denotes a thermal average91 over the degrees of freedom of 
the material.

For simplicity, we use a reference frame in which the NV spin quantization axis is 
along z. Consequently, measurements of the spin coherence time of the NV are 
sensitive to gz(ωdd), whereas relaxation measurements probe gx(ωL) + gy(ωL), where  
ωdd and ωL are the dynamical-decoupling and Larmor frequencies, respectively26,136.

Expressing the spectral density in terms of spin–spin or current–current 
correlation functions
In general, the stray fields created by fluctuating magnetic dipoles and electric currents 
are radiative. However, in the near-field regime defined by d ≪ c/ω, where c is the speed 
of light, equations 2–5 remain valid137. Accordingly, we can express the magnetic field 
autocorrelator in equation 6 in terms of the spin–spin and current–current correlators 
Sm

pq and S J
pq, such that we arrive at

gi
m,J (ω, d) = 1/4π2∫Dip

m,J(k, d) Diq
m,J(−k, d) Spq

m,J(k, ω) dk 	 (7)

Note that Dij
m,J acts as a filter in Fourier space, analogous to form factors in other 

magnetometry techniques such as NMR6 and neutron scattering122. For translationally 
invariant systems, the correlators are given by91

δJp(k, τ)δJq(–k, 0) e– iωτdτSJ
pq(k, ω) = ∫

∞
– ∞

δmp(k, τ)δmq(–k, 0) e–iωτdτSm
pq(k, ω) = ∫

∞
– ∞

	 (8)

with the symbol δ denoting the deviation from the value at equilibrium.

Expressing the correlation functions in terms of the dynamic susceptibility
To formulate the magnetic noise emanating from a specific system such as a magnet 
or an electrical conductor, we use the fluctuation-dissipation theorem90,91,138 to link 
the correlation functions in equation 8 to the imaginary part of the dynamical 
susceptibility χpq

m,Jʹʹ(k, ω):

Spq
m,J(k, ω) = 2ħ(n(ω, T) + 1) χpq

m,Jʹʹ(k, ω)

	

(9)

where n(ω, T) = (e(ħω−μ)/kT − 1)−1 is the Bose factor, T is the temperature and μ is the 
chemical potential. Spq(ω >0) describes emission processes, with the +1 term in 
equation 9 representing spontaneous emission into the spin or electron bath. For 
absorption processes (corresponding to Spq(ω <0)) describing energy transfers from the 
bath, the +1 term is absent. Examples of χpqʹʹ for different materials are mentioned in  
the main text. For collinear ferromagnets, χpq

mʹʹ can be described by the spin-wave 
dispersion89. For currents, χpq

Jʹʹ can be related to the real part of the electrical 
conductivity120, as discussed in the main text. In the case of NV centres, absorption 
and emission processes can be associated, for example, with 0 → ±1 and ±1 → 0 
transitions, respectively. The transition rates for absorption and emission in the 
relaxation matrix89 can be considered equal at room temperature, where kT ≫ ħω.
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NV centres can exist stably only a few nanometres 
below the diamond surface and can therefore be brought 
within extreme proximity to the sample. This is crucial 
for NV magnetometry studies of condensed matter sys-
tems, because the NV–sample distance d plays a key 
role in determining the ability to detect and resolve the 
magnetic properties. This role is clearly illustrated by the 
expression for a magnetic field generated by a planar spin 
texture (equation 3) or current distribution (equation 5). 
The ability to resolve spatial variations in the spin tex-
ture or current distribution is limited by the convolution 
with the so‑called resolution functions αz and αx,y, which 
are Lorentzian-like functions with a width proportional 
to d. This convolution reflects the fact that spatial varia-
tions in the magnetization or current distributions can be 
resolved only if d is small enough. The role of d can also 
be appreciated from the expressions for the stray field 
in the Fourier domain (equations 2 and 4), which show 
that spatial variations in magnetic textures or current dis-
tributions with wavenumbers k ≫ 1/d generate magnetic 
fields that are exponentially suppressed.

Getting NV centres close to the sample is therefore 
key to high-resolution spatial imaging (FIG. 1c). The most 
straightforward technique to achieve small NV–sample 
distances is to deposit the sample directly on a diamond 
containing shallowly implanted NV centres. The mag-
netic fields emanating from the sample can then be 
measured at the sites of these NV centres. If a material 
cannot be deposited directly on diamond, as is the case, 
for example, for materials that require epitaxial growth 
on a lattice-matched substrate, NV‑containing diamond 
particles, such as nanocrystals or microfabricated nano-
structures57, can be deposited on the material13,20,46,58–60. 
Scanning-probe magnetic imaging can be achieved in 
several ways: by attaching an NV‑containing nano
diamond to an atomic force microscope tip13,16,60; by 
microfabricating an all-diamond tip hosting a shallow 
NV centre20,58,61; and/or by fabricating the sample itself 
on a sharp tip58,59,62,63. Because of the importance of 
knowing the precise distance between the NV centre and 
the sample for the interpretation of the measured field 
data, several methods have been developed to determine 
d with a precision of a few nanometres. One possibility is 
to rely on the strong dependence on d of the NMR signal 
from protons located at the diamond surface38 (as dis-
cussed below). Other methods estimate d by measuring 
the field from a calibration sample64,65.

Probing static magnetic textures
Determining the static spin configuration of a magnetic 
system is a central problem in condensed matter physics 
and is crucial for the development of magnetic devices. 
Powerful techniques for real-space probing of nano
scale magnetic textures include magnetic force micro
scopy, X‑ray magnetic circular dichroism66 and scanning 
tunnelling microscopy. NV magnetometry provides an 
alternative approach that is magnetically non-perturba-
tive and works under a wide range of magnetic fields and 
temperatures. However, a challenge for magnetometry is 
that reconstructing a magnetic texture based on stray-
field measurements is an example of an underconstrained 

inverse problem59,67, because an infinite number of mag-
netic textures can give rise to the same stray field (BOX 1). 
Nevertheless, high-resolution, quantitative stray-field 
measurements can be used to reconstruct static magnetic 
textures under the appropriate assumptions, as discussed 
in this section.

Equation 3 explicitly shows that the stray field gen-
erated by a planar magnetic texture is determined by 
the spatial derivatives of the local magnetization. This 
sensitivity to spatial variations of the magnetization 
has motivated several NV experiments addressing the 
physics of domain walls in ferromagnets59,60,68–73, which 
connect regions with different magnetization orienta-
tions. Domain walls are well suited to NV magnetometry 
because their typical widths (~10 nm)70 match achievable 
NV–sample distances and thus domain walls generate 
easily detectable magnetic fields. A key topic of interest 
is to determine the nanoscale spin texture of a magnetic 
domain wall, which is characterized by the helicity and 
chirality of the domain wall74. The helicity describes 
the angle between the plane of rotation of the magnetic 
moments and the propagation vector75, whereas the 
chirality describes the sense of rotation of the magnetic 
moments within this plane (FIG. 2a). The determination of 
the spin texture of a domain wall provides fundamental 
insight into the magnetic anisotropies of a material and 
the underlying exchange energies. Furthermore, the spin 
texture determines the response of a domain wall to elec-
trical currents76,77, which is interesting for applications in 
race-track memories78.

NV magnetometry studies68,72 of thin films of  
X/CoFeB/MgO (where X = Ta, TaN or W) and  
Pt/Co/AlOx with perpendicular magnetic anisotropy 
demonstrated that the nature of a domain wall can be 
determined under the assumption that the out‑of‑plane 
component of the magnetization profile across the 
domain wall is known (FIG. 2b). Following equation 3, this 
assumption fixes the spatial profile of the ∇2mz term. Thus, 
different domain-wall helicities, which enter through 
the ∇ ∙ mx,y term, give rise to distinct magnetic field pro-
files. Remarkably, even for ultra-thin magnetic films  
(<1 nm), the quantitative accuracy of NV magneto
metry is sufficient, under this assumption, to distinguish 
between domain walls of different helicity68.

Magnetic skyrmions are nanoscale spin textures char-
acterized by a topological number that is invariant under 
continuous deformations74,79. A skyrmion creates a region 
of reversed magnetization in an otherwise uniform mag-
net and is characterized by a helicity and a chirality, sim-
ilar to domain walls74. Skyrmions can occur as ground 
states of 2D magnetic systems in the presence of chiral 
magnetic interactions such as the Dzyaloshinskii–Moriya 
interaction. They are promising candidate data bits 
because they can be very small (a few nanometres in diam-
eter) and can be manipulated with fairly low currents. 
However, determining the spin texture of technologically 
interesting skyrmions in thin magnetic films is challeng-
ing80 owing to the need for a resolution of ~10–100 nm  
and magnetic field compatibility of the probing tech-
nique. Recently, this challenge was addressed using 
NV magnetometry59. By studying the stray magnetic 
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field produced by room-temperature skyrmions in  
Pt/Co/Ta multilayers, it was noted that equation 3 resem-
bles Gauss’ equation and can therefore be solved using a 
procedure similar to gauge-fixing in electromagnetism 
(BOX 1). For instance, assuming the Bloch gauge, defined 
by the condition ∇ ∙ mx,y = 0, the skyrmion helicity is 
fixed to γ = ±π/2, because in momentum space k ∙ mx,y = 0 
(FIG. 2a). In essence, the infinite set of spin textures com-
patible with a given stray field can be sorted by means 
of the helicity of the structure. Arguments based on the 

unique topology of the skyrmion were used to select the 
energetically stable solutions among all the possible spin 
textures, and the skyrmion texture could be numerically 
determined from stray-field measurements by using 
a steepest descent algorithm, without any additional 
assumptions on the texture profile59. An exemplary spin 
texture reconstruction, obtained by fixing two different 
gauges, is shown in FIG. 2c.

Stray-field maps can thus be used to reconstruct pla-
nar spin textures, provided that appropriate assumptions 
are made. The quantitative nature of the measurements 
and the capability of NV sensors to come extremely close 
to the sample are crucial for determining the structure 
of a nanoscale spin texture. The large fields generated by 
spin textures such as domain walls generally benefit the 
image acquisition time, although they can also present 
a challenge, because a large component of the field per-
pendicular to the NV axis quenches the NV spin contrast 
(the tolerance for misalignment of the field with respect 
to the NV axis is less than ~10° for total fields B > 100 G; 
see REF. 81 for details). Further applications include the 
imaging of magnetic hard disk write heads and hard disk 
drive data bits60,82,83; the imaging and control of optically 
driven ‘Barkhausen’ jumps of domain walls between pin-
ning sites71, which are crucial to understanding domain-
wall dynamics; and the detection of individual magnetic 
nanoparticles84. Finally, periodic modulations can be 
spotted even in materials featuring spin textures that 
would otherwise produce no stray field. An example is 
the weak ferromagnetism85 in classical antiferromagnets 
with chiral anisotropies. In these systems, a small canting 
angle between otherwise fully antiferromagnetically 
coupled moments can produce a stray field that can be 
detected with an NV magnetometer86.

Probing magnetic excitations
Correlated-electron systems support a wealth of magnetic 
excitations, ranging from spin waves to exotic fractional 
excitations in low-dimensional or geometrically frustrated 
spin systems87. The spectral function Sm(k, ω) of a spin 
system can be probed by measuring the magnetic field 
noise in the vicinity of the surface of the sample (equa-
tion 7). Quantities such as the lifetime or coherence time 
of the NV centre are related to transition rates between 
opposite states |i〉 and |f 〉 on the Bloch sphere. Such tran-
sitions are faster the larger the noise spectral density g(ω) 
at the probed frequency ω (BOX 2). The coupling between  
the spectral function of the material and the noise spec-
tral density is described in momentum space by a char-
acteristic form factor, D(k). Similar form factors play a 
major role in other types of spin-based magnetometers, 
such as neutron scattering88, NMR6 and muon spectro
scopy5. Form factors are crucial for understanding the 
sensitivity of a technique to spatial spin–spin fluctuations.  
For NV magnetometry, D(k) shows a peak89 at k = 1/d.

Insight into the spectral properties of a spin sys-
tem can be gained from the fluctuation–dissipation 
theorem, which in linear response theory relates the 
statistical thermal fluctuations to the imaginary part 
of the dynamical magnetic susceptibility χm,ʹʹ(k, ω)90,91.  
Below, we describe experiments that probed thermally 

Figure 2 | Imaging static magnetic textures with NV magnetometry. a | The schematic 
shows a Néel-like (i.e. cycloid) and a Bloch-like (i.e. spiral) spin configuration in 1D.  
For ∇ × mx,y = 0 (Néel gauge), the local moments rotate in a plane forming an angle γ = 0  
or γ = π with respect to the propagation vector k. For ∇ ∙ mx,y = 0 (Bloch gauge), the angle  
is γ = ±π/2. b | Magnetometry of a Bloch-type domain wall in a Ta/CoFeB/MgO microbar. 
The right-hand panel shows the position-dependent Zeeman shift of a single 
nitrogen-vacancy (NV) spin in a diamond nanocrystal attached to a sharp tip, which is 
scanned over the sample. The left-hand panel presents individual electron spin 
resonance spectra for three pixels. The NV–sample distance is d = 123 nm (REF. 68).  
c | The top image shows the simulated out‑of‑plane component of the stray magnetic 
field, Bz, originating from ten layers of thin (1 nm) Co patterned in the shape of a disc with 
a saturation magnetization of 6 × 105 A m−1. The magnetization is uniform throughout the 
film thickness. The distance between the NV centre and the magnetic surface is d = 3 nm. 
The bottom images display two examples out of the infinite possible spin configurations 
that produce the same Bz; the two solutions have been reconstructed from the magnetic 
field map imposing the Néel gauge for the image on the left and the Bloch gauge for the 
image on the right, following the theory outlined in REF. 59., mx,y, in‑plane magnetic 
moments; mz, out‑of‑plane magnetic moment; RF, radio frequency. Panel b is adapted 
from REF. 68, Macmillan Publishers Limited. 
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fluctuating as well as driven spin systems. We start by dis-
cussing a thermally fluctuating paramagnetic spin bath 
before moving on to ferromagnets and then to the mag-
netic fields that are generated by ferromagnetic systems 
subjected to microwave drive fields.

As a simple example of the relation between ther-
mal spin fluctuations and the associated magnetic noise 
spectrum at the NV site, we consider an isotropic 2D 
paramagnetic spin system (for example, a nuclear spin 
bath). The noise spectrum is given by equation 7. In this 
case, Sm contains only one distinct transverse matrix 
element. The absence of spatial spin–spin correlations 
implies that Sm is independent of momentum and can 
therefore be taken out of the integral in equation 7. 
Consequently, the perpendicular-to‑plane magnetic noise  
spectrum from a 2D paramagnetic layer is simply given38 
by gz(ω, d) = 3μ0

2/(64πd4) ∙ (2kBT)/ω ∙ χm,ʹʹ(ω) for an exter-
nal magnetic field oriented along z and for kT ≫ ħω. Here, 
χm,ʹʹ is the dissipative part of the transverse dynamical sus-
ceptibility (equation 9), which has a peak at the nuclear 
Larmor frequency. The power contained in this peak 
can be obtained from the longitudinal (Curie–Weiss) 
susceptibility χʹ(ω = 0) through the Kramers–Kronig91  
relation χʹ(ω = 0) = ∫ dω 2χm,ʹʹ(ω)/ω = ρ g2μN

2/4kBT (for a 
spin ½ system), where g is the nuclear g‑factor and μN 
is the nuclear magnetic moment. This way it is possi-
ble to compute the root mean square of the magnetic 
field noise for a semi-infinite layer of nuclear spins 

gz(ω, z)dz dωB2
z,rms = ∫∫∞

d . Such noise scales as ~1/d3 
and has been measured38 to be ~(300 nT)2 for a proton 
layer positioned 10 nm from the NV centre.

The thermal fluctuations of several nuclear spin baths 
have been probed using NV magnetometry, typically 
by measuring the NV spin decoherence rate while flip-
ping the NV spin in sync with the nuclear spin dynam-
ics38,49,63,92–96. It is interesting to note that the signal is 
dominated by nuclear spins within a volume set by the 
distance from the NV centre, which can be as small as a 
few nanometres. A recent example in condensed matter 
is the NV‑based detection of the quadrupolar resonance 
of boron spins in a monolayer of boron nitride97 (FIG. 3a).

Moving to correlated-electron spin systems, ferro-
magnets constitute an excellent testbed for NV magneto-
metry, because their correlated nature leads to spin–spin 
correlations on length scales that are readily accessible 
with an NV sensor (FIG. 3b). In particular, the long-wave-
length fluctuations perpendicular to the quantization axis 
of the ferromagnet can be tuned into resonance with the 
NV centre transition frequencies by means of an applied 
magnetic field89. We can therefore express the relevant 
transverse fluctuations S⊥

m(k, ω) in terms of the dissipa-
tive part of the transverse dynamic susceptibility of the 
ferromagnet χ⊥ʹʹ(ω, k) (BOX 2). As an example, we con-
sider an isotropic 2D ferromagnetic film that is homoge-
neously magnetized by an in‑plane external field. If we 
assume that out‑of‑plane fluctuations are suppressed by 
the demagnetizing fields that they create, χ⊥ʹʹ(ω, k) has 
only one distinct element. This element describes the 
in‑plane fluctuations generated by spin-wave excitations 
and can be approximated by a peak centred at the spin-
wave dispersion ωk = Dsk2, where Ds is the spin stiffness; 

thus, χ⊥ʹʹ(ω, k) ~ δ(ω − ωk)98,99. The magnetic noise spec-
trum at the NV site is obtained by substituting χ⊥ʹʹ(ω, k)  
into equations 9 and 7. Unlike in the paramagnetic spin 
system, the magnetic noise spectrum of the ferromagnet 
is broad in frequency owing to the continuous nature 
of the spin-wave band, and its power spectral density 
decreases above frequencies corresponding to spin-wave 
excitations with wavenumbers larger than the NV–film 
distance89 (FIG. 3c). Measurements of the relaxation rates 
of NV spins above permalloy89 and yttrium iron garnet 
(YIG) films100 (FIG. 3d) are excellently reproduced by mod-
els based on thermally excited spin waves in these films, 
demonstrating that the GHz magnetic fields emanating 
from magnetic samples provide a unique window into 
their magnetic excitation spectra.

Several NV magnetometry experiments have started 
to explore spin-wave physics in ferromagnets excited with 
microwaves89,100–105. In REF. 101, it was shown that driv-
ing the ferromagnetic resonance of a YIG film reduced 
the photoluminescence of non-resonant NVs located 
~100 nm from the film. This phenomenon provides a 
convenient new technique for the broadband detection 
of spin-wave resonances, which does not rely on matched 
ESR and ferromagnetic resonance (FMR) frequencies. 
This technique was used to study the rich FMR modes of 
micrometre‑thick YIG films102. Further experiments100,103 
unravelled the mechanism underlying this FMR-drive-
induced noise, showing that FMR driving generates 
high-energy spin waves that can be resonant with the NV 
ESR frequency, thereby inducing NV spin relaxation and 
suppressing the NV photoluminescence. These measure-
ments constitute the first steps towards characterizing 
spin-wave spectra with NV magnetometry.

Measurements of the magnetic fluctuations gener-
ated by a spin system can be used to extract the chemical 
potential of a spin-wave bath coupled to the NV cen-
tre, as was demonstrated in REF. 100, in which magnetic 
noise measurements were linked for the first time to a 
key spin-transport quantity. In studying spin waves in 
a 20 nm‑thick YIG film, it was also found that driving 
the FMR provides an efficient method for increasing 
the spin chemical potential. A comparison of the drive-
power dependence of this process to a two-fluid theory 
of the coupling between the FMR and the thermal spin-
wave bath yielded an experimental estimate of the ‘ther-
momagnonic torque’ between the FMR and the thermal 
spin-wave bath. This quantity is interesting for the grow-
ing field of spin caloritronics106, which focuses on the 
interaction between heat and spin waves.

The magnetic fields generated by spin waves or by 
other forms of collective spin dynamics, such as domain-
wall motion, could be interesting for technological appli-
cations. In particular, such collective spin dynamics can 
locally amplify externally applied magnetic drive fields 
and may mediate coupling between spin qubits89,104,105. 
NV magnetometry measurements showed that the fields 
generated by such spin dynamics can easily exceed the 
external drive field89,104,105, leading to large locally gener-
ated microwave magnetic fields. Furthermore, if a prop-
agating spin-wave mode is excited by an external drive 
field, the mode may serve as a bus to deliver the field to 
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remote locations105, providing, for example, improved 
remote control of spin qubits such as the NV spin.

Static current distributions
We now turn to the application of NV magnetometry to 
the characterization of magnetic fields generated by static 
electrical current distributions. In mesoscopic condensed 
matter systems, the spatial distribution of electrical cur-
rents plays a prominent role in some of the most intrigu-
ing known physics phenomena. Examples include edge 
currents in quantum Hall systems and vortices in super-
conductors; van der Waals materials, such as graphene, 
also host a range of phenomena associated with inter-
esting current distributions, such as the Snell’s law for 
electrons107, viscous electron flow108, electron focusing109 
and Klein tunnelling110. Below, we describe how current 
distributions can be reconstructed from stray-field meas-
urements, providing a way to realize spatially resolved 
transport experiments, and we summarize the first steps 
of NV magnetometry in this field.

An advantage of studying currents is that 2D cur-
rent distributions can be uniquely reconstructed from 
the measurement of any component of the stray field 
in a plane above the sample (BOX 1). Inverting the con-
volution of the current distribution with the resolution 
function αz in equation 5 (BOX 1) is a simple operation in 
Fourier space. However, this procedure is an example of 
a downward continuation calculation, which is hampered 
by noise at high spatial frequencies67,111,112. To favour 
smooth solutions in the inversion, classical regulariza-
tion methods such as the Tikhonov method113,114 can be 
used. One possibility is to start from the real-space ver-
sion of equations 4 and 5 and minimize a cost function113 
that includes regularization terms proportional to Jj

2.  
Inversion procedures have been used to reconstruct the 
current flow in integrated circuits112, nanowires111 and 
graphene115. Measurements of the field generated by the 
flow of current around defects in a graphene flake (FIG. 4a) 
nicely illustrate the sensitivity of the out‑of‑plane stray-
field component to the local vorticity ∇ × J, as described 

Figure 3 | Probing thermally excited spin systems. a | The schematic shows a flake of hexagonal boron nitride (h‑BN) 
on top of a diamond containing shallow nitrogen-vacancy (NV) centres97. The NV centres were used to probe the 
nuclear spins in h‑BN flakes down to a thickness of one monolayer97. b | Schematic showing an NV centre probing a 
long-wavelength spin fluctuation with momentum k in a collinear ferromagnet. c | Schematic of the spectral functions 
and associated stray-field magnetic noise spectra for a paramagnetic spin bath (PM) and a correlated-electron spin 
system (FM). The red peak is the transverse spectral function S+,−

m (ω) = Sx,x
m (ω) = Sy,y

m (ω) for uncorrelated spins, showing a 
simple peak at the Larmor frequency for a bias field (Bext) of 200 G. The green-shaded curve depicts the spectral function 
Sy,y

m (ω) for spins in a 20 nm magnetic yttrium iron garnet (YIG) film100 (y is the in‑plane direction transverse to the 
magnetization). The energy minimum of the spectral function in this case does not coincide with that for paramagnetic 
spins owing to dipolar energies. The blue-shaded curve shows the stray-field noise resulting from Sy,y

m (k, ω) after the 
filter functions in equation 7 have been used. The red and yellow lines represent the transition frequencies (ω0,±1) of the 
NV centre. d | The colour map shows the calculated power spectral density g(ω) of the magnetic field created by 
thermal spin waves in the YIG film at a distance d = 110 nm (the thickness of the film is 20 nm). The white dashed line 
indicates the bottom of the spin-wave band, which coincides with the ferromagnetic resonance. The measurements of 
the NV spin relaxation rates shown in the right-hand panel quantify the power spectral density along the NV electron 
spin resonance frequencies100. Panel a is adapted with permission from REF. 97, AAAS. The right part of panel d is 
adapted with permission from REF. 100, AAAS.
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by equation 5. These measurements represent the first 
steps towards probing current distributions in condensed 
matter systems by NV magnetometry.

In recent experiments, NV‑based magnetic imaging 
was extended to cryogenic temperatures and used to 
investigate vortices in type-II superconductors20,21,116. 
Superconducting vortices are small regions of size ξ 
(the coherence length) in which the superconducting 
order parameter is suppressed, plus a larger region of 
size λ (the penetration depth) in which a persistent cur-
rent circulates117. When determining the stray field B,  

for distances d ≫ λ, the microscopic details of the vortex 
are irrelevant, and the vortex stray field resembles that 
of a magnetic monopole118, B = Φ0/2πr2 r˄, where Φ0 is the  
flux quantum and r is the distance to the monopole.  
The radial nature of the stray field is a consequence  
of the Meissner effect118, which prevents the field lines 
from closing on themselves. High-resolution mag-
netic field maps taken ~70 nm above a YBa2Cu3O7–δ 
film (FIG. 4b) showed21 that the description in terms of 
monopoles breaks down for films with a thickness t ≪ λ  
and that for these films, a correction, called the Pearl 

Figure 4 | NV magnetometry of static current patterns. a | Measurements of the current flowing in a graphene flake.  
A schematic depiction of the measurement setup is shown in the top panel: a graphene flake is deposited on a diamond 
chip containing a near-surface layer of nitrogen-vacancy (NV) centres115. The NV–graphene distance is ~20 nm, and a gold 
stripline is used for microwave (MW) delivery115. The middle panel shows the measured in‑plane (y) and out‑of‑plane 
components (z) of the stray magnetic field (B) generated by a 0.8 mA current flowing in the graphene flake115. The bottom 
panel displays the magnitude of the current density (J) in the graphene flake, reconstructed from the measured components 
of the magnetic field. b | Cryogenic scanning NV magnetometry measurement of the stray field generated by a vortex in a 
100 nm‑thick superconducting YBa2Cu3O7–δ (YBCO) film. The projection of the field on the NV quantization axis is shown in 
the top panel. The NV–superconductor distance is ~70 nm. The middle panel shows a sketch of the magnetic field 
generated by a vortex within the monopole (dashed lines) and Pearl (solid lines) approximation. The red arrows show the 
location of the line trace indicated by the white dashed line in the top panel; the NV orientation is also shown. In the bottom 
panel, the stray field measured along the white dashed line in the top panel (dots) is compared with the stray field 
calculated within the monopole (dashed lines) and Pearl (solid lines) approximations21. I, current; PL, photoluminescence. 
Panel a is adapted from REF. 115. Panel b is adapted from REF. 21, Macmillan Publishers Limited.
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correction119, has to be included to correctly describe the  
vortex stray field (FIG. 4b). The resulting quantitative stray-
field measurements allowed the extraction of the London 
penetration depth. These experiments are the first exam-
ples of high-resolution, quantitative NV‑based magnetic 
imaging at low temperature and open the way for the 
measurement of a wealth of interesting low-temperature  
physics in quantum systems and devices.

Dynamics of the electron liquid
Similarly to static current patterns producing static mag-
netic fields, thermal currents produce magnetic noise 
fields that can be characterized using NV magnetometry. 
Below, we discuss how the noise generated by electronic 
currents can provide information about the energy–
momentum dependence of the electrical conductivity 
of a material.

The magnetic fields generated by thermal noise cur-
rents can be expressed in terms of the dissipative part 
of the dynamical current–current susceptibility, χʹʹ,J,  

using the fluctuation–dissipation theorem120 (equation 9).  
This susceptibility describes91 the linear change in the 
expectation value of the current density δJ‾(‾r‾,‾t‾)‾ due to 
a term that couples to it in the Hamiltonian. Because 
the magnetic vector potential A couples to the current 
density, it is possible to define δJ‾(‾k‾,‾ω‾‾) = χJ(k, ω)δA(k, ω). 
Because the electrical conductivity σ is defined by 
δJ‾(‾k‾,‾ω‾‾) = σ(k, ω)δE(k, ω), where E is the electric field, 
and because we can use a gauge120 in which E = iωA, we 
can conclude that χʹʹ,J(k, ω) = ωσʹ(k, ω). Therefore, meas-
urements of the stray magnetic noise from a conducting 
material can provide insight into the energy–momentum 
dependence of the real part of the electrical conductivity. 
For isotropic media, χJ has only two distinct matrix ele-
ments, which correspond to longitudinal and transverse 
current fluctuations (that is, fluctuations with k × J = 0 
and k ∙ J = 0, respectively). Furthermore, longitudinal 
current fluctuations are suppressed because of corre-
sponding screening charge fluctuations120. The magnetic 
noise can thus be expressed in terms of the real part of 
the transverse conductivity, σʹT.

As an example, by combining equations 7, 8 and 9, 
the power spectral density of the stray-field magnetic 
noise perpendicular to a 2D conductor is given by 
g d

2D(ω, d) = 2kBTΣi=x,y ∫σʹ,T(k, ω) Dzi
J (k, d) Dzi

J (−k, d) d2k  
for kBT ≫ ħω. The k2e−2kd term in the form factor  
DJ(k, d) DJ(−k, d) shows that the noise is once again 
dominated by correlations on the scale of the NV–
sample distance. If d ≫ lm, where lm is the electron 
mean free path, the noise is mainly associated with 
diffusive electron transport120,121 (FIG. 5a). In this case, 
σʹ,T(k, ω) can be replaced by the Drude conductivity 
σ(k → 0, ω) = ne2τ/m(1 − iωτ), where n, m, e and τ are the 
electron density, mass, charge and scattering time, respec-
tively; this leads to a characteristic scaling of the power 
spectral density gd

2D ∝ 1/d2.
In the opposite limit of ballistic transport, for which 

d ≪ lm (FIG. 5a), the correlation time of the current– 
current fluctuations probed by the NV sensor is lim-
ited121 by the time it takes an electron to ballistically 
traverse a distance d, thus it is possible to use the replace-
ment τ ≈ d/vF, where vF is the Fermi velocity, into the 
expression for the Drude conductivity to get g d

2D ∝ 1/d.  
For the hydrodynamic limit108, in which electron– 
electron interactions dominate electron scattering, the 
scaling of σʹ,T(k) was derived120 by finding solutions to 
the Navier–Stokes equations for incompressible fluids.  
The scaling of the noise with d thus provides insight 
into the nature of electron transport on the scale of d 
(FIG. 5b). The possibility of selecting different k‑sectors of 
σʹ,T(k) simply by tuning the distance between the sam-
ple and sensor is ultimately related to the fact that the 
momentum filter DJ(k, d) contains the Laplace transform 
kernel e−kd. A set of measurements of g(ω) at different d 
can therefore be used to obtain information about the  
conductivity σʹ,T(k) over a range of wave vectors120.

The first NV experiments probing thermal cur-
rents121 measured the magnetic noise from silver films 
as a function of d. The noise from polycrystalline silver 
films was found to scale with d in the characteristic way 
of diffusive electron transport, whereas single-crystal 

Figure 5 | Magnetic noise generated by current 
fluctuations in an electron liquid. a | Schematic 
illustration showing the diffusive and ballistic electron 
motion in a metal121. These regimes are characterized by 
d ≫ lm and d ≪ lm, respectively, where lm is the electron 
mean free path and d is the distance between the 
nitrogen-vacancy (NV) centre and the sample. b | The plot 
shows the theoretically expected dependence on distance 
of the magnetic noise generated by a metallic film in the 
2D limit, after REF. 120. The curves show, schematically, the 
magnetic noise as a function of the sensor–sample distance 
d in various transport regimes; lm and lee are the mean free 
paths due to extrinsic electron scattering (caused by 
phonons and/or impurities) and intrinsic (interparticle) 
electron scattering, respectively. The blue curve describes 
the situation when lee > lm and the hydrodynamic regime is 
absent. g(ω), power spectral density. Panel a is adapted with 
permission from REF. 121, AAAS. Panel b is adapted with 
permission from REF. 120, American Physical Society.
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films showed a deviation from this scaling behaviour 
at small d, which was attributed to ballistic electron 
transport. This method of locally characterizing the 
conductivity opens the way to the study of a wide range 
of systems with interesting and potentially gate-tunable 
electron-transport behaviours, such as quantum Hall 
systems and/or van der Waals materials.

Summary and outlook
In this Review, we have described how NV magnetom-
etry has begun to explore the rich world of condensed 
matter physics. A powerful aspect of NV sensors is 
that they are point-like, so that the material properties 
accessible to NV magnetometry can be identified sim-
ply by deriving expressions for stray magnetic fields. 
We expressed these fields in terms of the properties of 
magnetic and electronic systems by formulating the form 
factors of the technique, thereby following an approach 
similar to that used in other spin-based magnetometry 
methods5,6,122. This approach illustrates that NV mag-
netometry is most effective in probing static or dynamic 
magnetic and electronic phenomena that spatially vary 
on the scale of the NV–sample distance. Furthermore, 
we have discussed how magnetometry is, in general, well 
suited for unravelling static mesoscopic planar current 
distributions, as these can be uniquely reconstructed 
from stray-field measurements. By contrast, uniquely 
reconstructing a spin texture from field measurements 
requires additional assumptions or knowledge of some 
system properties.

Many exciting opportunities for NV magnetometry 
applied to condensed matter systems lie beyond the 
applications described in this Review. Imaging the nano-
scale spin textures and excitations of more exotic corre-
lated-electron systems, such as complex oxide interfaces, 
multiferroics and recently discovered monolayer van der 

Waals magnets123,124, is likely to yield many interesting 
results. We anticipate a growing range of applications 
for NV centres for probing spin-wave physics, includ-
ing nanoscale imaging of spin-wave transport and local, 
quantitative characterization of spin-transport param-
eters. The ability to locally probe the susceptibility of 
a material to microwave magnetic fields with ampli-
tude-sensitivity and phase-sensitivity64,89,111 may pro-
vide the opportunity to perform measurements similar 
to electrical microwave impedance microscopy125. The 
broad temperature range over which NV sensors can 
operate combined with their ability to measure temper-
ature in situ126 makes them well suited for probing mag-
netic phase transitions127, spin caloritronic phenomena106 
and, in general, the numerous magnetic systems with 
cryogenic Curie temperatures, as well as the low-tem-
perature physics of quantum materials and devices20,21,128. 
Recent work has also presented solutions to extend NV 
magnetometry to applied fields of a few Tesla, a range in 
which the NV transition frequencies begin to approach 
the 100 GHz limit22,23.

Looking further ahead, there are theoretically pro-
posed protocols that would allow measurements of real-
space two-point spin–spin correlation functions129, and 
the use of spin-wave excitations to mediate interactions 
between distant NV centres was discussed130. In addi-
tion, the spatial resolution of paramagnetic electron and 
nuclear spins can be considerably increased through, for 
example, the use of magnetic field gradients similar to 
those used for magnetic resonance imaging19,47. This may 
enable the extraction of lattice-scale information about 
the electronic structure of a material. Finally, beyond 
magnetic field sensing, the NV centre can be used as a 
local probe of thermal gradients46 and electric fields131,132, 
and its optical lifetime can be used to quantify the local 
photonic densities of states133,134.
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