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Supplementary Note 1. PENETRATION LENGTH MEASURED BY NV MAGNETOMETRY

In this section, we measure the Meissner screening of NbN electrodes with NV magnetometry and extract the
s

penetration length. We utilize a NV control sequence that only has the F-pulses at the start and the end (Ramsey
sequence), which directly measures the Meissner field generated by the SC, projected along the NV axis. The
measurements are done at external magnetic field B, = 0.5 mT where no vortex is present in either the JJ or the SC.
The bias current is zero. We show the z-component of the Meissner field around the junction at 4K (Supplementary
Fig. 1a), and 7K (Supplementary Fig. 1c). Stronger screening can be seen at 4K compared with 7K, indicating a
shorter penetration length.

To extract the absolute value of the Pearl length A,, the Meissner field b, is fit by numerically solving the 1D
London equation, which applies a SC strip that is narrow in the z-direction and long in the y-direction [1]. The
total magnetic field consists of the external field B, ¢, and the Meissner screening field. Using the second London

equation,
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where A\, = A2 /t is the pearl length, Ay is the London penetration length, ¢ is thickness of NbN, Jy(z) is the Meissner
sheet current of the NbN film, g is the vacuum permeability. The integral equation is solved by discretizing the
variables, and the Meissner field is compared with the measurement. We take a line cut of b, at about 500 nm away from
normal metal area, to avoid influence from the Josephson current. The b, is fit with Supplementary Supplementary
Eqn. 1 to extract \p, using B, ¢z¢ = 0.5 mT, L = 1.5 pm. We find A, = 4.7+ 0.4pm at 4 K (Supplementary Fig. 1b),
and 13.7 + 1.4 pm at 7 K (Supplementary Fig. 1d). The corresponding London penetration length is A, = 410+ 20
nm at 4 K and 690 £ 35 nm at 7 K. In comparison, previous indirect measurements of A, range from 1 to 5 pm at 4
K [2-5].

With these results we can calculate the Josephson penetration length, Ay = , /%. In our device, L = 1.5 pm,

thickness ¢ = 35 nm, assuming uniform J, = I./L at zero magnetic field, we find A; = 780 £ 40 nm at T =4 K, and
Ay=1470£ 75 nmat T =7 K.



Supplementary Figure 1. Penetration length measured with NV magnetometry. a, z-component of the Meissner
screening field b, over the JJ and the SC electrodes. The measurement is done at external field B, = 0.5 mT, and T = 4 K.
The solid lines indicate SC electrodes and the dashed line is the normal metal. b, Circles show the measured Meissner field b,
along the red line in (A), which is far away from the junction region. The line is the calculated magnetic field b, at the NV,
generated by the Meissner current using Biot-Savart law. The Meissner current is obtained using the fitting result of A, and
Supplementary Eqn. 1. Blue shaded area indicate the extent of the SC electrode. The kink in b, near z = 0 is a measurement
artifact. c-d, are similar results as a-b, but measured at T'= 7 K.



Supplementary Note 2. EVOLUTION OF JOSEPHSON CURRENT FLOW WITH EXTERNAL
MAGNETIC FIELD IN WEAK JUNCTIONS

In this section, we evaluate how external magnetic field B, contributes to the evolution of Josephson current flow
and JVs. As discussed in the main text, B, affects ¢.(x), the profile of the super current, and modify the number
of vortices trapped inside the junction. In the thin film, 1-D line junction (W <« L), and weak junction limit,
¢e(x) x B, - o(x), where o(z) is a non-linear function shown in Supplementary Eqn. 9 [6].

Here, we simplify o(z) to a linear function to more intuitively show the magnetic field effect, ¢.(x) = ZW%;%.
®, = B, - A is the magnetic flux through the junction, A is the junction area. This applies to JJs made with bulk
superconductors. Nevertheless it still captures the changes of the Josephson current flow with B,. In this model,
when B, reaches the critical current nodes ®, = n®, the n-th JV enters the JJ (Supplementary Fig. 2b).

Consider the Gibbs free energy of the junction without external bias current,

G(Biae) = 3+ [1:(22)(1 = €05 i) e

I.(®.) is the critical current when the external magnetic flux is ®,, which changes sign at &, = n®q (see Sup-
plementary Eqn. 3 and accompanying text). As a result, the ¢pias which corresponds to the free energy minimum
shifts by 7, and the local current density, o sin [@e () + Pbias] changes sign when a Josephson vortex enters/exits the
junction.

The periodicity of the oscillating Josephson current Jy (z) shrinks with increasing ®,, as seen by the current profile
at the critical current (Supplementary Fig. 2c, e), and at zero bias current (Supplementary Fig. 2d, f). The J,(z)
profile changes sign as ®, crosses the node from 0.99®( to 1.01®(, and around every n®, thereafter (Supplementary
Fig. 2d, ).

We note that in the thin film limit and weak junctions, the JVs enter the junction at critical current nodes B,, as
mentioned in the main text. But at the nodes, the magnetic flux through the effective area Aoz = L?/1.842, B,, - Aegt
is not exactly n®q [6]. For example, at By the magnetic flux through the effective area is 0.8173 ®q, as shown in
Supplementary Table 1. Nevertheless, the J, () periodicity and sign changes with B, still apply.

In summary, external magnetic flux manipulates Josephson current flow by changing the current profile and the
number of JV, making it an important control knob in engineering SC devices.
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Supplementary Figure 2. Evolution of Josephson current profile with external magnetic flux. a, Schematics of
Josephson current flow for ®, = 4®¢. Blue arrows on the device is how the current flows for Inias = 0. b, Line cut of J, at the
junction with various fields from zero-flux to ®, = 4®,. Shaded area indicates a JV. c,e Ivias = +|Ic| and d,f Ihias = 0 current
flow in different magnetic flux. c-d is flux between 0 to 1$y and e-f is flux between 1 to 2dg.



Supplementary Note 3. JOSEPHSON CURRENT FLOW AND SC PHASE DIFFERENCE ¢pi.s AT
FINITE MAGNETIC FLUX

In this section, we derive how the bias current Iy;,s controls the phase difference between SC electrodes ¢pias, at a
finite external magnetic field B,. We show (i) the bias current - ¢pnias relation at finite B, and (ii) the 7w phase shift
associated with each JV in the junction.

We consider the junction spans between z € [-L, L

2772
x = 0. We assume the critical current density is constant J., and start with the simplified case, ¢.(z) = 27r%%.
®, = B, - A is the magnetic flux through the junction, A is the junction area. This applies to JJs made with bulk

superconductors. The external bias current is

L/2 L/2 >, o
Thias = / J(x)dx = / J.sin (27r + ¢blas> dx = J.Lsinc (wq)z) - 8N Phias (3)
0
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], SO Pbias is the phase difference between SC electrodes at

This shows the sinusoidal current-phase relation still applies at finite field. Here I.(®,) = J.L - sinc (77%;) is the

critical current at finite flux ®,. As a result, ¢pias can be controlled by Ipias via

I,
@bias = arcsin (ICF£Z)> +nm (4)
where n is the number of JV, which shifts the phase difference by nw. Intuitively, each JV has 27 phase winding
around itself and this leads to 7 phase difference at the center of the junction x = 0.

The phase shift due to JV can also be understood from an effective Gibbs free energy of the junction. The bias
current adds a term to Eq. (2), giving

P
G= 27; . [Ic(q)z)(l — COS ¢bias) - Ibias¢bias] (5)
This is the well known “washboard” potential for biased JJ, and for the over-damped junction, the equilibrium ¢p;as

occurs at the local minima of the free energy ( 8555 = 0 and B‘Z)QG > 0). For odd number of JV at the junction,

I.(®.) < 0, which leads to the m phase shift when JV enters or exits the junction.
In the thin film weak-junction limit, ¢.(z) is given by Supplementary Eqn. 9. The total current is then given by
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Equation 4 can still apply in the thin film limit. We see that in the weak-junction limit, the dependence of the current
on phase remains sinusoidal even if J. depends on x. In particular, when J. is a constant, ¢, = 0, and the current
phase relation in Supplementary Eqn. 4 can apply.



Supplementary Note 4. THIN FILM JOSEPHSON JUNCTION AND EXTRACTING A¢, deq

In this section we show (i) transport evidence of the junction being in the thin film limit, and (ii) the fitting methods
to extract A¢ and ¢ei shown in Fig. 2d, h in the main text.

i. Thin film SC In a junction with W <« L, ¢.(x) can be derived from the z-direction screening currents in the
thin film SC leads, treated as semi-infinite strips with the boundary condition of zero Josephson current, Jy,(z) =0
at y = 0 (center of the junction). We assume the external contact electrodes are located at positions y = £H, with
H > L. To leading order all screening currents flow within the SC electrodes and hence the boundary condition. One
then finds, following Ref. [6, 7]

¢e(x,B,) = % co(rx/L) = ¢eo - o(mz/L),
n=oo . (9)
B L8 (2n + 1)¢

where @ is the flux quantum. o(¢) is an odd function of its argument and may be reasonably approximated by
o(¢) ~ sin (. The scale of ¢, is set by the quantity ¢eo = ¢elo—r/2 = 1.7B,L?/®,. In this model, the ¢, (z) is induced
by the screening current in the SC electrodes. Its shape is determined by the o(¢) function and its amplitude ¢eg,
is proportional to the magnetic field B,. As mentioned in the main text, this model does not include the Josephson
current induced phase in strong junctions.

Ref. [6] derived the critical current nodes B, in the thin film limit. The B, periodicity for the critical current
oscillation, in the limit of large magnetic field, is AB,, = 1.842®,/L?. Refs. [6, 8] showed that in the thin film
junction, the nodes B,, are not evenly spaced. In our device, the lithographically defined dimension is L = 1.5um,
thus AB should equal 1.88 mT. The AB,, = B, 1 — B, extracted from our measurement in Fig. 1b is given in the
table 1. The normalized AB,,/AB,, values are close to the theoretical values in Ref. [6].

units ABg | AB1 | ABs
mT 1.48 1.76 1.78
Normalized || 0.79 | 0.94 | 0.95

[ Theory [6] [[0.8173]0.9866]0.9946]

Supplementary Table 1. Spacing between the I. nodes AB,, = Bpt+1 — By,. Upper table, first line is in units of mT, second
line is normalized by ABo. Lower table shows theoretical values from Ref. [6].

We note that in most of the literature, a simplified model is used to estimate the periodicity of the Fraunhofer map.
It assumes magnetic field penetration through an area A = LW’ = L(W +2\1), where A, is the London penetration
length. So the magnetic field periodicity is ABgmA = ®g. This applies to JJs made with bulk superconductors
(AL > L). Translating this to the the thin film SC limit, we get an effective area Aoy = L?/1.842, and W/; = L/1.842.
Supplementary Fig. 5 shows the size of the JV in the y-direction agrees with this W/g.

ii. Extracting the ¢p,s in Fig. 2d

In Fig. 2b-c, the measurement is taken by subtracting the I;.s case by the zero bias case. To extract the effective
phase difference between SC electrodes ¢p;as, the experimental results are fit to the following equation,

]y(x) = Jc . [Sin(¢e(x7 Bz) + ¢bias) - Sin(¢e(x» Bz))] (10)

Here J. (critical current density) and @pias are the two fitting parameters, while L = 1.5 pm, B, = B, ex¢ = 0.95 mT
are fixed parameters. The fitting results at each I,s are shown in Supplementary Fig. 3.

iii. Extracting the ¢.g in Fig. 2h

In Fig. 2f-g, the measurement is taken by subtracting the Iy.s case by the —I.s case. The ¢eg shown in Fig. 2h
i8S Pt = %. The external magnetic field induced phase is @ext = 1?5;?
following equation,

. The experimental results are fit to the

]y(m) =J.- [Sin(¢e(xa Bz) + d)bias) - Sin(¢e(x7 Bz) - ¢bias)]
- 2J(' sin ¢bias : COS[¢e(z7 Beff)] (11)
= Jo - cos[de(, Bost)]



Here Jy and Beg are the fitting parameters, L = 1.5 pym is fixed. The fitting results are shown in Supplementary Fig.
4f-j.

In both cases of fitting ¢pias and ¢er, the portions of the reconstructed j,(z) with the distance to the edge of the
SC smaller than the NV stand-off distance are excluded from the fitting process, to avoid the ringing and distortion
effects of the reconstructed result near the edge.

a =l b 1=-0.751 c 1=0.75k
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Supplementary Figure 3. Extracting SC phase difference ¢n.s from current profile measured at different Ipias.
Current flow profile at the center of the JJ measured using the finite to zero bias current sequence, as described in Fig. 2b-c
in the main text. The grey areas which corresponds to regions closer to the JJ edge by the stand-off distance of the NV (x180
nm), are excluded from the fitting. The bias current in each panel is (a) —I., (b) —0.75- I, (c¢) 0.75- I. and (d) I.. The blue
circles represent the reconstructed j, at the junction, and the red lines represent the fit using sinusoidal current-phase relation
and ¢nias as fitting parameter. The extracted @nias is shown in Fig. 2d in the main text.



b 1401 ¢ 4.0 1 40 1
b, T I b, (M) b, (M)

SRR R

A7 1 W
EA 1 v r £l AR

B =1.33mT B =1.46 mT B =1.62 mT

z,ext h zext i z,ext

E
< :
> | -7 o Experiment".
- — Fit
] — Fitingrange ____ 5 5 5
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
X/L X/L X/L X/L

Supplementary Figure 4. Josephson current flow at various magnetic flux around B, = Bjy. a-e, show the spatial
maps of current flow and z-direction magnetic field measured using symmetric 4/Iy;as sequence as Fig. 2f-g in the main text,
at external field values as shown by the labels above. (a)-(c) are B. < By and 0-JV; (d)-(e) are B. > By and 1-JV. The
Josephson current flow switches sign from 0- to 1-JV. (a) and (e) are the same as Fig. 2f and g in the main text. The
bias current used during the measurement in (a) Ivias/Ic = 0.7; (b) Ibias/Ic =~ 0.7; (¢) Ibias/Ic =~ 0.9; (d) Ivias/Ic =~ 0.6;
(€) Ibias/Ic = 0.8. We emphasize again that the normalized shape of j, is not expected to depend on Ivias/Ic, as shown in
Supplementary Fig. 5. So the result presented in the main text is insensitive to the exact value of Inias/Ic. (f=j) Circles show
the reconstructed current flow at the center of JJ extracted from (a)-(e), and the lines show the fitting to extract effective
magnetic field B, s, as shown in Fig. 2h in the main text. The dashed green line in (f) shows that the j,(x) profile expected
from the ¢ext induced by the external field, which does not match our measurement. The red lines show the fitting results to
extract ¢e. The grey areas which corresponds to regions closer to the JJ edge by the stand-off distance of the NV (& 150 nm),
are excluded from the fitting.
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Supplementary Figure 5. Additional measurements using symmetric bias +1Ii.s sequence. a-b, show spatial maps
of current flow and z-direction magnetic field measured at the same external B, as Fig. 2f-g in the main text, but using
Tvias = 0.51. instead of I.. Here we use colour scales with half the range, and the quiver with double the length per unit current
density as in Fig. 2f-g. The shape of the current flow is almost the same, while the amplitude is half of those in Fig. 2f-g,
as expected. The measurement is done at T' = 7 K. ¢, shows the current flow and b, line cut from Fig. 2g in the main text.
The j.(y) line trace along the vertical direction shows the JV extends in to the SC electrodes by éW = 350 nm, making the
effective area of the junction A = LW’, where W’ = W 4 26W = 850 nm. This is consistent with the effective area L?/1.842
as derived in Ref. [6].
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Supplementary Figure 6. Current flow for 2-JV state. a, Spatial maps of current flow and z-direction magnetic field
measured using the symmetric +/Inias sequence as Fig. 2f-g in the main text, measured at B, ~ 4 mT and T = 7 K. b, Line
cut of current flow at the center of the JJ showing cosine-like current profile with twice the oscillations as in Fig. 2g, indicating
2 JVs at the junction. The circles show the reconstructed current value, the line is a guide for the eye connecting the circles.
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Supplementary Figure 7. JV response to small changes in bias current. a-b, Schematic drawings of current flow and
and z-component of the magnetic field at two slightly different bias current, showing the position of JV controlled by the bias
current. Colour scale is the same for both maps, in the unit of flux-quantum. ¢, The difference between (a) and (b) shows
feature similar to Fig. 3d in the main text. As the bias current moves the JV along z-direction, the distance between the two
current loops in (c) represents the size of the JV.



11
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Supplementary Figure 8. Lateral size of the JV. a, Same map as Fig. 3f as the main text. The green dashed line indicate
the position of the line cut shown in (b). b, Line trace of j, taken at the center of the JJ. The distance between the peak and
valley of j, indicates the lateral size of the JV. The size of the JV along x direction is about 500 nm. It is consistent with the
distance between the center of the loops in Fig. 3e, which effectively measures 9b./dz of the JV (Supplementary Fig. 7). The
measured JV size is slightly smaller than the theoretical size Ay ~ 780 nm (see Methods), because the JV is constrained by L
which is comparable to 2.
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Supplementary Figure 9. Additional measurements showing the competition between ground state configurations.
a, differential ac magnetic field measurement similar to Fig. 3b in the main text, when external B, is swept from low to high
field. The result shows the phase diagram is insensitive to B, sweeping direction. b, differential ac magnetic field measurement
at the range when 1- and 2-JV states overlap, showing the phase boundary below I. extends only from the 2-JV state.
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Supplementary Figure 10. Optical image of the JJ device. Optical micro-graph showing one of the JJ devices used in the
paper. The SC electrodes made with NbN are false coloured. The RF line is used to deliver the microwave pulses to manipulate
the NV. Scale bar is 5 pm.
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Supplementary Figure 11. Temperature dependence of the critical current. Temperature-dependent critical current at
zero magnetic field versus fitted curve for a diffusive junction [9].
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Supplementary Figure 12. Overlapping ground state solutions in JJs with strong self field effect. Analytical solutions
of the non-linear sine-Gordon equation [10] showing critical current I. for ground state configurations with different number of
JVs, as indicated by the line traces of different colours. The traces are generated with junction length L = 3A; to highlight
the overlap regions.
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Supplementary Note 5. DETAIL OF RECONSTRUCTING CURRENT FLOW FROM MAGNETIC
FIELD

We show examples of this process with data taken for 0- and 1-JV states in Supplementary Fig. 13. Two NV
centers with different axis were used when taking these data-sets, as indicated by the arrows in Supplementary Fig.
13a and e.
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Supplementary Figure 13. Examples of converting b, to b,,,.. a and e show magnetic field projected along NV axis
measured at two different external b., which we refer to as datasetl (DS1) and dataset2 (DS2). b-d, show the vector magnetic
field bg,y,» reconstructed from (a). f-h, show the vector magnetic field by . reconstructed from (e). DS1 is measured at
external field B, = 1.46 mT. DS2 is measured at external field B, = 1.91 mT. The NV directions point partially out of plane,
and their in-plane projections are shown in the insets of (a) and (e). The scale bar is shared by all colour maps.

We employ the Fourier [11], regularization [12] and machine learning [13] methods to reconstruct the current flow.
For the Fourier method, the full padded data is used in the current reconstruction. For the regularization and machine
learning methods, the padded b, is cut down to 2 times of the measurement window due to computational constraints.
In the following, h is the stand-off distance of the NV sensor from the sample plane, and we first describe the methods
and then show the results.

1. Fourier method [11]. The current and the in-plane components of the magnetic field are related in the Fourier
space via

2
jy(k) = by (k, h) - —e"*
o (12)
Ju(k) = —by(k, h) - —e"*
Ho
here p10 is the vacuum permeability. A low-pass Hanning filter W is applied to j, , (k) before Fourier transforming
back to the real space j, ,(z,y),
W 0.5 [1 + cos (kah/2)], for k < 2m/ah (13)
0, for k < 27 /ah

here « sets the cut-off wavelength in the reconstruction. The reconstructed current outside the device area is
small and set to zero. We compare the effect of a € [1,2] in Supplementary Fig. 14. Although increasing «
mitigates the ringing (spatial features oscillating faster than h), large « also smears out the result and reduces
the amplitude of the reconstructed current. All of the results in the main text are reconstructed with o = 1.5
to balance between these effects, but the conclusion about Josephson current induced phase in Fig. 2d and h
from the main text does not rely on the choice of a.
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2. Regularization method. For this method we follow Ref. [12] and the code there-in. Briefly speaking, it uses
kernels K7, K> that takes into account the finite thickness of the SC film d = 35 nm, and b, is related to j;,
via

bz(m7y7h) = Kl(xvyahad) *jw($7y) + K2($7y7h7d) *]y(aj?y) + N($7y> (14)

here * represents the convolution integral, N(z,y) is noise. To reconstruct the current, the following regulariza-
tion functional is minimized

min(|[ K1 * jo + K2 * jy = ba|* + A(|[Lal* + 115y 1) (15)

here £ is the Laplacian V2, X is the regularization parameter. Compared with the Fourier method, this functional
penalizes fast oscillations in the reconstructed current flow. To account for the current flow outside the field-of-
view, reflection rule at the boundaries is applied to the padded data. The results using regularization method
is shown in Supplementary Fig. 15b, f.

3. Machine learning method. The neural network based reconstruction follows a similar construction to that
performed in Ref. [13] with some modifications for reconstruction of current density. The magnetic field is
passed to a fully connected neural network which has an output image g(z,y). This is a stream function whose
derivatives define the current density,

V x [g(z,y)2] = j(z,y) (16)

which enforces the final current density to have zero divergence.

To encode the spatial resolution of the reconstructed current density, which is limited by the NV to sample
standoff distance (d,, = 150 nm for DS1, d,,, = 130 nm for DS2), we model each pixel as a Gaussian distribution
with a width of o = d,,/2. This acts to broaden the output stream function and remove fast oscillating terms
before the derivatives are determined.

The calculated current densities are then transformed into a single magnetic field image that is compared with
the original measured magnetic field, which forms the loss function, and the neural network weights are updated
accordingly. The results using machine learning method is shown in Supplementary Fig. 15¢, g.
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Supplementary Figure 14. Comparison of current flow reconstructed from Fourier methods with different filter
functions. a-c, show the reconstructed current flow j., from DS1 using the Fourier method with cut-off parameter a =
1, 1.5, 2. d, show the line trace j, with different o at the center of JJ, as indicated by the arrow in (c). e-h, show the
corresponding results for DS2. In both cases, increasing o mitigates ringing in the reconstructed current, but also reduces the

amplitude of the current. So the results in the main text are reconstructed with aw = 1.5. The scale bar is shared by all colour
maps.
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Supplementary Figure 15. Comparison of current flow reconstructed from different methods. a-c, show the recon-

structed current flow ja,, from DS1 using the (a) Fourier (o = 1.5), (b) regularization, and (c) machine learning methods. d,
show the line trace j, with different methods at the center of JJ, as indicated by the arrow in (c). e-h, show the corresponding

results for DS2. The scale bar is shared by all colour maps.
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Supplementary Note 6. LACK OF DIODE EFFECT AT 7 K

In our experiment, the Josephson diode effect (JDE) is not observed when the current induced phase is not strong
enough. Supplementary Fig. 16a shows the critical current I. and related asymmetry parameter n at T = 7 K.
Compared to the result in Fig. 4a, n vanishes to zero even for B, # 0 (broken time-reversal symmetry).

From the local measurement of the current flow, we find broken inversion symmetry at T' = 7 K. Using the sequence
that measures the difference of symmetric /a5 (Fig. 2f-g in the main text), the current profile j, () at the center
of JJ is not symmetric with = 0, suggesting the inversion symmetry breaking.

Supplementary Fig. 16c and d show two examples of j,(z). The measured j,(z) is fit with a non-uniform critical
current profile. To the first order, the critical current density J.(z) = Jeo(p- F + 1) (Supplementary Fig. 16b). p >0
indicates larger critical current on the right side (z > 0). This leads to lower j, minima for z < 0 in the 0-JV case, and
higher j, maxima for £ > 0 in the 1-JV case. These features are qualitatively observed in all five data sets measured
(Supplementary Fig. 4f-j).

Furthermore, we can quantitatively estimate the non-uniformity of the critical current. The measured current
profile j,(z) is given by a modified version of Supplementary Eqn. 11,

2 +1) - [Sin(e (2, Ber) + Gbiast) — (e (2, Berr) + Ginsz)] (17)

Ju(@) = Toolp- 7

During the fitting, Joo, p and Beg are the fitting parameters. For given p and Beg, we first find @pias1 (@Ppias2) that
corresponds to +1. (—I.), and then use Supplementary Eqn. 17 to obtain j,(z). We note that although not all the
data sets shown in Supplementary Fig. 4f-j are measured at |Ipias| = |I¢|, the difference should be small. The junction
length L = 1.5um is fixed during the process.

The fitting results of slope p for all data sets are shown in Supplementary Fig. 16e. The linear J.(z) is just the
first order correction, used as a toy model to highlight the non-uniform critical current density. In reality the critical
current density could change along z direction due to variations of the SC/N interface transparency, separation W
of the junction, etc. The fitting result in Supplementary Fig. 16e suggests J.(x > 0) > J.(x < 0), consistent with
the result from the current flow results measured at T = 4 K (Fig. 4). Overall, our local measurements show that
inversion symmetry breaking at the JJ could be ubiquitous owing to extrinsic artefacts in the fabrication process, and
may or may not manifest in the global measurement of asymmetric critical current.
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Supplementary Figure 16; Critical current and inversion symmetry breaking at 7" = 7 K. a, Critical current I. and
=g |
1 1+11¢ |
4a, 1 here averages to zero and JDE is negligible at 7" =7 K. The black circles show the critical current, the red diamonds show
7. The n points where either of the |Ici| < 3uA is shown as unfilled diamonds, due to the large uncertainty arising from the
small I.. b, Upper panel shows the non-uniform critical current J.(z) = Jeo(p- ¥ + 1) used to fit the measured current profile
in (d)-(e). lower panel shows a schematic drawing showing of the inversion symmetry breaking at the junction, which could
be caused by extrinsic factors such as non-uniform junction width. c-d, Circles show the measured current profile at y = 0 in
the JJ measured with NV sequence as described in Fig. 2f-g in the main text, at (¢) Bjext = 1.46 mT (Supplementary Fig.
4h), (d) Bjext = 1.62 mT (Supplementary Fig. 4i). Lines are fitting results using the non-uniform J.(z) as shown in (b).
Arrows point at the extrema of current profile. The j, minima is smaller at x < 0 for 0-JV, and the maxima is larger at z > 0
for 1-JV. e, Fitting result of the slope p at each B.. All the results except B, = 1.91 mT show p > 0, indicating larger J. for
x> 0.

asymmetry factor n = versus perpendicular external magnetic field B,. Compared with the 7' = 4 K result in Fig.
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Supplementary Note 7. JOSEPHSON DIODE EFFECT ARISING FROM SYMMETRY BREAKING
AND JOSEPHSON CURRENT INDUCED PHASE

In this section we examine the roles of time-reversal and inversion symmetry, and current flow induced phase in
realizing the JDE as explained in Fig. 4 of the main text, using a model with two lumped JJs in parallel. From a
phenomenological perspective, the minimum requirement for JDE is that the current phase relation contains more
than just the first harmonic term, plus a phase offset, I(¢) = a; sin(¢$) +az sin(2¢+ ¢o) [14, 15]. The second harmonic
term could be due to the ballistic transport in the JJ or high transparency of the SC/N interface, which are difficult
to verify experimentally. Using a two-junction model, we show that broken time reversal and inversion symmetry,
combined with the Josephson current induced phase can effectively cause such a second harmonic term in current
phase relation, even when starting with only the first harmonic term for the diffusive and low-transparency JJ. A
similar model was proposed in Refs. [16, 17], here we present more analysis in the context of the Josephson diode
effect.

Supplementary Fig. 17a shows a schematic drawing of the two-junction model. The JJ studied in our paper could
be regarded as a set of lumped JJs in parallel, so we consider the simplest case of two lumped JJs with critical current
J1,2. Inversion symmetry breaking is indicated by J; # Jo. The phase difference across the junction consists of the
external magnetic field contribution f.xs, and the Josephson current induced phase f.i,. The total bias current across
the junction is

fext + fcip

— M)Jﬁh sin (Ag + =), (18)

Ibias = Jl sin (A(b D)

where A¢ € [—7, 7] is the phase difference between the SC electrodes. The Josephson current induced phase of the
left and right junctions is

_ fext + fcip
2

fext + fcip

feip = & | J1sin (A¢ 2 )|

) — Josin (A + (19)
where %, is proportional to the kinetic inductance.
We discuss three representative scenarios.

1. Neglecting Josephson current induced phase. If f.i, = 0 in Supplementary Eqn. 18, the I,s only contains the
first harmonic term of A¢ with a phase offset, and JDE does not exist.

2. Ji = Jy. Supplementary Eqn. 19 is reduced to feip, = —2.%% cos(A¢) sin(fext + feip), which yields the same
solutions of feip, when A¢ <> —A¢. This means Ipias(A¢P) = —Ipias(—A¢), and JDE does not exist.

3. Ji # Jo. In this case, f.p needs to be solved numerically. Taking the limit of feip < fext, A9, ie., ZJ; < 1,
we expand terms in Supplementary Eqn. 19 to first order of f.ip, and get

feip =~ & | J1sin (Ap — f‘;’(t) — Jysin (A¢ + fe;t) - f;ip [Jl cos (A¢p — fe;t) + Jo cos (A¢ + fe;t )” . (20)
Combined with Supplementary Eqn. 18, we find
Thias ~=J1 sin (Ag — fe;t) + Josin (A¢ + fe;t ) — f;ip [Jl cos (Ag — f;{t) — Jycos (Ag + fe;t )}
o . fext . fext
=Jy sin (A¢ — 5 )+ Jasin (A¢ + 7))+ (21)
L JZSIN(2A¢ — foxt) + J2 SIN(2AP + foxt) — 21 J2 5in(2A¢)
2 2+ % [Jl cos(A¢ — L52) + Jo cos(Ag + %)}

Here the second harmonic term of A¢ with a phase shift is present, and JDE can be observed.

We also numerically solve for the critical current in the two-JJ model when the current flow induced phase is
included. At each external magnetic flux fex;, we first solve for fe, at individual A¢ € [—m, 7] in Supplementary
Eqn. 19. The (feip, A¢) is then plugged into Supplementary Eqn. 18 to find the maximum (minimum) lpias as I
(I7). Three cases of .Jy(2) are considered. When the system is inversion symmetric, i.e., J; = Jo, the current flow

induced phase only lifts the node and does not manifest JDE (Supplementary Fig. 17d). When J; # J3, I becomes
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asymmetric when feyt # 0. In particular, the JDE changes polarity when exchanging J; and Js, or changing the sign
of external field (Supplementary Fig. 17b and c). The critical current nodes are near half-integer of ®y because of
the two lumped JJs in the model (effectively a SQUID), but it does not affect the interpretation.

We note that the above result also applies to the case with strong self field effect, by replacing the kinetic inductance
with the geometric inductance of the junction, and replacing the f.i, with the phase induced by the current-generated
magnetic field, as pointed out in Refs. [16, 18].

‘ -------- I¥ without current induced phase I* with currentinduced phase k7] with current induced phase

a b J1>J2 c J1<J2 d J1=J2
Two - JJ model " 1

J1 O] fext J,
+ fcip

Supplementary Figure 17. The two-junction model. a, Schematics drawing of the model, showing left(right) JJs with
critical current of Ji(2) forming a loop. The total phase difference between the JJs comes from the external magnetic field
fext, and the Josephson current induced phase feip. b-d, Numerical simulation of forward/backward critical current IF, and

% as a function of external flux when (b) J1 > J2, (¢) J1 < J2 and (d) J1 = J2. In

(b) and (c), the difference between J; 2 is 10 %. Red (Blue) lines show the critical current I. calculated with (without) the
current induced phase. Black stars show asymmetric factor 7 when the current flow induced phase is included. In the inversion
symmetric case (d), there is no diode effect. In the inversion symmetry broken cases Ji # Jo in (b) and (c), the diode effect
is present when the current induced phase is included. n changes sign for J; larger or smaller than Js.

asymmetric parameter n =

The JDE has garnered much attention due to its application in low dissipation electronics [14, 15, 19-24], and some
of the more recent interest has focused on the connection between JDE and finite momentum pairing of the Cooper
pairs in the JJ [14, 15, 22]. Here in our work we are able to pinpoint the origin of the observed JDE with a combination
of measurements of electrical transport, and visualization of the current flow. The inversion symmetry breaking in our
device likely arises from the non-uniform junction width or transparency ubiquitous in the nano-fabrication process.
The Josephson current induced phase is revealed thanks to the local current flow mapping, because the JJ is not deep
in the so-called “strong-junction” regime by the conventional metric. In our device L =~ 2\ even at T' = 4 K, and the
calculation of \; depends on an estimate of A, which could vary from sample to sample. In this spirit, we summarize
some additional ways to realize the JDE experimentally from the literature.

1. Trapped vortices in superconductors. The JDE requires breaking time reversal symmetry. This could come from
the Abrikosov vortices (AV) trapped in thin film superconductors even after external magnetic field is retracted.
When an AV is near the JJ, it causes a phase gradient along the transverse direction that mimics the effect of
magnetic flux induced by external field [25]. In the case of layered SC, JVs could be trapped between layers due
to history of an in-plane magnetic field [26]. Additionally, the trapped vortices could be caused by magnetic
materials at the JJ or nearby [27].

2. Asymmetric injection of bias current. The inversion symmetry of the JJ could be broken by non-uniform critical
current density. This could be due to local defects as mentioned above, or local temperature gradient [28]. The

effect could be further enhanced by engineering electrodes to intentionally inject the current asymmetrically to
the JJ [25].

3. Multi-layer SC. When multiple kinds of SC with different critical current is used, or in the case of heterogeneous
film quality along the normal direction, JDE could develop when an in-plane external field perpendicular to the
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junction is applied [29]. The mechanism is similar to the one described in our main text, for a JJ that exists in
the yz plane and the external field is B,.

Supplementary Note 8. TIME-DEPENDENT GINZBURG LANDAU SIMULATION

The total Ginzburg Landau (GL) free energy for a thin film S structure with thickness tsc, under external magnetic
field B, cxt, in SI unit, is,

1 1
Far = tsc - /d% {om(r)|\11|2 + ﬁ\\m“ + ——|(—ihV — 26A)\I/|2] + —/d3r|V x A — Byoxt|?, (22)
2 4dm, 210 ’

where m, is the electron mass, e is the electron charge, pg is the vacuum permeability, n(r) is the inhomogeneity
factor; 7 = 1 for the SC electrodes, and 1 < 0 for the normal area of the junction. For the strong junction simulations
shown in Figs. 3 and 4, we use n = —1 for the normal region. The characteristic lengths here are the GL penetration

length A = ,/%%‘ff‘(d and the GL coherence length & = ,/#ja‘. For U = |¥|e? the super current density is
J==(nVe - 2eA)|V|?, and the sheet current density is K = tgcJ.

In thermal equilibrium, with no bias current, the functions A(r) and ¥(r) should be chosen to minimize Fgr,,
subject to suitable boundary conditions. Minimizing with respect to ¥ leads to the Ginzburg-Landau differential
equation for W in the vector potential A, and minimizing with respect to A produces a vector potential resulting from
the applied magnetic field and from the supercurrent associated with the wave function W.

If the vector potential A(r) is specified, the wave function ¥ can be obtained using a two-dimensional time-
dependent Ginzburg-Landau equation, which will cause ¥ to relax at long times to at least a local minimum of Fgy,
in the given vector potential. We use the package in Ref. [30] to carry out the TDGL simulations for the junction,
based on equations derived for dirty superconductors in Ref. [31]. Briefly speaking, the package solves the following
dimensionless TDGL equation,

I (AP ] L1 Y U2\ + (V —iA)20 23
e ot TP T e = (= [P)¥ +(V—iA)"P. (23)

Here t is time; u = 5.79, v = 10 are constants; u(r,t) is the electric potential. The variables ¥, A, p and ¢ in
Supplementary Eqn. 23 are in dimensionless units given in Ref. [30]. The electric potential evolution results from the
current continuity equation, where the total current J comprises of the super current and normal current,

V-J =V -Im[¥*(V—iA)¥] - V3 =0. (24)
On the SC/vacuum interface, the Neumann boundary conditions are used:

A (V—iA)U =0

25
n-Vu=0, (25)

where 71 is the unit vector normal to the interface. On the interfaces between SC and current terminals (which is used
to apply the bias current), Dirichlet boundary conditions on ¥ and Neumann boundary condition on y are used,

v =0

26
VIU/: |Kbias|7 ( )

S

where |Khpias| = Ipias/L. In the case where Ihi,s = 0, the solution gives a chemical potential p that is independent
of position, leading to an equilibrium solution, where the supercurrent is divergence-free. When I;,s # 0, provided
that the total current is less than the critical current in the specified magnetic field, there will be a solution where the
normal current decays rapidly near the normal contact, while i is essentially a constant and the Ginzburg-Landau
equation applies away from the contacts.

Ideally, the vector potential should be determined self-consistently with the computed wave function W. This can be
done using an iterative procedure, which will be described below. However, the iteration is computationally expensive,
and the correction due to the self field is small in the thin-film limit. Consequently, the self field has been ignored in
most of our calculations, and the vector potential was set by B, cxt via V X A = B, oxt.
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-Simulation parameters
The results in Fig. 3c and Fig. 4e, f are simulated without the self field. A schematic drawing of the simulated
device is shown in Supplementary Fig. 18a and the parameters used are

400 nm
100 nm
1.5 pm
1 {160 nm
W5 {140 nm
tsc| 35 nm

=l | >

Supplementary Table 2. Parameters used in the TDGL simulation.

Here we choose A = Ap, the London penetration length measured by the experiment (Supplementary Fig. 1), & is
chosen to realize similar critical current at zero magnetic field as the experiment at T' = 4 K,when n = —1 in the
normal region, and W; 5 are chosen to reproduce the asymmetric features in the experiment. The total length in y
direction of the simulated device is Y = 7.5 pm, with the current terminals attached along the edges of y = £Y/2.
The maximum grid edge size is 40 nm. Below the critical current, a steady state solution can be found such that
%—\f = 0. Above the critical current, a steady state cannot be found due to JV motion (ac Josephson effect), and is

beyond the scope of this work.

-Simulation results
Below we describe how the results in the main text are obtained.

1. Overlapping 0- and 1-JV states. The overlapping JV states are generated using different initial conditions;
the initial condition for the 0-JV states is a uniform and real ¥ (Supplementary Fig. 18b); the initial condition
for the 1-JV state is a seed solution from the non-overlap part of the 1-JV state (Supplementary Fig. 18c). In
the overlap area, the results is either 0- or 1-JV states depending on the initial condition; outside the overlap
area, the results is independent of the initial condition. In other words, there are two local energy minima with
respect to the spatial configuration of ¥ in the overlap region; and only one local minimum outside the overlap
region. Under such a scenario the expectation from thermodynamics is hysteresis in the overlap region, with
respect to the direction of the B, or Ipi.s sweep. However, as we pointed out in the main text, this was not
observed in the experiment and an open question for future work.

The total Gibbs free energy shown in Fig. 3c is € = Fg, — Ibiasé()% to account for the bias current. Here ¢
is the mean value of (x)|y=y, — 8(z)|y=—y, averaged over x. The result shown in Supplementary Fig. 18b-c is
taken at yo = 0.5pum and insensitive to yo > Wi ».

a (curremterminal b
_____ X
20 v
N. 1<0 10
e S ) P
Vv11u ¢W2 Y et 0
-10
-20
SC, n=1
_____ Y. 1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2
] B, (a.u) B, (au)

Supplementary Figure 18. TDGL Simulation schematic and initial conditions. a, Schematic drawing of the simulated
device. The drawing is not to scale so as to highlight the junction area in the middle of the device. b-c, Phase difference across
the junction the (b)0-JV and (c)1-JV state. The circles mark the critical current for the two solutions. The result beyond the
critical current is blanked for clarity.



23

2. Varying the critical current. The critical current of the JJ is tuned by 7 of the normal region. For smaller
critical current, such as the case at T'= 7 K, n = —5. The current induced phase is enhanced when critical
current is large (n = —1). Specifically, in the 0-JV state the transverse current near the JJ, J, is reduced by the
amount of the current flowing across the JJ; in the 1-JV state, however, J, is enhanced by the vortical current
(Supplementary Fig. 19). The phase difference ¢(z) along the JJ in ref. [6] was derived when neglecting the
Josephson current across the junction. The change of J, when including the effect of the Josephson current
leads to the current flow induced phase discussed in the main text.

7] n=-1

Supplementary Figure 19. Varying critical current with n of the normal region. a-b, Simulated local current density
and superconducting phase using (a) n = —1 and (b) n = —5 for the normal area of the junction. The simulations here are
done in a symmetric junction for clarity, with W7 = W, = 150 nm. All cases are simulated at the same external magnetic field,
at zero bias and neglecting self-field effect.

3. Effect of coupling to the self-field. We have investigated the self-field effect in the case Inas = 0, by
correctly including the self-generated magnetic field in the vector potential felt by the superconductor. The full
vector potential can be written as A = Ay + a, where

a(r) = Z—;;/ (5) v —r'|d?r, (27)

and k is the sheet current obtained by solving the Ginzburg-Landau equation in the presence of the vector
potential A. As an initial step, we find a first order correction ay by substituting for k in (27) with the sheet
current kg obtained for A = Aqy. We then solve the Ginzburg-Landau equation with A = A + ag, calculate
a new value of k, and iterate until convergence is reached.

We find that the 3D magnetic field energy (last term in Supplementary Eqn. 22) is larger for the 0-JV than
the 1-JV state inside the overlap region. However, the total energy difference between the 0- and 1-JV states
Ae = g9 — €1 decreases when the self field effect is included. The fact that larger field energy results in lower
total energy can be understood by the following argument. If one constrains ¥ to have the form ¥y(r) calculated
with A = Ay and substitutes it in Supplementary Eqn. 22, one finds

1 2
For=Fa,, — /d%ko cat — /d3r|V x al? + tso— /d2r|a\2|\11\2. (28)
20 Me

For a thin film SC, the second and third terms scale with t%., while the last term scales with ¢%, and can be
neglected. If we then choose a to minimize Supplementary Eqn. 28, we find a=ag, and the second term on the
right-hand side of Supplementary Eqn. 28 is -2 times the third term. This gives us the approximation

1
FGL ~ }71463(t — ﬂ/d“‘)‘r |V X a0|2. (29)
0

This implies that coupling to the self field decreases the total energy by the amount of the 3D magnetic field
energy, thereby favoring the 0-JV state over the 1-JV state.

A more complete calculation would allow for deviations of ¥ from the starting form ¥, which will further reduce
the total free energy. We do not have a simple expression for this effect, but it seems reasonable to assume that
the reduction will also be greater when the induced magnetic field is greater. Moreover, we expect that the
change in ¥ should be proportional to ag, and the resulting change in the free energy will be of relative order
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lag|?. From our numerical calculations, we find that the approximation (Supplementary Eqn. 29) gives about
twice of the total reduction in energy arising from the self-field coupling. The result is seen in Supplementary
Fig. 20a-b.

In order to further confirm this analysis, we have performed numerical simulations where we have artificially
strengthened the coupling to the magnetic field by decreasing A while holding fixed the parameters &, m. and
a. As the superfluid density is proportional to A2, we expect the magnetic field energy to scale as A\™* while
the energy without the self-field effect (Fa,,,) scales as A=2. The results, plotted in Supplementary Fig. 20c,
f, are in accord with this expectation. Finally, coupling to the self-field decreases the energy for the 0-JV state
more than the 1-JV state (Supplementary Fig. 20d-f). This could be viewed as a result of the 0-JV state having

larger magnetic field energy than the 1-JV state.
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Supplementary Figure 20. Energy difference including the self-field effect. a-b, The energy difference of solutions with
or without coupling to the self field, versus external magnetic field B.. Results are taken at (a) A = 400 nm, and (b) A = 200
nm. The blue (red) colour points represent the 0- (1-) JV. The empty points are numerical results obtained by iterating both
U and a. The filled points are results given by the approximate analytical formula Supplementary Eqn. 29, where the energy
shift from coupling to the self field is the negative of the 3D magnetic field energy. ¢, Absolute value of the energy difference
of solutions with or without coupling to the self-field, plotted versus of A. In particular, in the analytical approximation given
by Supplementary Eqn. 29, the energy difference is the magnetic field energy which is expected to scale with A~* (shown by
the dashed line as a guide for the eye). d-e, Energy difference of the 0 and 1-JV states Ae = e¢ — &1 if the self field effect
is included for (d) A = 400 nm, and (e) A = 200 nm. Smaller X represents larger self field effect. f, |Ae| as a function of A
at fixed external magnetic field. The total energy difference between 0- and 1-JV states without coupling to the self-field is
expected to scale with A™2 (shown by the dashed line as a guide for the eye). Panels C and F are simulated at B, = 1.15 mT.
The simulations are done in a symmetric junction with W; = W> = 150 nm, and the external dc bias is zero.
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SIMULATIONS FOR AN ASYMMETRIC GEOMETRY

We present in Supplementary Fig. 21 results of simulations comparing symmetric and asymmetric geometries.
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Supplementary Figure 21. TDGL simulations on JJs with symmetric or asymmetric geometry. a, f, Schematic
drawing of critical current of 0- and 1-JV states versus external magnetic field B., for (a) inversion-asymmetric, and (d)
inversion-symmetric junctions. b-e, Simulated current flow and z-direction of magnetic field from a differential measurement.
The maps are taken in an asymmetric JJ with non-uniform critical current density along z direction. (b)-(c) are simulated
with tilted junction width Wi > Ws. (d)-(e) are simulated with non-uniform 7 factor in the normal region (n changes linearly
with z from -1.4 to -0.6). The dc bias current are symmetric with zero as shown in (a). (b)-(c) are the same as Fig. 4e-f in
the main text. g-h, Simulated current flow and z-direction of magnetic field from a symmetric JJ with uniform critical current
density along z direction. The dc bias current are shown in (f). Current flow is inversion symmetric for +7p;as when inversion

symmetry of the JJ is preserved.
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