»

research papers

FOUNDATIONS A new method for lattice reduction using
JAY ~ovances directional and hyperplanar shearing

Acta Cryst

ISSN 2053-2733
Cyril Cayron*

Laboratory of Thermo Mechanical Metallurgy (LMTM), PX Group Chair, EPFL, Rue de la Maladiére 71b, Neuchatel, 2000,
Switzerland. *Correspondence e-mail: cyril.cayron@epfl.ch

Received 26 January 2021
Accepted 21 October 2021 A geometric method of lattice reduction based on cycles of directional and

hyperplanar shears is presented. The deviation from cubicity at each step of the

reduction is evaluated by a parameter called ‘basis rhombicity’ which is the sum
Edited by L. Palatinus, Czech Academy of of the absolute values of the elements of the metric tensor associated with the
Sciences, Czech Republic basis. The levels of reduction are quite similar to those obtained with the
Lenstra-Lenstra-Lovasz (LLL) algorithm, at least up to the moderate
dimensions that have been tested (lower than 20). The method can be used to
reduce unit cells attached to given hyperplanes.

Keywords: lattice reduction; hyperplane; left

inverse; algorithm.

1. Introduction

In a recent paper (Cayron, 2021), we proposed a method to
determine a unit cell attached to any hyperplane p. A hyper-
plane p is a plane of dimension N — 1 in a space of dimension
N. Its Miller indices p,; permit it to be built geometrically
in the direct basis by considering its intersection points with
the ith axes (in 1/p;). Equivalently the letter p represents the
vector of coordinates p; in the reciprocal basis; this vector is
normal to the hyperplane. The unit cell attached to the
hyperplane p is made of one short vector b, pointing to a node
of the first layer parallel to the plane p, i.e. such that the scalar
product p'b, =1, and of N —1 short vectors
{b,,...,b;,...,by} lying in the plane p, ie. such that the
scalar product p'b, = 0, where ‘t’ means ‘transpose’. The first
vector is a solution of Bézout’s identity, and the N — 1 vectors
are solutions of the integer relation, both with the coordinates
p;- Even if the vectors {b;,...,b;, ..., by} determined by the
algorithm are already quite short, they can be reduced even
more, ie. it is possible to find shorter vectors
{b},....b,, ..., by} defining a smaller and more orthogonal
unit cell of the same volume associated with the same hyper-
plane p, i.e. fulfilling the same Bézout’s identity and integer
relation. Reducing the length of the vectors in a lattice is
related to the general problem called ‘lattice reduction’.

Let us explain it in a general way. Given a lattice £ spanned
(freely) by N vectors b,, lattice reduction consists of finding
new relatively short, nearly orthogonal vectors b/ spanning the
same lattice £. The reduced and initial bases are linked by
integers z; such that b; = Z/A;l z;b; and L = {Zb}} = {Zb},
. where the {Z} means all linear combinations with integer
coefficients. The number of vectors cannot be larger than the
space dimension. The coefficients z; form a unimodular matrix

@ Z (integer matrix of determinant +1), and the relation
e OPEN ACCESS between the vectors of the bases is

Acta Cryst. (2022). A78 https://doi.org/10.1107/52053273321011037 10f9

http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273321011037&domain=pdf&date_stamp=2022-01-01

research papers

b b,
b, | =Z| b,
by by

with Z € Z™ and det(Z) = 1, where b, and b; refer to the
vectors themselves, not to their coordinates. Strictly speaking,
it is the basis whose vectors generate the lattice that is reduced
at constant volume, and not the lattice itself since this remains
the same. The most popular algorithm to determine a reduced
basis is the Lenstra—Lenstra—Lovasz (LLL) algorithm, which
relies on Gram—Schmidt orthogonalization (Appendix A). Itis
usual in lattice reduction problems to present the vectors b; as
the rows of a matrix. In crystallography, we generally write the
coordinates in columns and keep the row notation for planes,
i.e. for vectors of the reciprocal space. In order to avoid any
confusion, we will write b' for a row vector b. With this
notation, in a space of dimension N, a vector b is an N x 1
matrix, and b' a 1 x N matrix. All the vectors in this paper are
written in a Cartesian orthonormal basis and their coordinates
are integers. The relation between the reduced and initial
bases can be written in the form of a matrix product B' = ZB,
where

/'t
b

and

are matrices of Z™. A typical low-dimensional example of
lattice reduction is the set of three vectors in three dimensions,
b} =[1,1,1], by =[—1,0,2] and b} = [3, 5, 6]. They form the
matrix

1 1 1
B=|-1 0 2
3 56
The reduced lattice basis is
0 1 0
B=|1 01
-1 0 2

One can check that the three row vectors are b} =
—4b, — b, + b;, b, = 5b; + b, — b, and b; = b,. The integer
coefficients of linearity could be found by calculating
Z=BB.

A direct lattice reduction algorithm, such as LLL, permits
the lattice to be reduced but does not preserve the unit cell
attached to a given hyperplane p. We are thus looking for an
intermediate method such that the vector b] continues to
point towards a node of the first layer, and the other vectors
{b,,...,b,, ..., by} remain in the hyperplane p. An intuitive
solution to reduce b, consists of applying a simple shear
parallel to the hyperplane p, as illustrated in Fig. 4 of Cayron
(2021). One could then think of applying the LLL algorithm to
reduce the other vectors {b,,...,b;,,..., by} lying in the
hyperplane p, but it is also possible to reverse the problem and
use the intermediate simple shear method to develop a simple
geometric algorithm of lattice reduction. This method, which
we call ‘cubification’, is different from LLL because it does not
require Gram-Schmidt orthogonalization. It is also well
adapted to determine a reduced unit cell attached to a
hyperplane p, as shown by Cayron (2021). It consists of
applying simple shears parallel to the directions and to the
hyperplanes of the lattice. Here, the term ‘shear’ should be
understood in its general meaning: for a vector space) and a
subspace W, a shear of a vector v € V fixing WV translates v in
a direction parallel to W. If V is the direct sum V=W & W,
we write v = w + W/, then the image of v by the shear S is
S(v) = w+ w + M(w) where M is a linear mapping from W'
onto W. Directional and hyperplanar shears correspond to the
case where the dimensions of the subspaces W are 1 and
N — 1, respectively.

In general, a parameter called ‘orthogonality defect’ is used
to evaluate the degree of reduction. It is defined by P/V where
P is the product of the norms of the basis vectors,
P =[],y lIb;|l, and V is the volume of the cell formed by the
Vectors,_V =det(b;, ..., b, ..., by), which is an invariant of
the reduction process. Another parameter to evaluate the
norms could be S=73",_y Ib,|I> = Y i<y bib,. In this paper,
instead of using P/V, the degree of ‘cubicity’ of a basis
{b,,..., b, ..., by} will be evaluated by calculating the ‘basis
rhombicity’ defined from the Euclidean scalar products
between the vectors:

R="IMyl =3 Ibl*+2 X byl 1
ij i<N i<j<N
where M is the metric tensor given

b;

M= b; |(b,....b,....by)
by

bib, ... bib; bib,

=| bb, ... bb, ... bby

b, ... bib, ... biby

20f9

Cyril Cayron - A new method for lattice reduction

Acta Cryst. (2022). A78

research papers

The ‘basis rhombicity’ contains the information on both the
norms and the angles between the vectors. A lowest ‘rhom-
bicity’ indicates a more cubic cell. Note that the term ‘rhom-
bicity’ has a specific meaning in a branch of mathematics that
deals with symmetric second-rank tensors in three-dimen-
sional Euclidean space, but that is not the one given in the
present paper. The ‘basis rhombicity’ R was preferred to the
parameter P/V for two reasons:

(a) From a theoretical point of view, although it seems to be
common knowledge, we realized that minimizing the norms of
the vectors in high dimensions is not exactly equivalent to
improving the orthogonality between them. The reader can
look at the simple example in dimension 4 in Appendix B,
which presents two bases of the same lattice, with the same
norms S and P, but one with a better orthogonality, i.e. lower
R, than the other one. We will also show in Section 4.3 an
example in dimension 20 in which, for the same lattice, one
reduced basis has a better orthogonality (lower R) but a worse
norm (larger P and S) than another reduced basis.

(b) From a practical point of view, we noticed that the
‘cubification’ method leads to lower norms in terms of P or S
when R is used as driving criterion, and not P or S themselves.

Fig. 1(a) gives an example of lattice reduction with the LLL
algorithm. The matrix representing the basis to be reduced is
nearly the identity except that the last column containing the
Nth coordinates of the vectors is constituted of relatively high
integers. These types of matrices are often used because they
appear in the ‘knapsack problems’ (given a set of items, each
with a weight and a value, one has to determine the number of
each item to include in the knapsack so that the total weight
should not exceed a limit and the value is maximized).
Geometrically, the initial basis is highly elongated along the
Nth axis. Its initial values are R = 453988268, § = 61580172.
They decrease to R = 531, S = 99 with the LLL-reduced basis
given in Fig. 1(b).

The principle of directional shear will be presented in
Section 2. It helps to obtain a reduced lattice with significantly
lower R and S values, although higher than with LLL. The
hyperplanar shear will be explained in Section 3; it permits R
and S to be decreased further. In Section 4, it will be shown
how cycling directional and hyperplanar shears permits
values of R and S to be obtained that are comparable with
those of LLL.

2. Directional shearing
2.1. Lagrange’s division

Let us consider two vectors b; and b; such that ||b;|| < [/b;]|.
We introduce the rational number g = (b;b;)/(b;b;) from the
orthogonal projection of b; on b; (Fig. 2). Practically, as in
LLL, g is encoded by a floating-point number. The vector gb;
is rational and can be approximated by the integer vector
Lg1b,, where |gq] is the integer closest to g computed by
lg1 = int(round(g)). The reduced vector r=b;— [q]b;
belongs to the lattice spanned by b; and b;, and its norm is such
that ||r]| < [|b;|| if the coordinates of b; and b; are such that

100000000000 0O0OOOOGO OGO 75
0100000000OOO OO O0GO0O0O0 0 436
0010000000DO0O0O OO OO0GOGO0O 0 158
000100000000O0O0GO0GO0O0O0 0 1030
000010000000O0GO0GO0GO0O0O0O0 1921
0000010000 00O0OGO0GO0O0O0O0 569
0000001000 000O0GO0GO0O0GO0O0 —721
00000O0O0T10000O0O0GO0GO0O0O0 0 1183
000000O0O0T11000O0O0GO0GO0GO0O0 0 1570
000000O0O0O10000O0GO0O0O0O0 0 —6665
00000000001 000O00O00O0O0O0GO0 123
000000O0O0OOOT1000O0GO0O0O0O0 890
00000O0O0O0O0ODOOT1O0O0GO0GO0O0O0 6
000000O0O0O0OO®OOTLO0O0O0O0 0 742
000000O0O0O0OOOOOTLO0O0O0O0 33
000000O00O0O0OOOOGOGOTO0O0O0 888
000000000O0O0OOOGO0OOT1O0O0 14
00000O0OO0OOOOOOO0O0O0T10 769
00000O0O0O0O0OO® OO OO OGO0GO0O0 0 1 1234
000000O0O0O0OOO® OO OO OGOGO0O0 0 —852

(@)

-1 0 -1 1 1 -1 1 0 0 0 0 0 000O0O0GO0TO 0

000 0 -1 0 1 1 1 00 0 0 00O0GO0GO0O0O0 1

1 0 0 -1 0 1 0 -1 1.0 0 0 00O0GO0O0O0O0 1

0 0 0 1 -1 0 0 0 00 0 1 0000O0GO0O0O0 —1

0 0 -1 0 0 -1 1 1 10 1 0 0000000 0

000 0 1 -1 -1 0 0 10 0 0 0100000 O

0 0 0 0 1 -1 1 1 000 00100000 0

-1 0 0 0 0 -1 0 -1 0 0 1 0 000O0O0GOTO0 O

0 0 0 -1 0 0 0 0 -1 0 0 1 1000000 O

0 -1 0 0 0 1 0 0 1 0 0 0 00O0O0GO0O0O0 —1

0 -1 1 0 0 0 0 -1 0 0 0 0 0010000 O

0 -1 0 1 0 0 0 0 -10 1 0 0000000 —1

-1 0 0 0 0 0 0 0 0 0 0 1 0001000 —1

010 0 0 0 0 1 00 1 -10000000O0 0

00 0 -1 0 1 -1 -1 00 0 1 0010000 0

-1 0 0 1 0 0 0 0 0 0 -1 0 1000100 0

00 0 0 -1 0 -1 -1 0 0 -1 000710010 0

-1 0 -1 0 -1 -1 0 0 0 0 0 0 0100000 —1

060 0 0 1 0 1 0 00 1 0 000O00O0O0O01 1

-1 0 0 1 0 0 -1 0 0 1 -1 0 00000O0GO0 0

(®)

Figure 1

Example of the LLL algorithm with a 20 x 20 matrix representing a list of
20 vectors whose coordinates are written in rows. (a) Input list. (b)
Output list determined with the function LatticeReduce of Mathematica.
(a) Basis before reduction; the values of the rhombicity
R=YyIbl? +22i</§,\, [Ibib;|| and of the sum of the squares of the
norms S =) [Ib;||° are R = 453988268, S = 61580172. (b) Basis after
reduction; the parameters decreased to R = 531, S = 99.

lg| > 1, i.e. [q] # 0. In the limit case |g| = 3, the triangle made
by (b;, b;, r) is isosceles, i.e. [r]| = |[b;]|. Note that, in some
cases, the norm of r that is lower than that of b; may even be
lower than that of b,. The vector r can be considered as the
remainder of the vector division of b; by b,.

Now, we consider a basis in NV dimensions made of N integer
vectors {b,, ..., b;, ..., by} initially sorted by norms, from the
lowest to the highest norms, ie. such that
byl < ... <l < llbyll... < lbyll. The function
‘Lagrange’s division’ consists of applying vector divisions to
the pairs of vectors (b;, b;) of the list. It starts with the vectors
b; = b, and b; = b,. Two cases should be distinguished in the
algorithm: if |g] = 0, nothing changes in the list and the next
pair of vectors (b;, b;) is considered by iteration with a loop
with i containing a loop with j; and if |g] # 0, the list is
modified, and two algorithm variants are proposed:

Variant Append: the vectors b; and b; are deleted from the
list, and the vectors r and b, are appended at the end of the list.

Variant Insert: if ||[r|| < [|b;[|, r replaces b;, and b; replaces b;
in the list; else, r replaces b; in the list.

The process is repeated recursively; the input for the
function ‘Lagrange’s division’ is the new list of vectors

Acta Cryst. (2022). A78

30f9

Cyril Cayron + A new method for lattice reduction

research papers

b
(a) ®)

i

Figure 2

Directional shear of b; along the direction b, Case where (a)
Lg1 = L(bjb))/(b}b)] = 3, and (b) |g] = 1. The orthogonal projection
point is noted H and marked by a little orange star.

(without sorting them). The recursion stops when all the
values |g] become null for all the pairs of vectors in the basis.
The method is quite similar to Lagrange’s division described
by Nguyen & Vallée (2010).

The variant Insert gives good results in a short time. The
rhombicity and the sum of the squares of the norms of the list
in Fig. 1(a) that were initially R = 453988268, S = 61580172 are
reduced to R = 540, S = 134. These values are not far from
those obtained with the LLL algorithm (R = 531, § = 99). With
Append, the list of Fig. 1(a) is reduced ‘only’ to R = 1199, S =
337, but, as will be shown in the next sections, this will leave
more action for the hyperplanar shearing, and better final
reduction will be obtained at the end of the process for
dimensions approximately N > 15.

2.2. Simplification

Lagrange’s division reduces the vectors by pairs without
considering the basis as a whole. Now, if one accepts to slightly
but only temporarily degrade the value of S of the basis, the
rhombicity R can be further improved as follows. Let us
consider again a list of integer vectors {b;,....b,, ..., by}
sorted by norms from the lowest to the highest norms. For a
pair of vectors b, and b; in the list such that [|b;]| < ||b;||, we
calculate the vector r = b; — sign(bjb,)b;, where sign(bjb;) = 1
if bjb; > 0, —1 if b;b; <0 and 0 if b;b; = 0. Then, we calculate
whether or not replacing b; or b; by r allows the value of the
rhombicity R to be decreased. If the answer is positive, the
change is made. Here again, two algorithm variants are
proposed

Variant ‘Append’: if replacing b, by r allows the value of R
to be decreased, the vector b, is deleted and the vector r is
appended at the end of the list. If not, the vector b; is deleted
and the vector r is appended at the end of the list.

Variant ‘Insert’: if replacing b; by r allows the value of R to
be decreased, the vector b; is replaced by r at its position i;
else, b; is replaced by r at its position j. The new list of vectors
is then sorted again following the increasing norms.

The variant ‘Insert’ is chosen by default, except for random
matrices for which the variant ‘Append’ should be preferred,

as will be discussed in Section 4. The process of simplification
is repeated recursively until R cannot be reduced anymore.
Simplification permits the values obtained in Section 2.1 to be
decreased a little more. For the list of Fig. 1(a), from the lattice
reduced by Lagrange’s division with R = 1199, S = 337, the
lattice is further reduced to R = 1084, S = 330 by simplification
with the variant Insert. At this step, the rhombicity cannot be
further reduced, even by combining Lagrange’s division and
simplification. In the rest of the paper, the process described in
Section 2 will be called ‘directional shearing’.

3. Hyperplanar shearing
3.1. The hyperplane normal

Let us consider again a list of integer vectors
{by,....b;,..., by} initially sorted by norms, ie. such that
byl < ... =< |bll <Ibjyll... < Ibyll. We isolate the first
vector b, and the subspace of dimension N — 1 (hyperplane)
constituted by the vectors {b,, ..., b, ..., by}. The coordi-
nates of the integer vector p, that is normal to this hyperplane
can be calculated as follows. We write the coordinates of

vectors b, ..., b;, ..., by in columns to form the N x (N=-1)
matrix
biy ... by ... by
S;=| b .. by ... by
by, .. by, byn

where b, ; means the ith coordinate of the vector b;.

If we insert in the matrix a first column made of any vector
of the set {b,, ..., b, ..., by}, let us say the vector b;, then the
new set of vectors becomes linearly dependent and the
determinant of the N x N matrix is null:

by b, ... by by x
det bi,j bi,Z - bi,j - bi.N = 0
by; bys o by; .o byy

Let us write this determinant by its cofactor expansion
along the first column. The minors, i.e. the determinants of
M, ,, the (N — 1) x (N — 1) submatrices of S; obtained by
deleting the kth row, form a vector

+det(M, ;)
—det(M, ,)

Pr= 1 (0 det(™,)

| (—1)¥det(M, y) |

that fulfils the property pib, =0,Vj€[2,...,N]. In other
words, p, is the normal to the hyperplane {b,, ..., b, ..., by}

4 0f 9 Cyril Cayron - A new method for lattice reduction

Acta Cryst. (2022). A78

research papers

that we were looking for. Its norm equals the area of the
hypersurface formed by the vectors {b,, ..., b; ..., by}. The
reader can check that in three dimensions p; = b, A b;. The
coordinates of p, are the Miller indices.

Note 1. The calculation of the coordinates of p; from the
determinants of the square matrices M,; may appear
complicated and computationally expensive, and one may
think about other methods. It can be noticed that the coor-
dinates of p, are the solution of p{S, = NullRow(N — 1), the
null row vector, or equivalently Sip; = NullColumn(N — 1),
the null column vector, both of dimension N — 1. This system
of equations is underdetermined since it is constituted of
N — 1 equations with N unknown. It can be solved by matrix
inversion by imposing a specific value 0 or 1 to one of the
coordinates of p,, but such an approach becomes numerically
unstable and leads to incorrect solutions in high dimensions
N > 20. A more classical way would be to compute Gaussian
elimination taking care with the choices of the pivot positions
to avoid instabilities, but the complexity is O(N?), which is
comparable with that required to calculate N determinants of
square matrices of dimension N — 1.

3.2. Hyperplanar shear

Let us consider a cell of the lattice £ attached to the
hyperplane p, generated by the vectors {b,,...,b;, ..., by},
ie.pib; =0,Vj €[2,..., N]. There are many equivalent cells,
but we are looking for a quasi-reduced one. First, we replace
the sublattice f{b,, ..., b, ..., by} by its reduced form
{b,....bj,..., by} obtained by directional shearing, as
described in Section 2. If this reduction in dimension N — 1 is
not possible, the sublattice {b,, ..., b, ..., b, } is not changed,
i.e. b; = b;. All the vectors b; belong to the hyperplane p;; we
say that they are in the layer g = 0 of the plane p,. Only the
vector b; points to a node of the layer g of the hyperplane p,
with ¢ € Z and g > 0. Note that g = 1 for a unit cell. The set
{b;,by,....bj,....by} is a cell attached to the hyperplane
(Cayron, 2021). Another vector of the lattice £ pointing to the

Figure 3

Hyperplanar shear parallel to p,. The lattice is ‘stratified’ into different
layers parallel to p,. The layer to which the vector b, points is given by the
integer ¢ = pib,. The hyperplanar shear is made by calculating the point
H (marked by a little orange star) which is the orthogonal projection of
the origin O onto the layer g. The node Z such that b, = OZ can be
translated towards another node Z’ closer to H (see text). The vector
b, = OZ' has a lower norm and a better ‘orthogonality’ with the
hyperplane p;.

layer g such as b; but shorter than b, can be determined as
follows. We note O the origin of the lattice, and Z the point
such that OZ =b,, as illustrated in Fig. 3. We call H the
orthogonal projection of O on the layer g of the hyperplane p,.
It is such that OH | p, and ¢ = p;OH = p}b,. Thus,
OH = [(pib,)/(p'p,)lp;- Its coordinates are not integer but
remain rational.

The vector ZH = —OZ + OH is a vector of the hyperplane
p;, which means that it can be written as a linear combination
of the vectors {b, ..., b;, ..., by} In order to get its coordi-
nates, we use again the N x (N — 1) matrix formed by writing
the reduced vectors in columns, i.e.

bla ... b ... by
Si=| b, .. ob, .. by
Bz .. B, . Dl

The N —1 local coordinates of ZH in the Dbasis

{by,....bj,...,by} are given by ZH,, = (S)LLZH where
(Sl is the left inverse of the matrix S|. We recall that a left
inverse of a non-square matrix M is M}, = (M'M)"'M". The
vector ZH,,. = {z,,25,...,25} is an N — l-dimensional
rational vector in the N — 1 subspace. A lattice point Z' close
to H that belongs to the same layer is given by
Z/Hloc = {LZ2-| ’ |_Z3-| LR LZN]}- The vector ZZ{OC =
ZH,,. — Z'H,, is calculated and re-expressed in the N-
dimensional space by ZZ' =S8)-ZZ,. The vector

1 =0Z =0Z+ZZ is a reduced form of the vector b;.
At this step the cell {b,,.. by b,} attached to the
hyperplane p, has been reduced; the new vectors defining this
cell are {bi,..., b}, ..., by}. This is the method used by
Cayron (2021).

Note 2. The calculation of the N — 1 local coordinates of
ZH in the basis {b),...,b,,... by} from the N x (N —1)
matrix S| may appear complicated and computationally
expensive, and one may think about other methods. One may
notice that the coordinates of ZH form an N — 1 vector X that
is the solution of §{X = ZH. The system of equations is
overdetermined since it is constituted of N equations with
N — 1 unknown (the coordinates of X). One could ignore one
of the equations (i.e. remove one of the rows of S}) to solve the
system by matrix inversion, but such an approach becomes
numerically unstable and leads to incorrect solutions for high
dimension N > 20. This problem is induced by the projection.
Let us explain it with an arbitrary example in three dimen-
sions. We consider b}' = [1211, 1423, 1] and b;' = [—8921, 2389,
1], two vectors nearly perpendicular to the z axis, and the
vector ZH that is in the plane (b3, b}). If we work with the
coordinates (x, y) of ZH to write it as a linear combination of
b, and b}, a solution is found without any problem. However,
if the coordinates (x, z) or (y, z) of ZH are used, then the
system becomes ‘unbalanced’, and it would become comple-
tely unsolvable if 0 were chosen in place of 1 for the z coor-
dinates of the vectors b, and b;. Geometrically, the instability

Acta Cryst. (2022). A78

50f9

Cyril Cayron + A new method for lattice reduction

research papers

Table 1

Two cubification methods — the values of the options are given in Table 2.

113. These values are closer to those
obtained by LLL, and they will be

Method 1 Method 2
Cubification (list, opt.):
newlist = Sort_by_norm (list)
newlist = Directional shearing (newlist, opt.)
newlist = Sort_by_norm (list)
newlist = Hyperplanar shearing (newlist)
If R (newlist) < R (list):
Return Cubification (newlist, opt.)

Else Return list Else Return list

Cubification (list, opt.):

newlist = Sort_by_norm (list)

newlist = Hyperplanar shearing (newlist)
newlist = Directional shearing (newlist, opt.)
newlist = Hyperplanar shearing (newlist)
If R (newlist) < R (list):

Return Cubification (newlist, opt.)

improved even more by alternating
directional and hyperplanar shearing, as
detailed in the next section.

4. Cycling directional and
hyperplanar shearing

Table 2
Method and option to be used depending on the type of square matrix.

We consider ‘large’ a matrix of dimension N > 15. For some large
heterogeneous matrices a first step with hyperplanar shearing may be
required before starting method 1, as indicated in parentheses.

Variant for the directional reduction

Type of list of Cubification
vectors method Lagrange’s division Simplification
Small columnar Method 1 Insert Insert

matrix
Large columnar Append Insert

matrix
Large heterogeneous (Hyperplanar [Insert Insert

matrix shearing +)

method 1

Random matrix Method 2 Append Append

comes from the projection along a direction that makes the
rhombus (b, b3) appear nearly on its edge, as a segment. To
avoid this problem, one could solve the overdetermined
system by Gaussian elimination, taking care with the choices
of the pivot positions to avoid instabilities, but the complexity
would be comparable with that required to calculate the left
inverses of matrices.

The function ‘hyperplanar shear’ works as follows. It starts
with the list {by, ..., b, ..., by} and it tries to reduce b, by a
shear on the hyperplane {bz,...,bj,...,bN}, as described
previously. If the basis rhombicity is reduced when
{b;,....b;, ..., by} is substituted by v, /zb]/b}v},
the vector b} is moved to the end of the list, and the function is
called again with {b), ..., bj’-,by,bj} as input. If the
rhombicity is not reduced, the function keeps the initial list
(b, .. by, by} and tries to reduce the vector b, by a
shear on the hyperplane {b;,b; ..., b; ..., by} etc. The
process stops when all the vectors b, of the Ilist
by, ..., b, ..., by} are screened but none of the vectors b
permits the basis thombicity to be reduced any further. This
series of hyperplanar shears will be called ‘hyperplanar
shearing’.

Both directional and hyperplanar shearing imply ortho-
gonal projections followed by numerical rounding in which
rational numbers are replaced by their closest integers, which
is actually very similar to the operations required in the
Gram-Schmidt procedure. The lattice of Fig. 1(a) that was
previously reduced by directional shearing becomes even
more reduced by hyperplanar shearing: the rhombicity and
sum of the squares of the norms decreased to R =451 and S =

4.1. Methods and options

The directional and hyperplanar shearing steps can now be
repeated in cycles until the rhombicity cannot be decreased
anymore. This method is called ‘cubification’. There is not a
unique way to perform a cubification as it can be started by the
directional shearing or by the hyperplanar shearing. It also
depends on the variant of the algorithms chosen for Lagran-
ge’s division (Section 2.1) and for the simplification (Section
2.2). By trial and error, we could identify two cubification
methods (Table 1).

The chosen algorithm variant depends on the type of matrix
that is to be reduced (Table 2). We refer to ‘columnar matrix’
as a list of vectors whose matrix (the vectors are written in
rows) contains many zeros, and at least one column contains
many non-null and generally moderate integer values (here 3
or 4 digits). A typical example is the matrix given in Fig. 1(a).
We noticed that for matrices of dimensions approximately
N > 15, Lagrange’s division in its Append variant gives better
results than with ‘Insert’. A ‘heterogeneous matrix’ is a matrix
that contains many zeros, and at least one row and one column
with many non-null and moderate integer values. We noticed
that for some cases of large heterogeneous matrices, with
approximately N > 15, the first directional reduction may go
beyond the recursion limit of our computer; when this
happens, applying first a hyperplanar shearing solves the
problem. A ‘random matrix’ is a matrix whose values are
randomly computed with integers between 0 and 100. Limits
larger than 100, for example 1000, in large random matrices
N > 15 lead to too high integer values in intermediate
calculations and error messages. A ‘columnar random matrix’
is here an identity matrix in which the last column is replaced
by random integers in the range 0-100. Columnar random
matrices are classified as random matrices and are treated with
method 2.

4.2. Computer program and comparisons

We wrote a computer program called Cubification in Python
3.8 using the Numpy library to perform the matrix calculations
(scalar products, matrix products, inverses efc.), generate the
random numbers, vectors and matrices, and calculate the
reduced lattices. All the results presented in the paper were
obtained with a laptop computer equipped with an Intel Core
17-4600 CPU 2.1 GHz, 64-bit Windows system, with a RAM of
8 GB. The recursion limit in our Python program has been
fixed to 10 000. We compared the results obtained with our
program with those obtained by the LLL method computed in

6 of 9

Cyril Cayron - A new method for lattice reduction

Acta Cryst. (2022). A78

research papers

Python 3 by Yonashiro (2020) in a program called OLLL. All
the OLLL calculations were made with o = 3/4. For specific
matrices, such as that of Fig. 1, we also used the function
ReduceLattice of Mathematica. On this example we checked
that OLLL and Mathematica give the same result; the only
difference is that the calculations are nearly instantaneous
with Mathematica, whereas they are longer (a few seconds)
with Python language (OLLL and Cubification). This shows
that it is difficult to compare the time efficiency of lattice
reduction algorithms with computer programs written by
different people in different languages. Thus, the execution
times will just be given for indication.

4.3. Results on non-random matrices

The cubification algorithm gives results quite similar to
those of LLL. For example, the lattice of Fig. 1(a) could be
reduced in three cycles (in 3.0 s); the output list of vectors is
given in Fig. 4. The final basis is characterized by R =285, S =
87, these values are lower than those obtained by LLL (R =
531, §=99). Souvignier (2021) showed that with the Schnorr—
Euchner variant of LLL it is possible to get a reduced basis
with R = 335, S = 83, and then, by computing the vectors of
norm 4, selecting 18 of them and associating them with two
vectors of norms 3, he could obtain a reduced basis with R =
294, § = 78. These solutions are significantly better than those
obtained by Mathematica. Compared with the result obtained
by cubification, they have a lower norm S (also a lower norm
P), but a larger rhombicity R This example shows that
improving only the norms of the vectors does not always
permit a better orthogonality (and vice versa) to be obtained,
as also shown in Appendix B.

For heterogeneous matrices, we have tested only five
20 x 20 matrices, and all of them show that LLL and cubifi-
cation give similar results (not shown here).

4.4. Results on random matrices

We have tested the performances of Cubification (method
2) and OLLL programs on columnar random matrices and full
random matrices. We used matrices of dimensions 10 x 10,

001 0000 0 010 0 0 0 -1 0 0 0 0 0
00-1000-10 02020 0 0 0 0 0 1 0 0 1
100 000-10 0201 0 0 0 0 0 0 -1 0 0
000 1000 0 100 —-1-10 0 0 0 0 0 0
100 1100 0 0200 0 0 0 0 0 0 0 1 0
000 -1000 0 010 0 10 1 0 0 0 0 0
000 0000 0 001 0 0 1 0 0 -1 0 0 -1
100 0000 0 000 0 1 0 1 1 0 0 0 0
000 000-10 00T1 0 -1 0 0 0 1 0 0 0
010 0001 0 110 0 0 0 0 0 0 0 0 0
100 0000 0 000 0 0 1 0 1 0 0 0 1
000 0000 0 00O 0 -1 1 1 0 0 -1 0 0
01 -1 0000 1 000 0 0 0 -1 0 0 0 0 0
000 1010 0 00O 10 -1 1 0 0 0 0 0
00-1 00071 -102020 0 0 0 0 0 0 -1 0 1
0 0-1 0100 0 -100 0 0 0 0 0 0 0 1 -1
000 0000 1 000 0 0 0 0 1 1 0 -1 -1
001 0000 0 -100 0 1 0 0 -1 1 0 0 0
100 0000 0 001 0 0 0 0 1 0 1 0 1
110 0000 0 1 0-10 1 1 0 0 0 0 0 0
Figure 4

Cubification by method 1 of the lattice of Fig. 1(a). The vectors are
written in rows, as in Fig. 1. The reduced basis has values R = 285, S = 87.

Table 3
Reduction factors obtained on columnar and full random matrices of
dimensions 10 x 10, 12 x 12 and 14 x 14 by testing 50 matrices.

The mean deviation estimated by various tests is for OLLL around % 20% for
a 10 x 10 matrix and it decreases down to +5% for a 14 x 14 matrix. It seems
to be larger for Cubification (£25% and £10%, respectively).

Reduction factor R(input)/R(output) S(input)/S(output)
Columnar random matrices 10 x 10

OLLL 2780 1000
Cubification 3600 1060
Columnar random matrices 12 x 12

OLLL 3120 1060
Cubification 4100 1090
Columnar random matrices 14 x 14

OLLL 3630 1160
Cubification 4370 1070
Full random matrices 10 x 10

OLLL 143 52
Cubification 16.9 5.4
Full random matrices 12 x 12

OLLL 14.1 5.0
Cubification 15.2 4.6
Full random matrices 14 x 14

OLLL 13.6 4.7
Cubification 14.3 4.1

12 x 12 and 14 x 14. Fifty matrices have been generated for
each type. The performances on the norms and orthogonalities
were measured by the reduction factors R(input)/R(output)
and S(input)/S(output). The higher the reduction factors, the
better the algorithm. The results are given in Table 3.

For these moderate dimensions, the reduction of the
rhombicity is systematically better with Cubification than with
the OLLL algorithm. The norms seem however less reduced
by Cubification for large full random matrices. The execution
times of Cubification are 0.1,0.3 and 0.5 s for 10 x 10,12 x 12
and 14 x 14 columnar random matrices, respectively, and 0.2,
0.7 and 1.3 s for 10 x 10, 12 x 12 and 14 x 14 full random
matrices, respectively. They are slightly shorter than with
OLLL. We also performed some experiments in higher
dimensions. The mean execution times are 14 and 30 s for
30 x 30 columnar and full random matrices, respectively. They
are shorter than with OLLL, but ten times longer than those
reported with other optimized Python programs (Papachris-
toudis et al., 2015). The way the algorithm is implemented, the
choice of types of variables, the use of different libraries, the
memory management, all play a crucial role in the execution
times. In this paper, the code was not optimized to reach the
best performances in execution times; its aim was only to show
that simple shears along directions and hyperplanes may be
interesting tools for lattice reduction.

5. Conclusion and perspectives

A method of lattice reduction called ‘cubification’ is proposed.
It is geometrically simple; it is based on the complementary
actions of directional shearing and hyperplanar shearing.
These two kinds of shears were initially introduced to reduce
the unit cells attached to given hyperplanes (Cayron, 2021). In

Acta Cryst. (2022). A78

7of9

Cyril Cayron + A new method for lattice reduction

research papers

contrast to LLL, the cubification algorithm does not require
the calculations of Gram-Schmidt bases. The ‘driving force’ of
the reduction is the ‘basis rhombicity’, a parameter that
encompasses the information on the norms and angles of the
basis vectors. A computer program called Cubification was
written in Python 3.8. The results are comparable with those of
LLL, at least up to moderate dimensions (N < 20). The
Python program Cubification is freely available from the
author on request.

We foresee margins of progression for the algorithm of
cubification. The two methods described in Section 4.1 were
determined by trial and error; better strategies to alternate the
directional and hyperplanar shears seem possible, for example
by cross-calling the two processes without necessarily
screening all the vectors in the basis. We could also try to
generalize the N — N — 1 decrease of dimensions already
used in the hyperplanar shearing step with the help of
the left inverse matrices to work in spaces of dimensions
N—1,N —2 etc.

APPENDIX A
Brief overview of the LLL algorithm

The most popular algorithm to tackle the lattice reduction
problem was proposed nearly 40 years ago by Lenstra—
Lenstra—Lovasz (Lenstra et al., 1982), and it is still considered
as the main reference in the domain. It should be noted that
the LLL algorithm does not give in general a Hermite—
Minkowski reduced basis for which the vectors have minimal
lengths (Ryshkov, 1976), but ‘only’ a basis made of short and
nearly orthogonal vectors that constitutes a good, approx-
imate solution that is very useful for many applications.
It was initially designed to give in polynomial-time a good
solution for factorizing polynomials with rational coefficients,
and it is also nowadays applied for finding rational approx-
imations to real numbers, and for solving the integer linear
programming problems in fixed dimensions; it is applied in
global positioning systems (GPS), data detection and
communication systems. It is so important that a complete
book has been devoted to it (Nguyen & Vallée, 2010). The
reader can also consult Wiibben et al. (2011). We just give here
some of its key points. At the core of LLL is the Gram-
Schmidt orthogonalization routine in which one attaches to
any basis {b;,...,b;,...,b,_y} an orthogonal basis
{by,....b;,...,b} by a series of projections b; =
b, — > i cu b, with u;, = (b, -b})/(b; -b}). The vectors
b; are not integer anymore (i.e. ‘reticular’ in crystallographic
language); they remain however rational. Practically, as the
numerators and denominators may become huge numbers,
floating-point numbers are used for u;,. The LLL algorithm
works in two steps repeated iteratively. The first step is the
quasi-orthogonalization. The vectors b, are replaced by
b, — u; b, for k between 1 and i — 1, where |u; ,] means the
nearest integer of u;,. The Gram-Schmidt basis should be
actualized during the process. The second step relies on a
criterion to determine whether or not the vectors b, and b;
should be swapped: the swap is made when [|bY,; + u; ;. ,b}|I* <

al/bf |I?, where « is a constant arbitrarily chosen between % and
1 (and fixed once for all). Often, the value o« = %is chosen. The
constant « influences the strength of reduction in the algo-
rithm and by that also the number of required iterations;
greater values lead to stronger reductions; it has an effect on
the final norms of the reduced vectors, and more precisely it
permits the product of the squared norms]_[fil [b,]I* to be
bound.

APPENDIX B
Example of a lattice with two reduced bases of the
same norms but different orthogonalities

This appendix provides an example showing that minimizing
the norms of the vectors of a lattice does not necessarily
permit their orthogonality to be improved. Let us consider the
lattice spanned by the four vectors {b;,b,,b;, b,} whose
coordinates are written in rows by

11 0 0
01 10
B_OIOI
1 01 1

The squares of the norms of the four vectors are 2, 2, 2, 3.
The parameters that can be used to evaluate the ‘norm’ of the
basis B are the sum of the squares of norms S(B) = 9 and the
products of the squares of norms P?(B) = 24. This basis is
already reduced if one considers only the norm of B. The
output of the LLL algorithm is thus the same basis. However,
the same lattice may also be given by the vectors b} = b,,

5 = b, —b,, b’y =b,, b =b; —b,, written in rows:

1 1 0 0
, 10 =10
B=109 1 0 1

-1 1 -1 0

The squares of the norms of the four vectors are 2, 2, 2, 3,
and the new basis B’ is characterized by the parameters
S(B') = 9 and P*(B') = 24. The two bases B and B’ generate
the same lattice and have the same ‘norm’, but their ortho-
gonalities are different. Their metric tensors are

2 111
1 211
M(B) = 11 2 1
1 113
and
2 110
~n_ |1 2 00
(B) = 10 2 1)
0 0 1 3
respectively. Their rhombicities are R(B)=21 and

R(B’) = 15, respectively. The basis B’ is thus more ‘ortho-
gonal’ than the basis B. This example shows that the term
‘orthogonality defect’” usually attributed to the parameter P/V
may not be very appropriate. Since the value R — S gives the

8 of 9

Cyril Cayron - A new method for lattice reduction

Acta Cryst. (2022). A78

research papers

Euclidean scalar products of the vectors with the other ones,
the parameter (R — S)/S seems better adapted to characterize
the ‘orthogonality defect’. The cubification method described
in the paper aims at reducing both the norms and the ortho-
gonalites of the vectors, which is why the rhombicity R was
used as a driving force in the algorithm. The basis B’ of the
example was found by cubification.

Acknowledgements

Professor Roland Logé is warmly acknowledged for the
freedom given to our research that sometimes goes beyond
metallurgy. I would also like to thank the reviewers, and
particularly Professor Souvignier, who showed me the effi-
ciency of the Schnorr—Euchner method on the same examples
with the same parameters R and S as those introduced in the
paper. The paper was modified and improved thanks to his
comments. Professor Palatinus is also thanked for his advice
and for putting me in contact with Professor Souvignier.

Funding information

Open access funding provided by Ecole Polytechnique
Federale de Lausanne.

References

Cayron, C. (2021). Acta Cryst. AT7, 453-459.

Lenstra, A. K., Lenstra, H. W. Jr & Lovasz, L. (1982). Math. Ann. 261,
515-534.

Nguyen, P. Q. & Vallée, B. (2010). The LLL Algorithm. Survey and
Applications. Berlin, Heidelberg: Springer-Verlag.

Papachristoudis, D. G., Halkidis, S. T. & Stephanides, G. (2015). Int. J.
Appl. Comput. Math. 1, 327-342.

Ryshkov, S. S. (1976). J. Math. Sci. 6, 651-671.

Souvignier, B. (2021). Personal communication.

Wiibben, D., Seethaler, D., Jaldén, J. & Matz, G. (2011). IEEE Signal
Process. Mag. 28, 70-91.

Yonashiro, N. (2020). OLLL, a Python3 Implementation of LLL,
available at https://github.com/orisano/olll.

Acta Cryst. (2022). A78

9 0of 9

Cyril Cayron + A new method for lattice reduction

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB10

