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Bolide impacts influence primordial evolution of planetary bodies because they can cause instantaneous 
melting and vaporization of both crust and impactors. Temperatures reached by impact-generated 
silicate melts are unknown because meteorite impacts are ephemeral, and established mineral and 
rock thermometers have limited temperature ranges. Consequently, impact melt temperatures in global 
bombardment models of the early Earth and Moon are poorly constrained, and may not accurately predict 
the survival, stabilization, geochemical evolution and cooling of early crustal materials. Here we show 
geological evidence for the transformation of zircon to cubic zirconia plus silica in impact melt from 
the 28 km diameter Mistastin Lake crater, Canada, which requires super-heating in excess of 2370 ◦C. 
This new temperature determination is the highest recorded from any crustal rock. Our phase heritage 
approach extends the thermometry range for impact melts by several hundred degrees, more closely 
bridging the gap between nature and theory. Profusion of >2370 ◦C superheated impact melt during 
high intensity bombardment of Hadean Earth likely facilitated consumption of early-formed crustal rocks 
and minerals, widespread volatilization of various species, including hydrates, and formation of dry, rigid, 
refractory crust.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Shock wave propagation during hypervelocity impact can melt 
and vaporize both the impactor and target rocks (Melosh, 1989). 
The immediate, post-impact, thermal pulse far exceeds both ultra-
high-temperature metamorphism in tectonic settings (Heisinger 
and Head, 2006; Korhonen et al., 2014) and the liquidus tempera-
tures of target rocks, and is therefore important for the evolution 
of planet and asteroid surfaces. The heat associated with impacts 
had a profound significance on the early Earth, and has been 
shown to have affected processes in Earth’s core (Arkani-Hamed 
and Ghods, 2011; Monteux et al., 2015; Sleep, 2016), mantle 
(Watters et al., 2009), crust and atmosphere (Marchi et al., 2016, 
2014, 2013; Melosh, 2008).
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Volatile depletion and isotope fractionation of Earth, Moon and 
other planetary bodies are attributed to giant basin-forming im-
pacts (Albarede et al., 2013; Day and Moynier, 2014; Moynier et 
al., 2010; Pringle et al., 2014). Vaporization of target and im-
pactor material during impacts is temperature dependant. Prefer-
ential mass-dependant volatile loss and isotope fractionation from 
impact melts can therefore locally influence subsequent remelting 
and rheological behavior, and so giant impacts and/or the cu-
mulative effects of intense periods of impact bombardment have 
important geodynamic consequences (Albarede, 2009). These ef-
fects, in turn, have implications for the evolution and habitabil-
ity of Earth’s surface environment (Abramov and Mojzsis, 2009;
Ryder, 2002), and, by extension, the habitability of extraterrestrial 
planetary bodies and exoplanets.

Initial thermal properties of impact melt also control their 
ability to digest pre-existing solid material and entrained debris 
(Onorato et al., 1978), including metals and sulphides essential 
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for forming impact-generated economic ore deposits (Keays and 
Lightfoot, 2004), their cooling rate (Onorato et al., 1978), and con-
sequently the preservation of all pre-existing material and high-P 
phases formed during the passage of the shock wave (Tschauner et 
al., 2014). The highest temperature superheated melts (i.e., above 
the liquidus—the equilibrium temperature for complete melting) 
and vapor are produced during shock-release melting and frictional 
melting, whereas exhumation-related decompression melting is 
limited to sub-liquidus temperatures (Ahrens and O’Keefe, 1971;
French and Koeberl, 2010; Melosh, 1989, 2005; Riller et al., 2010;
Spray, 1998).

The critical melting temperature of target rocks depends on 
their composition, proximity to the impact site, initial condi-
tions (Gibbons et al., 1975; Hörz et al., 2005; Stöffler, 1971) and 
porosity (Kieffer et al., 1976; Wünnemann et al., 2008). Vapor-
ization temperature is taken as the highest vaporization temper-
ature of oxides present in the system; in real systems, incongru-
ent vaporization may occur over a range of temperatures (Ahrens 
and O’Keefe, 1971; Grieve et al., 1977; Lamoreaux et al., 1987;
Lou et al., 1985). However, the complex behavior of silicates has 
made shock-related heating and, thus, the magnitudes of impact 
melt superheating and vaporization difficult to predict with any 
degree of certainty (Ahrens and O’Keefe, 1971). Accordingly, our 
understanding of temperatures achieved by impact melts neces-
sarily relies on empirical constraints from the rock record via 
established geothermometers, which have inherently limited tem-
perature ranges (Asimow and Ghiorso, 1998; Cherniak et al., 2007;
Hart and Davis, 1978; Kubaschewski, 1982; Lindsley and Andersen, 
1983; Sack and Ghiorso, 1991; Taylor et al., 2015). As there are 
large ranges between liquidus and vaporization temperatures for 
most rock types, maximum impact melt temperatures are largely 
unaccounted for, thus the effects of superheated melt may be un-
derappreciated in planetary surface studies.

In the rock record, glass spherules and some types of mi-
crotektites contained within impact ejecta horizons provide a priori
evidence for atmospheric condensation of silicate vapor (Glass and 
Simonson, 2012). In rare cases, nickel-rich magnesiowüstite inclu-
sions in spherules indicate condensation temperatures >2300 ◦C 
(Kyte and Bohor, 1995). However, no direct geological evidence 
has been reported for high temperatures in contiguous impact 
melt rock, quenched ejected melt droplets (tektites), or impact 
melt-bearing breccia (suevite) because no geothermometers ap-
plicable to impact melt are calibrated beyond ∼2000 ◦C (Asimow 
and Ghiorso, 1998; Cherniak et al., 2007; Hart and Davis, 1978;
Kubaschewski, 1982; Lindsley and Andersen, 1983; Sack and 
Ghiorso, 1991; Taylor et al., 2015). Furthermore, models of impact 
melt formation often assume initial melt temperatures of ∼1700 ◦C 
(Abramov et al., 2013; Onorato et al., 1978; Simonds, 1975), and in 
some cases allude to temperatures >2000 ◦C (Wünnemann et al., 
2008).

In this study, we investigate the microstructure of zirconia 
(ZrO2) produced during the dissociation of zircon (ZrSiO4) in 
impact glass (quenched impact melt) sampled from the 28-km-
diameter, 37.83 ± 0.05 Ma Mistastin Lake impact structure in 
northern Labrador, Canada (55◦53′N; 63◦18′W) (Marion and Syl-
vester, 2010; Sylvester et al., 2013). We present new thermometry 
based on reconstruction of the polymorphic transformation history 
of zirconia in a reaction rim around a zircon grain, an approach 
we refer to as phase heritage. Crystallographic relationships reveal 
the former presence of cubic zirconia, which definitively quantifies 
the minimum impact melt temperature to >2370 ◦C, far exceed-
ing commonly assumed impact melt temperatures. These results 
thus present fundamental new constraints on the evolution of im-
pact melts, and influence our understanding of the evolution of 
early planetary crust, when impact rates were orders of magni-
tude higher than now, substaintial resurfacing by impact struc-
tures comparable to or larger in size than Mistastin Lake occurred 
(Marchi et al., 2014; Morbidelli et al., 2012), and all physical evi-
dence of cratering was subsequently destroyed.

2. Methods and approach

We characterized the zircon grain and surrounding area in situ
on a polished thin section with cathodoluminescence (CL), back-
scattered electron (BSE) imaging and wavelength dispersive spec-
troscopy (WDS). We used electron backscatter diffraction (EBSD) 
to verify the mineral assemblage and characterize and quantify the 
crystallographic orientation and microstructure of zirconia (ZrO2) 
produced by the dissociation of zircon (ZrSiO4). See Supplementary 
File for further information about data acquisition and process-
ing. Crystallographic relationships among zirconia grains preserve 
the phase transformation history, or phase heritage, of zirconia 
polymorphs (Cayron et al., 2010; Kerschhofer et al., 2000). Trans-
formations between mineral phases commonly occur with sys-
tematic crystallographic orientation relationships (e.g., Pearce et 
al., 2013). New phases tend to nucleate at multiple sites in one 
of several symmetrically equivalent orientations. The new grain 
orientations in the resulting polycrystalline microstructure are re-
lated by systematic misorientations, described by specific angu-
lar rotations around specific crystallographic axes that are strictly 
controlled by the symmetry relationships between the old and 
new phases. Therefore, the original (parent) crystal orientation can 
be inferred by combining the misorientations between the new 
(daughter) phase grains and the transformation relationships, even 
when the old crystal has been completely transformed. This con-
cept of orientation-based phase heritage has been used to iden-
tify the former presence of high-temperature zirconia polymorphs 
in manufactured ceramics (Cayron et al., 2010; Chevalier et al., 
2009) and kimberlites (Kerschhofer et al., 2000), and the high-
pressure ZrSiO4 polymorph reidite in impactites (Cavosie et al., 
2016; Timms et al., 2017), and we use it here to investigate the 
thermal evolution of zircon entrained into impact melt.

The orientation relationships (OR) for the transformations 
from cubic–tetragonal–monoclinic zirconia due to cooling are 
well known from the literature on refractory ceramics, and mea-
sured orientations of low-temperature monoclinic zirconia (bad-
deleyite) can be used to reconstruct orientations of parent cubic 
grains, the highest temperature zirconia polymorph (Cayron, 2007;
Cayron et al., 2010). This approach relies on 〈a〉cubic → 〈a〉tetragonal
or 〈c〉tetragonal, generating up to three possible unique tetrago-
nal orientations from a single cubic grain. During subsequent 
tetragonal–monoclinic transformation upon further cooling, the 
following transformation rules apply:

〈a〉tetragonal or 〈c〉tetragonal → 〈b〉monoclinic

plus either

〈a〉tetragonal or 〈c〉tetragonal → 〈a〉monoclinic

(type 1 OR after Cayron et al., 2010)

or

〈a〉tetragonal or 〈c〉tetragonal → 〈c〉monoclinic

(type 2 OR after Cayron et al., 2010)

allowing for up to four unique orientation variants from each 
tetragonal identity (Chevalier et al., 2009), totaling twelve possi-
ble monoclinic variants from a single cubic identity (Cayron et al., 
2010).

The Python-based software combination of ARPGE and Gen-
OVa were used to perform a crystallographic orientation analysis 
of baddeleyite (monoclinic zirconia) to reconstruct evidence for 
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precursor zirconia polymorphs following the approach applied by 
Cayron (2007) and Cayron et al. (2010) for ceramic applications. 
This method automatically and objectively reconstructs ‘parent’ 
grains using known sets of orientation relationships among ‘daugh-
ter’ grains that have been established to result from phase trans-
formations between specific zirconia polymorphs.

3. Results

The zircon grain analyzed, MZRN-1, is in a glassy impact melt 
rock, exposed on top of the 80 m thick columnar jointed impact 
melt body at Discovery Hill near the crater wall (Marion and Syl-
vester, 2010). Mistastin impact melt rock composition ranges from 
∼53 to ∼59 wt% SiO2 and is interpreted to reflect mixing of differ-
ent proportions of various crystalline igneous target rocks (Marion 
and Sylvester, 2010). Field relations indicate the melt ponded at 
Earth’s surface at ambient atmospheric pressure (Marion and Syl-
vester, 2010). The zircon records a pre-impact U–Pb crystallization 
age of 1403 ± 10 Ma (2σ error, n = 3, MSWD = 0.85), consis-
tent with derivation from Mesoproterozoic bedrock in the region 
(Zanetti, 2015). Other phases in the matrix include ballen-textured 
silica, which is also characteristic of high-temperature (>1200 ◦C) 
impact melt (Ferrière et al., 2009).

Zircon grain MZRN-1 has an oscillatory zoned core in cathodo-
luminescence (CL) that is truncated by a ∼2 μm wide, bright CL 
rim that contains zirconia particles with interspersed sub-μm sil-
icate melt inclusions (Fig. 1). The grain is cut by irregular frac-
tures and contains two voids, all filled with glassy silicate impact 
melt (Fig. 1B). The zircon does not preserve any diagnostic shock-
deformation microstructures, such as twins or the high-pressure 
ZrSiO4 polymorph reidite (Timms et al., 2017) (Supplementary File 
item 2). Minor lattice misorientations (<5◦) are associated with 
rigid block rotation across brittle fractures (Supplementary File 
item 2), but in general the core of the zircon appears undeformed.

The core is surrounded by a ∼40 μm thick corona of vermic-
ular ZrO2 crystals ranging from ∼0.5 to ∼5 μm across and up to 
∼20 μm long (Fig. 1). Elongate crystals tend to be aligned at high 
angles to the zircon core, and form domains of morphologically 
similar clusters up to ∼50 μm wide. Individual crystals generally 
do not impinge on each other, and are separated by glassy silicate 
impact melt similar in composition to the surrounding crystal-free 
impact melt (Fig. 1). ZrO2 contains lower trace elements abun-
dances (e.g., ∼350 ppm Ti, ∼275 ppm Th, ∼90 ppm Y) than zircon 
(e.g., ∼900 ppm Ti, ∼600 ppm Th, ∼1900 ppm Y) (Supplementary 
File item 4). Most (>99%) of the ZrO2 grains index as badde-
leyite (monoclinic ZrO2). No crystalline SiO2 phases were detected 
(Figs. 1, 2).

Baddeleyite grains are commonly twinned and have a wide 
range of crystallographic orientations (Fig. 2A, C). Morphologically 
distinct clusters of baddeleyite grains preserve up to twelve unique 
crystallographic orientation variants with a systematic relation-
ships among them (Fig. 2D, Supplementary File item 5). Groups of 
grains are crystallographically orientated approximately orthogonal 
to one another, and systematic deviations from orthogonality of 
∼20◦ form cross-shaped patterns on pole figures of 〈100〉 (Fig. 2D).

The occurrence of spatially-clustered baddeleyite grains with 
these distinctive patterns of twelve orientations uniquely identifies 
the former presence and orientation of a precursor cubic zirco-
nia polymorph from the two-stage transformation from cubic to 
tetragonal to monoclinic zirconia (Fig. 2B, E) (Cayron et al., 2010). 
Initial processing of the EBSD maps of MZRN-1 involved dilation of 
daughter monoclinic zirconia grains by an iterative nearest neigh-
bor extrapolation routine so that they impinge on one another 
(Supplementary File Fig. S3). This was required in order to perform 
neighbor-pair disorientation analysis within the ARPGE software.

Observed peaks we identified in disorientation analysis of 
MZRN-1 at 90◦ , 115◦ , and 180◦ are consistent with cubic–mono-
Fig. 1. A. Panchromatic cathodoluminescence (CL) image of zircon (Zrn) xenocryst 
with a corona of baddeleyite (Bdy) and silicate glass. B. Backscattered electron 
image of area shown by white box in A showing the zircon–baddeleyite–glass inter-
face.

clinic transformation twinning (Fig. 3). We identified symmetry 
operators for disorientations between daughter monoclinic zirconia 
grains at these specific angles in crystal reference frame (Fig. 3).

We used the software GenOVa to develop a list of theoreti-
cal symmetry operators for the cubic–monoclinic transformation 
according to OR type 1 or type 2 OR (Cayron et al., 2010) to re-
construct the parent cubic zirconia grains (Figs. 2, 3). Parent grain 
reconstruction involved a quadruplet search method with a mini-
mum of five daughter grains per parent grain (Cayron et al., 2010). 
The disorientations we observed (angles + axes) fit very well with 
rotations by the operators expected from OR type 2, within an an-
gular tolerance range of <5◦ (Fig. 3). We conclude that OR type 
2 is the OR in the samples: there is no evidence that OR type 1 
is present. The observed spread of the orientations (Fig. 3) is not 
due to a mixture of OR types 1 and 2, and may be due to lim-
ited crystal-plasticity in the dynamic impact melt environment. We 
used 15–20◦ as the tolerance angle for the parent cubic grain re-
construction (Fig. 2B, D, Supplementary File Fig. S5).

Reconstruction of parent cubic zirconia grains from baddeleyite 
electron backscatter diffraction (EBSD) data shows that the dissoci-
ation corona was once comprised of large (∼5 to ∼50 μm across) 
domains of vermicular single crystals of cubic zirconia (Fig. 2B). 
The morphology of the cubic parent grains indicates that the ver-
micular ZrO2 grains formed a connected 3D network that broadly 
pseudomorphed the original rim of the zircon grain. A second zir-
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Fig. 2. A. Electron backscatter diffraction map colored for measured crystallographic orientation of baddeleyite. Zircon is shown in grayscale based on EBSD pattern quality 
(band contrast). B. Map showing crystallographic orientations of reconstructed parent cubic zirconia grains. Inverse pole figure (IPF) orientation color scheme. C–F. Pole 
figures showing measured ‘daughter’ baddeleyite orientations and reconstructed cubic zirconia ‘parent’ orientations. Lower hemisphere plots in sample x–y–z reference 
frame. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
con from the same sample (MZRN-2) displays the same partial dis-
sociation texture and also successfully yields reconstructed parent 
cubic zirconia grains (Supplementary File items 3 and 5), indicat-
ing the same cubic zirconia phase heritage as MZRN-1.

4. Discussion

The microstructural and geochronological data, field relations, 
and thermodynamic constraints all support the interpretation 
that the zircon grains described here record an extreme high-
temperature history at low-pressure conditions. The Mesoprotero-
zoic U–Pb age and preserved igneous zoning of MZRN-1 indicate 
that the grain is a xenocryst derived from one of the plutonic 
igneous target rocks. The complete lack of crystal–plastic defor-
mation, shock-twins and high-pressure polymorphs are consistent 
with the grains not having been affected by high-pressure shock 
conditions. The grains were, however, entrained into impact melt 
in the dynamic crater environment after passage of the shock 
wave. The ZrO2 coronae are therefore interpreted to have devel-
oped solely due to thermal effects from immersion in super-heated 
impact melt at ambient pressure. The inference of ambient pres-
sure is also consistent with available thermodynamic constraints 
that indicate that the zircon dissociation reaction line has a steep 
Clapeyron slope (29 ◦C/bar) and therefore is inevitably a low-
pressure process (Timms et al., 2017).

A minimum temperature achieved by the impact melt can be 
constrained via analysis of phases in the zirconia corona, and we 
use the ZrO2–SiO2 binary phase diagram at 1 atm to establish the 
temperature of zircon dissociation (Fig. 4) (Kaiser et al., 2008). The 
presence of a thick zirconia corona clearly records the melt achiev-
ing high enough temperature for zircon dissociation to proceed 
(Fig. 4) (Kaiser et al., 2008). Phase equilibria predict that zircon dis-
sociates to tetragonal zirconia and cristobalite at 1673 ◦C (Fig. 4). 
The presence of silicate melt and absence of cristobalite indicates 
the sample exceeded 1687 ◦C; liquid silica released by dissociation 
would have dissolved into surrounding melt.

Clusters of morphologically distinct zirconia crystals that con-
tain up to twelve unique orientations with systematic misorien-
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Fig. 3. Results from orientation analysis of daughter monoclinic zirconia grains of MZRN-1 using the software ARPGE (Cayron, 2007; Cayron et al., 2010). A. Histogram of 
disorientation angles between daughter monoclinic grains. B. Disorientation symmetry operator statistics for adjacent daughter grains for operators for the type 2 orientation 
relationship (OR) of Cayron et al. (2010). C. Pole figures showing the distribution of 90◦ , 115◦ , and 180◦ disorientation axes between daughter grains in the crystal reference 
frame.
Fig. 4. T –X phase diagram for ZrO2–ZrSiO4–SiO2 system modified after Kaiser et 
al. (2008). Tridymite stability after Swamy et al. (1994). Crosshatch shows zircon-
bearing fields, stipple shows melt-bearing fields.

tations are consistent with a two-stage solid-state transformation 
from cubic zirconia via tetragonal zirconia. The former presence 
of cubic zirconia requires that the zircon, and therefore the melt 
that surrounds it, reached a minimum temperature of 2370 ◦C, but 
did not exceed 2700 ◦C above which cubic zirconia would have 
melted (Fig. 4), and thus prevented crystallographic phase heritage 
relations from being preserved. Upon cooling below 2370 ◦C, the 
displacive transformation of cubic to tetragonal zirconia results in 
up to three distinct orientations of tetragonal zirconia whereby 
(001)tetragonal is parallel to a {100}cubic (Heuer et al., 1987). Fur-
ther cooling below ∼1180 ◦C results in a stable assemblage of 
baddeleyite + zircon (Fig. 4). The tetragonal–monoclinic zirconia 
transformation is martensitic, and resulted in four orientation vari-
ants of baddeleyite from each tetragonal parent (Cayron et al., 
2010). Thus, the transformation of higher-temperature cubic ZrO2
polymorphs in the corona to the low temperature ZrO2 polymorph 
baddeleyite produced systematic orientation relationships among 
baddeleyite grains. These are interpreted as transformation (rever-
sion) twins formed upon cooling (Supplementary File item 6).

Even though cubic zirconia is the highest temperature ZrO2
polymorph, its stability is pressure-dependant, such that it is stabi-
lized at lower temperature with increasing pressure (Bouvier et al., 
2000; Kerschhofer et al., 2000) (Supplementary File item 7). How-
ever, zirconia in the Mistastin sample is a product of zircon dissoci-
ation, which ostensibly is a low-pressure phenomenon that occurs 
at post-shock conditions (see Timms et al., 2017, for further de-
tails and thermodynamic calculations). All available field evidence, 
theoretical constraints, microstructural and geochemical data sup-
ports zircon dissociation in an unconfined impact melt at ambient, 
post-shock pressure. Therefore, the transformations among zirco-
nia polymorphs that took place after zircon dissociation necessarily 
also occurred in the melt sheet at post-shock low-pressure condi-
tions, which constrains the stability of cubic zirconia to extremely 
high temperatures. Impurities, such as REE and Y, can also stabilize 
cubic zirconia at lower temperatures (Swab, 2001) (Supplemen-
tary File item 7). However, the levels of trace elements present in 
the ZrO2 are much less than 0.1 wt% (Supplementary File item 4), 
and so the effects of impurities on the cubic to tetragonal zirconia 
transformation temperature were negligible (Swab, 2001) (Supple-
mentary File item 7). Therefore, the former presence of cubic zir-
conia in the Mistastin Lake zircon indicates that the impact melt 
temperature was in excess of 2370 ◦C (Fig. 3) (Kaiser et al., 2008).

Our study documents forensic geological evidence for a min-
imum temperature of 2370 ◦C in a sample of impact melt. This 
temperature constraint is the highest recorded by any rock on 
Earth’s surface, and is several hundred degrees higher than pre-
vious estimates for average temperatures of superheated impact 
melts (Fig. 5) (Onorato et al., 1978; Simonds, 1975; Wünnemann 
et al., 2008).

The ability to assess the phase heritage of ZrO2 polymorphs 
by crystallographic orientation relationships is a new methodology 
for establishing the thermal evolution of superheated melt. Tex-
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Fig. 5. Ranges for various types of high-temperature thermometers available in geo-
sciences. Cubic zirconia (blue bar) related to zircon dissociation (blue arrow) is the 
thermometer for highest known temperatures (numbers on left indicate references). 
Vaporization field is approximate and based on rates for common species present 
in silicate melts (Lamoreaux et al., 1987), qtz = quartz; lech. = lechatelierite.

tural evidence of zircon dissociation and associated zirconia has 
been reported in numerous examples, including impact melt rocks, 
tektites, lunar melt breccias, kimberlites, as well as anthropogenic 
settings, such as slag from metal smelting and nuclear test sites 
(Timms et al., 2017). Given that zircon is a common accessory 
mineral in many rocks, this approach can be used to assess mini-
mum temperatures of zircon-bearing impact melt rocks from Earth, 
Moon, and meteorites. The broader use of determining phase her-
itage can potentially be applied to a wide range of polymorphic 
transformations in geological systems.

Our results begin to constrain the conditions under which zir-
con and its U–Pb isotope systematics may survive during impact 
cratering. During high temperature and low shock pressure events, 
zircon is capable of surviving extreme conditions without necessar-
ily recording microstructural evidence typical of shock deformation 
(Erickson et al., 2017; Timms et al., 2017, 2012). The Mesopro-
terozoic U–Pb protolith zircon age preserved in the ∼38 Ma im-
pact melt investigated here indicates that, despite being entrained 
in impact melt in excess of 2370 ◦C, the residence time at high 
temperature was not sufficient to cause significant Pb-loss from 
the core of the grain by volume diffusion (Cherniak and Watson, 
2001). The glassy matrix is further evidence that duration at ex-
tremely high temperatures was short and the sample quenched 
rapidly. However, increased melt volumes in larger impact struc-
tures with slower cooling rates may lead to complete digestion of 
zircon xenocrysts, erasing mineralogical evidence of superheated 
temperatures. Early during Earth’s history when impact rates were 
high, digestion of zircon by superheated impact melt may have 
contributed to the paucity of Hadean zircon preserved in the geo-
logical record (Marchi et al., 2014).

The formation of >2370 ◦C impact melt during moderate sized 
impacts has several significant, global-scale consequences during 
the early evolution of the Earth and Moon when the frequency and 
magnitude of meteorite flux was much higher (Gomes et al., 2005;
Kring and Cohen, 2002). The extent of compositional modification 
by differential volatile loss of major and trace elements from im-
pact melts by selective vaporization at temperatures >2370 ◦C has 
not been fully investigated, yet are sufficiently high to cause sig-
nificant volatilization of many key oxide constituents of silicate 
melts (Lamoreaux et al., 1987). Preferential volatilization of SiO2, 
Na2O and K2O components from hot impact melt bodies could 
provide a mechanism for localized densification of residual crust, 
potentially with geodynamic consequences. Molecular species es-
sential for terrestrial life, such as H2O and CO2, are potentially lost 
due to volatilization of superheated impact melt. High-temperature 
impact-melting could locally form dry, rigid, refractory residual 
crust, resistant to subsequent melting. Moderate sized impacts, 
comparable to Mistastin, are predicted to have completely resur-
faced the Earth within the first tens of millions of years after 
the Moon-forming event, irrespective of the choice of the sug-
gested bombardment models (Marchi et al., 2014). Therefore, the 
resultant net effect of hypothesized high impact flux early during 
Earth’s history, combined with commonplace high temperatures of 
impact melts, potentially led to widespread depletion of hydrous 
minerals from the lithosphere and therefore governed rheological 
properties of early crust. Further investigation of the geodynamic 
consequences of this phenomenon for early Earth would require 
accurate predictions of impact melt temperatures, flux, size, im-
pact angles, and velocity distributions of impactors, and appropri-
ate scaling relationships for melt volumes linked to these variables. 
Furthermore, long term effects would need to account for rehydra-
tion effects by interaction with Earth’s hydrosphere. Our results on 
high temperature melt and attendant volatilization processes have 
implications for the early evolution of the geochemical reservoirs 
and multi-element isotope systematics of planetary bodies (Drake 
and Righter, 2002) and that extremely high melt temperatures can 
be achieved even in moderate-sized impact events, and are not 
limited to giant, basin-forming impacts.
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