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rock thermometers have limited temperature ranges. Consequently, impact melt temperatures in global
bombardment models of the early Earth and Moon are poorly constrained, and may not accurately predict
the survival, stabilization, geochemical evolution and cooling of early crustal materials. Here we show

Keywords: geological evidence for the transformation of zircon to cubic zirconia plus silica in impact melt from
cubic zirconia the 28 km diameter Mistastin Lake crater, Canada, which requires super-heating in excess of 2370°C.
zircon This new temperature determination is the highest recorded from any crustal rock. Our phase heritage
phase transformation approach extends the thermometry range for impact melts by several hundred degrees, more closely
impact melt ) bridging the gap between nature and theory. Profusion of >2370°C superheated impact melt during
planetary evolution high intensity bombardment of Hadean Earth likely facilitated consumption of early-formed crustal rocks
early Earth . . R . L. . . ..
and minerals, widespread volatilization of various species, including hydrates, and formation of dry, rigid,
refractory crust.
© 2017 Elsevier B.V. All rights reserved.
1. Introduction Volatile depletion and isotope fractionation of Earth, Moon and

other planetary bodies are attributed to giant basin-forming im-
Shock wave propagation during hypervelocity impact can melt  pacts (Albarede et al., 2013; Day and Moynier, 2014; Moynier et
and vaporize both the impactor and target rocks (Melosh, 1989).  al. 2010; Pringle et al., 2014). Vaporization of target and im-

The immediate, post-impact, thermgl pulse ff’\r excgeds bOth. gltra- pactor material during impacts is temperature dependant. Prefer-
high-temperature metamorphism in tectonic settings (Heisinger  ential mass-dependant volatile loss and isotope fractionation from
and Head, 2006; Korhonen et al., 2014) and the liquidus tempera- impact melts can therefore locally influence subsequent remelting

tures of target rocks, and is therefore important for the evolution and rheological behavior, and so giant impacts andfor the cu-
of planet and aster.oic! surfaces. The heat associated with impacts mulative effects of intense periods of impact bombardment have
had a profound significance on the earlyv Earth, and h_as been important geodynamic consequences (Albarede, 2009). These ef-
shown to have affected ProCEsses n Eartl?s core (Arkani-Hamed fects, in turn, have implications for the evolution and habitabil-
?\l}v(; ttGe lssoclst 3%01210'091\?03?;)(&15; ;‘tl;mzs([))]hse‘reséel\;icgiolf);l mza(l;lthe ity of Earth’s surface environment (Abramov and Mojzsis, 2009;
2014, 2013; Melosh, 2008). Ryder, 2002), gnd, by extension, the habitability of extraterrestrial
planetary bodies and exoplanets.

Initial thermal properties of impact melt also control their

* Corresponding author. ability to digest pre-existing solid material and entrained debris
E-mail address: n.timms@curtin.edu.au (N.E. Timms). (Onorato et al., 1978), including metals and sulphides essential
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for forming impact-generated economic ore deposits (Keays and
Lightfoot, 2004), their cooling rate (Onorato et al., 1978), and con-
sequently the preservation of all pre-existing material and high-P
phases formed during the passage of the shock wave (Tschauner et
al.,, 2014). The highest temperature superheated melts (i.e., above
the liquidus—the equilibrium temperature for complete melting)
and vapor are produced during shock-release melting and frictional
melting, whereas exhumation-related decompression melting is
limited to sub-liquidus temperatures (Ahrens and O’Keefe, 1971;
French and Koeberl, 2010; Melosh, 1989, 2005; Riller et al., 2010;
Spray, 1998).

The critical melting temperature of target rocks depends on
their composition, proximity to the impact site, initial condi-
tions (Gibbons et al., 1975; Horz et al., 2005; Stoffler, 1971) and
porosity (Kieffer et al., 1976; Wiinnemann et al., 2008). Vapor-
ization temperature is taken as the highest vaporization temper-
ature of oxides present in the system; in real systems, incongru-
ent vaporization may occur over a range of temperatures (Ahrens
and O’Keefe, 1971; Grieve et al., 1977; Lamoreaux et al., 1987;
Lou et al., 1985). However, the complex behavior of silicates has
made shock-related heating and, thus, the magnitudes of impact
melt superheating and vaporization difficult to predict with any
degree of certainty (Ahrens and O’Keefe, 1971). Accordingly, our
understanding of temperatures achieved by impact melts neces-
sarily relies on empirical constraints from the rock record via
established geothermometers, which have inherently limited tem-
perature ranges (Asimow and Ghiorso, 1998; Cherniak et al., 2007;
Hart and Davis, 1978; Kubaschewski, 1982; Lindsley and Andersen,
1983; Sack and Ghiorso, 1991; Taylor et al., 2015). As there are
large ranges between liquidus and vaporization temperatures for
most rock types, maximum impact melt temperatures are largely
unaccounted for, thus the effects of superheated melt may be un-
derappreciated in planetary surface studies.

In the rock record, glass spherules and some types of mi-
crotektites contained within impact ejecta horizons provide a priori
evidence for atmospheric condensation of silicate vapor (Glass and
Simonson, 2012). In rare cases, nickel-rich magnesiowdistite inclu-
sions in spherules indicate condensation temperatures >2300°C
(Kyte and Bohor, 1995). However, no direct geological evidence
has been reported for high temperatures in contiguous impact
melt rock, quenched ejected melt droplets (tektites), or impact
melt-bearing breccia (suevite) because no geothermometers ap-
plicable to impact melt are calibrated beyond ~2000°C (Asimow
and Ghiorso, 1998; Cherniak et al., 2007; Hart and Davis, 1978;
Kubaschewski, 1982; Lindsley and Andersen, 1983; Sack and
Ghiorso, 1991; Taylor et al., 2015). Furthermore, models of impact
melt formation often assume initial melt temperatures of ~1700°C
(Abramov et al., 2013; Onorato et al., 1978; Simonds, 1975), and in
some cases allude to temperatures >2000°C (Wiinnemann et al.,
2008).

In this study, we investigate the microstructure of zirconia
(ZrO2) produced during the dissociation of zircon (ZrSiO4) in
impact glass (quenched impact melt) sampled from the 28-km-
diameter, 37.83 £ 0.05 Ma Mistastin Lake impact structure in
northern Labrador, Canada (55°53’N; 63°18'W) (Marion and Syl-
vester, 2010; Sylvester et al., 2013). We present new thermometry
based on reconstruction of the polymorphic transformation history
of zirconia in a reaction rim around a zircon grain, an approach
we refer to as phase heritage. Crystallographic relationships reveal
the former presence of cubic zirconia, which definitively quantifies
the minimum impact melt temperature to >2370°C, far exceed-
ing commonly assumed impact melt temperatures. These results
thus present fundamental new constraints on the evolution of im-
pact melts, and influence our understanding of the evolution of
early planetary crust, when impact rates were orders of magni-
tude higher than now, substaintial resurfacing by impact struc-

tures comparable to or larger in size than Mistastin Lake occurred
(Marchi et al., 2014; Morbidelli et al., 2012), and all physical evi-
dence of cratering was subsequently destroyed.

2. Methods and approach

We characterized the zircon grain and surrounding area in situ
on a polished thin section with cathodoluminescence (CL), back-
scattered electron (BSE) imaging and wavelength dispersive spec-
troscopy (WDS). We used electron backscatter diffraction (EBSD)
to verify the mineral assemblage and characterize and quantify the
crystallographic orientation and microstructure of zirconia (ZrO;)
produced by the dissociation of zircon (ZrSiO4). See Supplementary
File for further information about data acquisition and process-
ing. Crystallographic relationships among zirconia grains preserve
the phase transformation history, or phase heritage, of zirconia
polymorphs (Cayron et al., 2010; Kerschhofer et al., 2000). Trans-
formations between mineral phases commonly occur with sys-
tematic crystallographic orientation relationships (e.g., Pearce et
al,, 2013). New phases tend to nucleate at multiple sites in one
of several symmetrically equivalent orientations. The new grain
orientations in the resulting polycrystalline microstructure are re-
lated by systematic misorientations, described by specific angu-
lar rotations around specific crystallographic axes that are strictly
controlled by the symmetry relationships between the old and
new phases. Therefore, the original (parent) crystal orientation can
be inferred by combining the misorientations between the new
(daughter) phase grains and the transformation relationships, even
when the old crystal has been completely transformed. This con-
cept of orientation-based phase heritage has been used to iden-
tify the former presence of high-temperature zirconia polymorphs
in manufactured ceramics (Cayron et al.,, 2010; Chevalier et al.,
2009) and kimberlites (Kerschhofer et al., 2000), and the high-
pressure ZrSiO4 polymorph reidite in impactites (Cavosie et al.,
2016; Timms et al., 2017), and we use it here to investigate the
thermal evolution of zircon entrained into impact melt.

The orientation relationships (OR) for the transformations
from cubic-tetragonal-monoclinic zirconia due to cooling are
well known from the literature on refractory ceramics, and mea-
sured orientations of low-temperature monoclinic zirconia (bad-
deleyite) can be used to reconstruct orientations of parent cubic
grains, the highest temperature zirconia polymorph (Cayron, 2007;
Cayron et al., 2010). This approach relies on (a)cubic = {(@)tetragonal
Or (C)tetragonal, generating up to three possible unique tetrago-
nal orientations from a single cubic grain. During subsequent
tetragonal-monoclinic transformation upon further cooling, the
following transformation rules apply:

(@) tetragonal OT {C)tetragonal = (b) monoclinic

plus either

(@)tetragonal OT {C)tetragonal = {@)monoclinic

(type 1 OR after Cayron et al., 2010)

or

(@) tetragonal OT {C)tetragonal —> {C)monoclinic

(type 2 OR after Cayron et al., 2010)

allowing for up to four unique orientation variants from each
tetragonal identity (Chevalier et al., 2009), totaling twelve possi-
ble monoclinic variants from a single cubic identity (Cayron et al.,
2010).

The Python-based software combination of ARPGE and Gen-
OVa were used to perform a crystallographic orientation analysis
of baddeleyite (monoclinic zirconia) to reconstruct evidence for
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precursor zirconia polymorphs following the approach applied by
Cayron (2007) and Cayron et al. (2010) for ceramic applications.
This method automatically and objectively reconstructs ‘parent’
grains using known sets of orientation relationships among ‘daugh-
ter’ grains that have been established to result from phase trans-
formations between specific zirconia polymorphs.

3. Results

The zircon grain analyzed, MZRN-1, is in a glassy impact melt
rock, exposed on top of the 80 m thick columnar jointed impact
melt body at Discovery Hill near the crater wall (Marion and Syl-
vester, 2010). Mistastin impact melt rock composition ranges from
~53 to ~59 wt% SiO; and is interpreted to reflect mixing of differ-
ent proportions of various crystalline igneous target rocks (Marion
and Sylvester, 2010). Field relations indicate the melt ponded at
Earth’s surface at ambient atmospheric pressure (Marion and Syl-
vester, 2010). The zircon records a pre-impact U-Pb crystallization
age of 1403 £ 10 Ma (20 error, n = 3, MSWD = 0.85), consis-
tent with derivation from Mesoproterozoic bedrock in the region
(Zanetti, 2015). Other phases in the matrix include ballen-textured
silica, which is also characteristic of high-temperature (>1200°C)
impact melt (Ferriere et al., 2009).

Zircon grain MZRN-1 has an oscillatory zoned core in cathodo-
luminescence (CL) that is truncated by a ~2 pm wide, bright CL
rim that contains zirconia particles with interspersed sub-pm sil-
icate melt inclusions (Fig. 1). The grain is cut by irregular frac-
tures and contains two voids, all filled with glassy silicate impact
melt (Fig. 1B). The zircon does not preserve any diagnostic shock-
deformation microstructures, such as twins or the high-pressure
ZrSiO4 polymorph reidite (Timms et al., 2017) (Supplementary File
item 2). Minor lattice misorientations (<5°) are associated with
rigid block rotation across brittle fractures (Supplementary File
item 2), but in general the core of the zircon appears undeformed.

The core is surrounded by a ~40 pm thick corona of vermic-
ular ZrO, crystals ranging from ~0.5 to ~5 pm across and up to
~20 pm long (Fig. 1). Elongate crystals tend to be aligned at high
angles to the zircon core, and form domains of morphologically
similar clusters up to ~50 pm wide. Individual crystals generally
do not impinge on each other, and are separated by glassy silicate
impact melt similar in composition to the surrounding crystal-free
impact melt (Fig. 1). ZrO, contains lower trace elements abun-
dances (e.g., ~350 ppm Ti, ~275 ppm Th, ~90 ppm Y) than zircon
(e.g., ~900 ppm Ti, ~600 ppm Th, ~1900 ppm Y) (Supplementary
File item 4). Most (>99%) of the ZrO, grains index as badde-
leyite (monoclinic ZrO;). No crystalline SiO; phases were detected
(Figs. 1, 2).

Baddeleyite grains are commonly twinned and have a wide
range of crystallographic orientations (Fig. 2A, C). Morphologically
distinct clusters of baddeleyite grains preserve up to twelve unique
crystallographic orientation variants with a systematic relation-
ships among them (Fig. 2D, Supplementary File item 5). Groups of
grains are crystallographically orientated approximately orthogonal
to one another, and systematic deviations from orthogonality of
~20° form cross-shaped patterns on pole figures of (100) (Fig. 2D).

The occurrence of spatially-clustered baddeleyite grains with
these distinctive patterns of twelve orientations uniquely identifies
the former presence and orientation of a precursor cubic zirco-
nia polymorph from the two-stage transformation from cubic to
tetragonal to monoclinic zirconia (Fig. 2B, E) (Cayron et al,, 2010).
Initial processing of the EBSD maps of MZRN-1 involved dilation of
daughter monoclinic zirconia grains by an iterative nearest neigh-
bor extrapolation routine so that they impinge on one another
(Supplementary File Fig. S3). This was required in order to perform
neighbor-pair disorientation analysis within the ARPGE software.

Observed peaks we identified in disorientation analysis of
MZRN-1 at 90°, 115°, and 180° are consistent with cubic-mono-

Fig. 1. A. Panchromatic cathodoluminescence (CL) image of zircon (Zrn) xenocryst
with a corona of baddeleyite (Bdy) and silicate glass. B. Backscattered electron
image of area shown by white box in A showing the zircon-baddeleyite-glass inter-
face.

clinic transformation twinning (Fig. 3). We identified symmetry
operators for disorientations between daughter monoclinic zirconia
grains at these specific angles in crystal reference frame (Fig. 3).
We used the software GenOVa to develop a list of theoreti-
cal symmetry operators for the cubic-monoclinic transformation
according to OR type 1 or type 2 OR (Cayron et al., 2010) to re-
construct the parent cubic zirconia grains (Figs. 2, 3). Parent grain
reconstruction involved a quadruplet search method with a mini-
mum of five daughter grains per parent grain (Cayron et al., 2010).
The disorientations we observed (angles + axes) fit very well with
rotations by the operators expected from OR type 2, within an an-
gular tolerance range of <5° (Fig. 3). We conclude that OR type
2 is the OR in the samples: there is no evidence that OR type 1
is present. The observed spread of the orientations (Fig. 3) is not
due to a mixture of OR types 1 and 2, and may be due to lim-
ited crystal-plasticity in the dynamic impact melt environment. We
used 15-20° as the tolerance angle for the parent cubic grain re-
construction (Fig. 2B, D, Supplementary File Fig. S5).
Reconstruction of parent cubic zirconia grains from baddeleyite
electron backscatter diffraction (EBSD) data shows that the dissoci-
ation corona was once comprised of large (~5 to ~50 pm across)
domains of vermicular single crystals of cubic zirconia (Fig. 2B).
The morphology of the cubic parent grains indicates that the ver-
micular ZrO; grains formed a connected 3D network that broadly
pseudomorphed the original rim of the zircon grain. A second zir-
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Fig. 2. A. Electron backscatter diffraction map colored for measured crystallographic orientation of baddeleyite. Zircon is shown in grayscale based on EBSD pattern quality
(band contrast). B. Map showing crystallographic orientations of reconstructed parent cubic zirconia grains. Inverse pole figure (IPF) orientation color scheme. C-F. Pole
figures showing measured ‘daughter’ baddeleyite orientations and reconstructed cubic zirconia ‘parent’ orientations. Lower hemisphere plots in sample x-y-z reference
frame. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

con from the same sample (MZRN-2) displays the same partial dis-
sociation texture and also successfully yields reconstructed parent
cubic zirconia grains (Supplementary File items 3 and 5), indicat-
ing the same cubic zirconia phase heritage as MZRN-1.

4. Discussion

The microstructural and geochronological data, field relations,
and thermodynamic constraints all support the interpretation
that the zircon grains described here record an extreme high-
temperature history at low-pressure conditions. The Mesoprotero-
zoic U-Pb age and preserved igneous zoning of MZRN-1 indicate
that the grain is a xenocryst derived from one of the plutonic
igneous target rocks. The complete lack of crystal-plastic defor-
mation, shock-twins and high-pressure polymorphs are consistent
with the grains not having been affected by high-pressure shock
conditions. The grains were, however, entrained into impact melt
in the dynamic crater environment after passage of the shock
wave. The ZrO, coronae are therefore interpreted to have devel-

oped solely due to thermal effects from immersion in super-heated
impact melt at ambient pressure. The inference of ambient pres-
sure is also consistent with available thermodynamic constraints
that indicate that the zircon dissociation reaction line has a steep
Clapeyron slope (29°C/bar) and therefore is inevitably a low-
pressure process (Timms et al., 2017).

A minimum temperature achieved by the impact melt can be
constrained via analysis of phases in the zirconia corona, and we
use the ZrO,-SiO; binary phase diagram at 1 atm to establish the
temperature of zircon dissociation (Fig. 4) (Kaiser et al., 2008). The
presence of a thick zirconia corona clearly records the melt achiev-
ing high enough temperature for zircon dissociation to proceed
(Fig. 4) (Kaiser et al., 2008). Phase equilibria predict that zircon dis-
sociates to tetragonal zirconia and cristobalite at 1673 °C (Fig. 4).
The presence of silicate melt and absence of cristobalite indicates
the sample exceeded 1687 °C; liquid silica released by dissociation
would have dissolved into surrounding melt.

Clusters of morphologically distinct zirconia crystals that con-
tain up to twelve unique orientations with systematic misorien-
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tations are consistent with a two-stage solid-state transformation
from cubic zirconia via tetragonal zirconia. The former presence
of cubic zirconia requires that the zircon, and therefore the melt
that surrounds it, reached a minimum temperature of 2370 °C, but
did not exceed 2700°C above which cubic zirconia would have
melted (Fig. 4), and thus prevented crystallographic phase heritage
relations from being preserved. Upon cooling below 2370°C, the
displacive transformation of cubic to tetragonal zirconia results in
up to three distinct orientations of tetragonal zirconia whereby
(001)tetragonal is parallel to a {100}cypic (Heuer et al., 1987). Fur-
ther cooling below ~1180°C results in a stable assemblage of
baddeleyite + zircon (Fig. 4). The tetragonal-monoclinic zirconia
transformation is martensitic, and resulted in four orientation vari-
ants of baddeleyite from each tetragonal parent (Cayron et al.,
2010). Thus, the transformation of higher-temperature cubic ZrO;
polymorphs in the corona to the low temperature ZrO, polymorph

baddeleyite produced systematic orientation relationships among
baddeleyite grains. These are interpreted as transformation (rever-
sion) twins formed upon cooling (Supplementary File item 6).

Even though cubic zirconia is the highest temperature ZrO,
polymorph, its stability is pressure-dependant, such that it is stabi-
lized at lower temperature with increasing pressure (Bouvier et al.,
2000; Kerschhofer et al., 2000) (Supplementary File item 7). How-
ever, zirconia in the Mistastin sample is a product of zircon dissoci-
ation, which ostensibly is a low-pressure phenomenon that occurs
at post-shock conditions (see Timms et al., 2017, for further de-
tails and thermodynamic calculations). All available field evidence,
theoretical constraints, microstructural and geochemical data sup-
ports zircon dissociation in an unconfined impact melt at ambient,
post-shock pressure. Therefore, the transformations among zirco-
nia polymorphs that took place after zircon dissociation necessarily
also occurred in the melt sheet at post-shock low-pressure condi-
tions, which constrains the stability of cubic zirconia to extremely
high temperatures. Impurities, such as REE and Y, can also stabilize
cubic zirconia at lower temperatures (Swab, 2001) (Supplemen-
tary File item 7). However, the levels of trace elements present in
the ZrO, are much less than 0.1 wt% (Supplementary File item 4),
and so the effects of impurities on the cubic to tetragonal zirconia
transformation temperature were negligible (Swab, 2001) (Supple-
mentary File item 7). Therefore, the former presence of cubic zir-
conia in the Mistastin Lake zircon indicates that the impact melt
temperature was in excess of 2370 °C (Fig. 3) (Kaiser et al., 2008).

Our study documents forensic geological evidence for a min-
imum temperature of 2370°C in a sample of impact melt. This
temperature constraint is the highest recorded by any rock on
Earth’s surface, and is several hundred degrees higher than pre-
vious estimates for average temperatures of superheated impact
melts (Fig. 5) (Onorato et al., 1978; Simonds, 1975; Wiinnemann
et al., 2008).

The ability to assess the phase heritage of ZrO, polymorphs
by crystallographic orientation relationships is a new methodology
for establishing the thermal evolution of superheated melt. Tex-
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tural evidence of zircon dissociation and associated zirconia has
been reported in numerous examples, including impact melt rocks,
tektites, lunar melt breccias, kimberlites, as well as anthropogenic
settings, such as slag from metal smelting and nuclear test sites
(Timms et al, 2017). Given that zircon is a common accessory
mineral in many rocks, this approach can be used to assess mini-
mum temperatures of zircon-bearing impact melt rocks from Earth,
Moon, and meteorites. The broader use of determining phase her-
itage can potentially be applied to a wide range of polymorphic
transformations in geological systems.

Our results begin to constrain the conditions under which zir-
con and its U-Pb isotope systematics may survive during impact
cratering. During high temperature and low shock pressure events,
zircon is capable of surviving extreme conditions without necessar-
ily recording microstructural evidence typical of shock deformation
(Erickson et al., 2017; Timms et al., 2017, 2012). The Mesopro-
terozoic U-Pb protolith zircon age preserved in the ~38 Ma im-
pact melt investigated here indicates that, despite being entrained
in impact melt in excess of 2370°C, the residence time at high
temperature was not sufficient to cause significant Pb-loss from
the core of the grain by volume diffusion (Cherniak and Watson,
2001). The glassy matrix is further evidence that duration at ex-
tremely high temperatures was short and the sample quenched
rapidly. However, increased melt volumes in larger impact struc-
tures with slower cooling rates may lead to complete digestion of
zircon xenocrysts, erasing mineralogical evidence of superheated
temperatures. Early during Earth’s history when impact rates were
high, digestion of zircon by superheated impact melt may have
contributed to the paucity of Hadean zircon preserved in the geo-
logical record (Marchi et al., 2014).

The formation of >2370°C impact melt during moderate sized
impacts has several significant, global-scale consequences during
the early evolution of the Earth and Moon when the frequency and
magnitude of meteorite flux was much higher (Gomes et al., 2005;
Kring and Cohen, 2002). The extent of compositional modification
by differential volatile loss of major and trace elements from im-
pact melts by selective vaporization at temperatures >2370°C has
not been fully investigated, yet are sufficiently high to cause sig-
nificant volatilization of many key oxide constituents of silicate
melts (Lamoreaux et al., 1987). Preferential volatilization of SiO,,
Na;O and K;O components from hot impact melt bodies could
provide a mechanism for localized densification of residual crust,
potentially with geodynamic consequences. Molecular species es-
sential for terrestrial life, such as HoO and CO, are potentially lost
due to volatilization of superheated impact melt. High-temperature

impact-melting could locally form dry, rigid, refractory residual
crust, resistant to subsequent melting. Moderate sized impacts,
comparable to Mistastin, are predicted to have completely resur-
faced the Earth within the first tens of millions of years after
the Moon-forming event, irrespective of the choice of the sug-
gested bombardment models (Marchi et al., 2014). Therefore, the
resultant net effect of hypothesized high impact flux early during
Earth’s history, combined with commonplace high temperatures of
impact melts, potentially led to widespread depletion of hydrous
minerals from the lithosphere and therefore governed rheological
properties of early crust. Further investigation of the geodynamic
consequences of this phenomenon for early Earth would require
accurate predictions of impact melt temperatures, flux, size, im-
pact angles, and velocity distributions of impactors, and appropri-
ate scaling relationships for melt volumes linked to these variables.
Furthermore, long term effects would need to account for rehydra-
tion effects by interaction with Earth’s hydrosphere. Our results on
high temperature melt and attendant volatilization processes have
implications for the early evolution of the geochemical reservoirs
and multi-element isotope systematics of planetary bodies (Drake
and Righter, 2002) and that extremely high melt temperatures can
be achieved even in moderate-sized impact events, and are not
limited to giant, basin-forming impacts.
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