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Abstract
Response calculations in density functional theory aim at computing the change in
ground-state density induced by an external perturbation. At finite temperature, these
are usually performed by computing variations of orbitals, which involve the iterative
solution of potentially badly conditioned linear systems, the Sternheimer equations.
Since many sets of variations of orbitals yield the same variation of density matrix,
this involves a choice of gauge. Taking a numerical analysis point of view, we present
the various gauge choices proposed in the literature in a common framework and
study their stability. Beyond existing methods, we propose a new approach, based on
a Schur complement using extra orbitals from the self-consistent field calculations, to
improve the stability and efficiency of the iterative solution of Sternheimer equations.
We show the success of this strategy on nontrivial examples of practical interest, such
as Heusler transition metal alloy compounds, where savings of around 40% in the
number of required cost-determining Hamiltonian applications have been achieved.
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1 Introduction

Kohn–Sham (KS) density functional theory (DFT) [26, 32] is themost popular approx-
imation to the electronic many-body problem in quantum chemistry and materials
science. While not perfect, it offers a favourable compromise between accuracy and
computational efficiency for a vastmajority ofmolecular systems andmaterials. In this
work, we focus on KS-DFT approaches aiming at computing electronic ground-state
(GS) properties. Having solved the minimization problem underlying DFT directly
yields the ground-state density and corresponding energy. However, many quantities
of interest, such as interatomic forces, (hyper)polarizabilities, magnetic susceptibili-
ties, phonons spectra, or transport coefficients, correspond physically to the response
of GS quantities to a change in external parameters (e.g. nuclear positions, electro-
magnetic fields). As such their mathematical expressions involve derivatives of the
obtainedGS solutionwith respect to these parameters. For example, interatomic forces
are first-order derivatives of the GS energy with respect to the atomic positions and
can actually be obtained without computing the derivatives of the GS density, thanks
to the Hellmann–Feynman theorem [21]. On the other hand, the computation of any
property corresponding to second- or higher-order derivatives of the GS energy does
require the computation of derivatives of the density. More precisely, it follows from
Wigner’s (2n + 1) theorem that nth-order derivatives of the GS density are required
to compute properties corresponding to (2n)th- and (2n + 1)st-derivatives of the KS
energy functional. More recent applications, such as the design of machine-learned
exchange–correlation energy functionals, also require the computation of derivatives
of the ground state with respect to parameters, such as the ones defining the exchange–
correlation functional [27, 29, 34].

Efficient numerical methods for evaluating these derivatives are therefore needed.
The application of generic perturbation theory to the special case of DFT is known as
density functional perturbation theory (DFPT) [2, 15, 16, 18]. See also [37] for appli-
cations to quantum chemistry, [1] for applications to phonon calculations, and [9] for
a mathematical analysis of DFPT within the reduced Hartree–Fock (rHF) approxima-
tion (also called the Hartree approximation in the physics literature). Although the
practical implementation of first- and higher-order derivatives computed by DFPT in
electronic structure calculation software can be greatly simplified by automatic dif-
ferentiation techniques [19], the efficiency of the resulting code crucially depends on
the efficiency of a key building block: the computation of the linear response δρ of
the GS density to an infinitesimal variation δV of the total Kohn–Sham potential.

For reasons that will be detailed below, the numerical evaluation of the linear map
δV �→ δρ is not straightforward, especially for periodic metallic systems. Indeed,
DFT calculations for metallic systems usually require the introduction of a smearing
temperature T , a numerical parameter which has nothing to do with the physical
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temperature. (In practice, its value is often higher than the melting temperature of
the crystal.) For the sake of simplicity, let us first consider the case of a periodic
simulation cell � containing an even number Nel of electrons in a spin-unpolarized
state (see Remark 1 for details on how this formalism allows for the computation of
properties of perfect crystals). The Kohn–ShamGS at finite temperature T > 0 is then
described by an L2(�)-orthonormal set of orbitals (φn)n∈N∗ with energies (εn)n∈N∗ ,
which are the eigenmodes of the Kohn–Sham Hamiltonian H associated with the GS
density:

Hφn = εnφn,

ˆ
�

φ∗
m(r)φn(r)dr = δmn, ε1 ≤ ε2 ≤ ε3 ≤ · · · ,

together with periodic boundary conditions. The GS density in turn reads

ρ(r) =
+∞∑

n=1

fn |φn(r)|2 with fn := f

(
εn − εF

T

)
, (1)

where f is a smooth occupation function converging to 2 at −∞ and to zero at +∞,
e.g.the Fermi–Dirac smearing function f (x) = 2

1+ex (see Fig. 1). The Fermi level
εF is the Lagrange multiplier of the neutrality charge constraint: it is the unique real
number such that

ˆ
�

ρ(r)dr =
+∞∑

n=1

fn =
+∞∑

n=1

f

(
εn − εF

T

)
= Nel.

It follows from perturbation theory that the linear response δρ of the density to an
infinitesimal variation δV of the total Kohn–Sham potential is given by

δρ = χ0δV ,

whereχ0 is the independent-particle susceptibility operator (also called noninteracting
density response function). Equivalently, this operator describes the linear response
of a system of noninteracting electrons of density ρ subject to an infinitesimal pertur-
bation δV . It holds (see Sect. 3)

δρ(r):=(χ0δV )(r) =
+∞∑

n=1

+∞∑

m=1

fn − fm
εn − εm

φ∗
n (r)φm(r) (δVmn − δεFδmn) , (2)

where δVmn := 〈φm, δVφn〉, δεF is the induced variation of the Fermi level εF, and
δmn is the Kronecker symbol. We also use the convention ( fn − fn)/(εn − εn) =
1
T f ′ ( εn−εF

T

)
.

In practice, these equations are discretized on a finite basis set, so that the sums in
(1) and (2) become finite. Since the number of basis functions Nb is often very large
compared to the number of electrons in the system, it is very expensive to compute
the sums as such. However, in practice it is possible to restrict to the computation of a
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Fig. 1 The occupation numbers fn for T = 0 (left) and T > 0 (right)

number N � Nb of orbitals. These orbitals are then computed using efficient iterative
methods [38].

For insulating systems, there is a (possibly) large band gap between εNp and εNp+1
which remains nonzero in the thermodynamic limit of a growing simulation cell.
As a result, the calculation can be done at zero temperature, such that the occupation
function f becomes a step function (see Fig. 1). The jump from2 to 0 in the occupations
occurs exactly when the lowest Np = Nel/2 energy levels ε1 ≤ · · · ≤ εNp are
occupied with an electron pair (two electrons of opposite spin). Thus, fn = 2 for
1 ≤ n ≤ Np and fn = 0 for n > Np. As a result, N can be chosen equal to the number
of electron pairs Np without any approximation. In contrast, for metallic systems
εNp = εNp+1 = εF in the zero-temperature thermodynamic limit (more precisely there
is a positive density of states at the Fermi level in the limit of an infinite simulation
cell), causing the denominators in the right-hand side of formula (2) to formally blow
up. Calculations on metallic systems are thus done at finite temperature T > 0, in
which case every orbital has a fractional occupancy fn ∈ (0, 2). However, since from
a classical semiclassical approximation εn tends to infinity as n2/3 as n → ∞, and
f decays very quickly, one can safely assume that only a finite number N of orbitals
have nonnegligible occupancies. This allows one to avoid computing φn for n > N .
Under this approximation, a formal differentiation of (1) gives

δρ(r) =
N∑

n=1

fn(φ
∗
n (r)δφn(r) + δφ∗

n (r)φn(r)) + δ fn |φn(r)|2 . (3)

However, while the response δρ to a given δV is well defined by (2), the set
(δφn, δ fn)1≤n≤N is not. Indeed, the Kohn–Sham energy functional being in fact
a function of the density matrix γ = ∑N

n=1 fn |φn〉 〈φn|, any transformation of
(δφn, δ fn)1≤n≤N leaving invariant the first-order variation

δγ :=
N∑

n=1

δ fn|φn〉〈φn| +
N∑

n=1

fn (|φn〉〈δφn| + |δφn〉〈φn|) (4)

of the density matrix is admissible. This gauge freedom can be used to stabilize linear
response calculations or, in the contrary, may lead to numerical instabilities. Denote
by P the orthogonal projector onto Span(φn)1≤n≤N , the space spanned by the orbitals
considered as (partially) occupied, and by Q = 1 − P the orthogonal projector onto
the space Span(φn)n>N spanned by the orbitals considered as unoccupied. Then, the
linear response of any occupied orbital can be decomposed as δφn = δφP

n + δφ
Q
n

where:
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• δφP
n = Pδφn ∈ Ran(P) can be directly computed via a sum-over-state formula

(explicit decomposition on the basis of (φn)n≤N ). This contribution can be chosen
to vanish in the zero-temperature limit, as in that case P δγ P = 0. At finite
temperature, a gauge choice has to bemade and several options have been proposed
in the literature;

• δφ
Q
n = Qδφn ∈ Ran(Q) is the unique solution of the so-called Sternheimer

equation [44]

Q(H − εn)QδφQ
n = −QδVφn, (5)

where H is the Kohn–Sham Hamiltonian of the system. This equation is possibly
very ill-conditioned for n = N if εN+1 − εN is very small.

This paper addresses these two issues. First, we review and analyse the different
gauge choices for δφP

n proposed in the literature and introduce a new one.We bring all
these various gauge choices together in a new common framework and analyse their
performance in terms of numerical stability. Second, for the contribution δφ

Q
n , we

investigate how to improve the conditioning of the linear system (5), which is usually
solved with iterative solvers, and we propose a new approach. This new approach is
based on the fact that as a by-product of the iterative computation of the ground-state
orbitals (φn)n≤N , one usually obtains relatively good approximations of the following
eigenvectors. This information is often discarded for response calculations; we use
them in a Schur complement approach to improve the conditioning of the iterative
solve of the Sternheimer equation. We quantify the improvement of the conditioning
obtained by this new approach and illustrate its efficiency on several metallic systems,
from aluminium to transition metal alloys. We observe a reduction of typically 40%
of the number of Hamiltonian applications (the most costly step of the calculation).
The numerical tests have been performed with the DFTK software [25], a recently
developed plane-wave DFT package in Julia allowing for both easy implementation
of novel algorithms and numerical simulations of challenging systems of physical
interest. The improvements suggested in this work are now the default choice in DFTK
to solve response problems.

This paper is organized as follows. In Sect. 2, we review the periodic KS-DFT
equations and the associated approximations. We also present the mathematical for-
mulation of DFPT, and we detail the links between the orbitals’ response δφn and
the ground-state density response δρ for a given external perturbation, as well as the
derivation of the Sternheimer Eq. (5). In Sect. 3, we propose a common framework
for different natural gauge choices. Then, with focus on the Sternheimer equation and
the Schur complement, we present the improved resolution to obtain δφ

Q
n . Finally,

in Sect. 4, we perform numerical simulations on relevant physical systems. In the
appendix, we propose a strategy for choosing the number of extra orbitals motivated
by a rough convergence analysis of the Sternheimer equation.
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2 Mathematical framework

2.1 Periodic Kohn–Sham equations

We consider here a simulation cell � = [0, 1)a1 + [0, 1)a2 + [0, 1)a3 with periodic
boundary conditions, where (a1, a2, a3) is a nonnecessarily orthonormal basis of R3.
We denote byR = Za1 +Za2 +Za3 the periodic lattice in the position space and by
R∗ = Zb1 +Zb2 +Zb3 with ai · b j = 2πδi j the reciprocal lattice. Let us denote by

L2
#(R

3,C):={u ∈ L2
loc(R

3,C) | u isR-periodic} (6)

the Hilbert space of complex-valued R-periodic locally square integrable functions
on R

3, endowed with its usual inner product 〈·, ·〉 and by Hs
#(R

3,C) the R-periodic
Sobolev space of order s ∈ R

Hs
#(R

3,C):=
{
u =

∑

G∈R∗
ûGeG,

∑

G∈R∗
(1 + |G|2)s |̂uG |2 < ∞

}

where eG(r) = eiG·r/
√|�| is the Fourier mode with wave vector G.

In atomic units, the KS equations for a system of Nel = 2Np spin-unpolarized
electrons at finite temperature read

Hρφn = εnφn, ε1 ≤ ε2 ≤ · · · , 〈φn, φm〉 = δnm,

ρ(r) =
+∞∑

n=1

fn |φn(r)|2 ,

+∞∑

n=1

fn = Nel, (7)

where Hρ is the Kohn–Sham Hamiltonian. It is given by

Hρ = −1

2

 + V + VHxc

ρ (8)

where V is the potential generated by the nuclei (or the ionic cores if pseudopotentials
are used) of the system, and VHxc

ρ (r) = VH
ρ (r)+V xc

ρ (r) is anR-periodic real-valued
function depending on ρ. The Hartree potential VH

ρ is the unique zero-mean solu-

tion to the periodic Poisson equation −
VH
ρ (r) = 4π

(
ρ(r) − 1

|�|
´
�

ρ
)
and the

function V xc
ρ is the exchange–correlation potential. Hρ is a self-adjoint operator on

L2
#(R

3,C), bounded below and with compact resolvent. Its spectrum is therefore com-
posed of a nondecreasing sequence of eigenvalues (εn)n∈N∗ converging to +∞. Since
Hρ depends on the electronic density ρ, which in turn depends on the eigenfunctions
φn , (7) is a nonlinear eigenproblem, usually solved with self-consistent field (SCF)
algorithms. These algorithms are based on successive partial diagonalizations of the
Hamiltonian Hρn built from the current iterate ρn . See [6, 7, 35] and references therein
for a mathematical presentation of SCF algorithms.
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In (7), the φn’s are the Kohn–Sham orbitals, with energy εn and occupation number
fn . At finite temperature T > 0, fn is a real number in the interval [0, 2) and we have

fn = f

(
εn − εF

T

)
, (9)

where f is a fixed analytic smearing function, which we choose here equal to twice
the Fermi–Dirac function: f (x) = 2/(1 + ex ). The Fermi level εF is then uniquely
defined by the charge constraint

+∞∑

n=1

fn = Nel. (10)

When T → 0, f ((· − εF)/T ) → 2× 1{·<εF} almost everywhere, and only the lowest
Np = Nel/2 energy levels for which εn < εF are occupied by two electrons of opposite
spins (see Fig. 1): fn = 2 for n ≤ Np and fn = 0 for n > Np.

Remark 1 (The case of perfect crystals) Using a finite simulation cell � with periodic
boundary conditions is usually the bestway to compute the bulk properties of amaterial
in the condensed phase. Indeed, KS-DFT simulations are limited to, say 103 − 104

electrons, on currently available standard computer architectures. Simulating in vacuo
a small sample of the material containing, say 103 atoms, would lead to completely
wrong results, polluted by surface effects since about half of the atomswould lay on the
sample surface. Periodic boundary conditions are a trick to get rid of surface effects,
at the price of artificial interactions between the sample and its periodic image. In the
case of a perfect crystal with Bravais lattice L and unit cell ω, it is natural to choose
a periodic simulation (super)cell � = Lω “consisting of L3 unit cells (we then have
R = LL).” In the absence of spontaneous symmetry breaking, the KS ground-state
density has the same L-translational invariance as the nuclear potential. Using Bloch
theory, the supercell eigenstates φn can then be relabelled as φn(r) = eik·ru jk(r),
where u jk now has cell periodicity, and Eqs (7)–(9) can be rewritten as

Hρ,ku jk = ε jku jk, ε1k ≤ ε2k ≤ · · · ,
〈
u jk, u j ′k

〉 = δ j j ′, (11)

ρ(r) = 1

L3

∑

k∈GL

+∞∑

j=1

f jk
∣∣u jk(r)

∣∣2 ,
1

L3

∑

k∈GL

+∞∑

j=1

f jk = Nel, f jk = f

(
ε jk − εF

T

)

(12)

Hρ,k = 1

2
(−i∇ + k)2 + V + VHxc

ρ , (13)

where GL = L−1
L

∗ ∩ ω∗. Here, L∗ is the dual lattice of L and ω = R
3/L∗ the first

Brillouin zone of the crystal. In the thermodynamic limit L → ∞, we obtain the
periodic Kohn–Sham equations at finite temperature

Hρ,ku jk = ε jku jk, ε1k ≤ ε2k ≤ · · · ,
〈
u jk, u j ′k

〉 = δ j j ′, (14)
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ρ(r) =
 

ω∗

+∞∑

j=1

f jk
∣∣u jk(r)

∣∣2 dk,
 

ω∗

+∞∑

j=1

f jkdk = Nel, f jk = f

(
ε jk − εF

T

)
.

(15)

This is a massive reduction in complexity, as now only computations on the unit cell
have to be performed. For metals, the integrand on the Brillouin zone is discontinuous
at zero temperature, which makes standard quadrature methods fail. Introducing a
smearing temperature T > 0 allows one to smooth out the integrand, see [5, 33]
for a numerical analysis of the smearing technique. We also refer, for instance, to
[40, Section XIII.16] for more details on Bloch theory, to [4, 10] for a proof of the
thermodynamic limit for perfect crystals in the rHF setting for both insulators and
metals, and to [14] for the numerical analysis for insulators.

2.2 Density functional perturbation theory

We detail in this section the mathematical framework of DFPT. We first rewrite the
Kohn–Sham eq. (7) as the fixed-point equation for the density ρ

F
(
V + VHxc

ρ

)
= ρ, (16)

where F is the potential-to-density mapping defined by

F(V )(r) =
+∞∑

n=1

f

(
εn − εF

T

)
|φn(r)|2 (17)

with (εn, φn)n∈N∗ an orthonormal basis of eigenmodes of− 1
2
+V and εF defined by

(10). The solution of (16) defines a mapping from V to ρ: the purpose of DFPT is to
compute its derivative. Let δV0 be a local infinitesimal perturbation, in the sense that
it can be represented by a multiplication operator by a periodic function r �→ δV0(r).
By taking the derivative of (16) with the chain rule, we obtain the implicit equation
for δρ:

δρ = F ′ (V + VHxc
ρ

)
· (δV0 + KHxc

ρ δρ), (18)

where the Hartree-exchange–correlation kernel KHxc
ρ is the derivative of the map

ρ �→ VHxc
ρ and F ′ (V + VHxc

ρ

)
is the derivative of F computed at V + VHxc

ρ . In the
field of DFT calculations, the latter operator is known as the independent-particle
susceptibility operator and is denoted by χ0. This yields the Dyson equation

δρ = χ0(δV0 + KHxc
ρ δρ) ⇔ δρ =

(
1 − χ0K

Hxc
ρ

)−1
χ0δV0. (19)
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This equation is commonly solved by iterative methods, which require efficient and
robust computations of χ0δV for various right-hand sides δV ’s. In the rest of this
article, we forget about the solution of (19) and focus on the computation of the
noninteracting response δρ:=χ0δV for a given δV .

The operator χ0 maps δV to the first-order variation δρ of the ground-state density
of a noninteracting system of electrons (KHxc = 0). Denoting Amn := 〈φm, Aφn〉 for
a given operator A, it holds

δρ(r) =
+∞∑

n=1

+∞∑

m=1

fn − fm
εn − εm

φ∗
n (r)φm(r) (δVmn − δεFδmn) , (20)

where δmn is the Kronecker delta, δεF is the induced variation in the Fermi level, and
we use the following convention

fn − fn
εn − εn

= 1

T
f ′

(
εn − εF

T

)
=: f ′

n . (21)

Charge conservation leads to

ˆ
�

δρ(r)dr = 0 ⇒ δεF =
∑+∞

n=1 f ′
nδεn∑+∞

n=1 f ′
n

, (22)

where δεn :=δVnn . We refer to [1] for a physical discussion of this formula, and to [8,
22, 33], where it is proven rigorously using contour integrals.

Remark 2 Similar to the discussion above on the computation of perfect crystal
employing Bloch theory, response computations of perfect crystals can be performed
by decomposing δV0 in its Bloch modes. This allows for the efficient computation of
phonon spectral or dielectric functions, for instance.

Remark 3 We restricted our discussion for simplicity to local potentials, but the for-
malism can easily be extended to nonlocal perturbations (such as the ones created by
pseudopotentials in the Kleinman–Bylander form [30]).

2.3 Plane-wave discretization and numerical resolution

In this paper, we are interested in plane-wave DFT calculations of metallic systems.
This corresponds to a specific Galerkin approximation of the Kohn–Shammodel using
as variational approximation space

XNb :=Span

{
eG, G ∈ R∗, 1

2
|G|2 ≤ Ecut

}
, (23)

where Nb denotes the dimension of the discretization space, linked to the cut-off
energy Ecut. Denoting by �Nb the orthogonal projection onto XNb for the L2

# inner
product, we then solve the discrete problem: find φ1, . . . , φNb ∈ XNb such that
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⎧
⎪⎨

⎪⎩

�NbHρ�Nbφn = εnφn, ε1 ≤ · · · ≤ εNb ,

ρ = ∑Nb
n=1 fn |φn|2 ,

∑Nb
n=1 fn = Nel, fn = f

(
εn−εF

T

)
,

〈φn, φm〉 = δnm, n,m = 1, . . . , Nb,

(24)

where Hρ is the Kohn–Sham Hamiltonian (or one of its Bloch fibres). This discretiza-
tion method for Kohn–Sham equations has been analysed, for instance, in [3].

We emphasize again the point that not all Nb eigenpairs need to be computed. At
zero temperature, only the N = Nel/2 lowest energy Kohn–Sham orbitals need to be
fully converged as they are the only occupied ones. At finite temperature, the number
of bands with meaningful occupation numbers is usually higher than the number of
electrons, but the fast decay of the occupation numbers allows to avoid computing
all Nb eigenpairs. Determining the number of bands to compute is not easy as, at
finite temperature, we do not know a priori the number of bands that are significantly
occupied. A standard heuristic is to fully converge 20%more bands than the number of
electrons pairs during the SCF. For the response calculation, we then select the number
N of bands that have occupation numbers above some numerical threshold. On top
of these bands, it is common in DFT calculations to add additional bands that are not
fully converged by the successive eigensolvers. The main advantages of introducing
these bands are: (i) they enhance the diagonalization procedure by increasing the gap
between converged and uncomputed bands and (ii) adding extra bands is not very
expensive when the diagonalization is performed with block-based methods, such as
the LOBPCG algorithm [31].

3 Computing the response

3.1 Practical implementation

Using (20) as it stands is not possible because of the large sums. One possibility is
to represent δρ through a collection of occupied orbital variations (δφn)1≤n≤N and
occupation number variations (δ fn)1≤n≤N . One then has to make appropriate ansatz
and gauge choices on the links between δρ and its representation. Differentiating the
formula ρ(r) = ∑N

n=1 fn |φn(r)|2, one gets

δρ(r) =
N∑

n=1

fn
(
φ∗
n (r)δφn(r) + δφ∗

n (r)φn(r)
) + δ fn |φn(r)|2 . (25)

Then, for n ≤ N , we expand fnδφn into the basis (φm)m∈N. Defining


mn := 〈φm, fnδφn〉 , (26)

yields
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∀ 1 ≤ n ≤ N , fnδφn =
N∑

m=1


mnφm + fnδφ
Q
n (27)

where δφ
Q
n :=Qδφn and Q is the orthogonal projector onto Span(φm)N<m , the space

spanned by the unoccupied orbitals. Plugging (27) into (25), we obtain, using sym-
metry between n and m,

δρ(r) =
N∑

n,m=1

φ∗
n (r)φm(r)

(

mn + 
nm

) +
N∑

n=1

δ fn |φn(r)|2

+
N∑

n=1

2 fnRe
(
φ∗
n (r)δφ

Q
n (r)

)
. (28)

A first gauge choice can be made here. Using again the charge conservation, we get

0 =
ˆ

�

δρ(r)dr ⇒ 0 =
N∑

n=1

Re(
nn) + δ fn . (29)

Given that we adapt δ fn accordingly we can thus assume 
nn = 0 for any 1 ≤ n ≤ N .
We will make this gauge choice from this point, leaving the constraint

∑N
n=1 δ fn = 0

to restrict possible choices of δ fn .
We now derive conditions on (
mn)1≤n,m≤N , (δ fn)1≤n≤N and (δφ

Q
n )1≤n≤N so that

the ansatz we made is a valid representation of δρ, that is to say (28) coincides with
(20). To this end, we rewrite (20) as

δρ(r) =
N∑

n,m=1

fn − fm
εn − εm

φ∗
n (r)φm(r) (δVmn − δεFδmn)

+
N∑

n=1

+∞∑

m=N+1

2
fn

εn − εm
Re

(
φ∗
n (r)φm(r)δVmn

)
, (30)

where the terms fn , fm for which n,m > N + 1 have been neglected because of
their small occupation numbers and we used the symmetry between n and m for the
terms with 1 ≤ n ≤ N , m > N . From a term by term comparison between (28)
and (30), we infer first from the n = m term and the gauge choice 
nn = 0 that
δ fn = f ′

n (δVnn − δεF) = f ′
n (δεn − δεF). Note that, thanks to the definition (22) of

δεF, charge conservation is indeed satisfied. Next, for the first sum to coincide between
(28) and (30), we see that the 
mn’s have to satisfy

∀ 1 ≤ n,m ≤ N ,m �= n, 
mn + 
nm = fn − fm
εn − εm

δVmn=:
mn . (31)

Finally, since δφ
Q
n ∈ Span(φm)N<m , we deduce from the last sum in (28) and (30)

that δφQ
n can be computed as the unique solution of the linear system
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∀ 1 ≤ n ≤ N , Q(Hρ − εn)QδφQ
n = −QδVφn, (32)

sometimes known inDFT as the Sternheimer Eq. [44]. Note that δφQ
N can be arbitrarily

large, since εN+1−εN may be arbitrarily small. However, this does not pose a problem
in practice as δφ

Q
N is multiplied by fN (cf. (28)), which is very small.

To summarize, the response δρ = χ0δV can be computed as

δρ(r) =
N∑

n=1

2 fnRe
(
φ∗
n (r)δφn(r)

) + δ fn |φn(r)|2 . (33)

Here, δ fn = f ′
n (δεn − δεF), and δφn is separated into two contributions:

∀ 1 ≤ n ≤ N , δφn = δφP
n + δφQ

n , (34)

where (δφP
n , δφ

Q
n ) ∈ Ran(P) × Ran(Q) with P the orthogonal projector onto

Span(φm)1≤m≤N and Q = 1 − P . These two contributions are computed as follows:

• δφP
n is computed via a sum-over-states m �= n:

δφP
n =

N∑

m=1,m �=n


mnφm, (35)

where the 
mn’s satisfy 
mn + 
nm = 
mn . An additional gauge choice has to be
made as these constraints do not yet define 
nm uniquely. We refer to this term as
the occupied–occupied contribution.

• δφ
Q
n is obtained as the solution of the Sternheimer equation (32). However, this

linear system is possibly very ill-conditioned if εN+1 − εN is small. We refer to
this term as the unoccupied–occupied contribution.

Note that, at zero temperature, δφP
n vanishes so that δφn = δφ

Q
n ∈ Ran(Q) and only

the Sternheimer equation (32) needs to be solved. In the next two sections, we detail
the practical computation of these two contributions.

3.2 Occupied–occupied contributions

In this section, we discuss possible gauge choices for 
mn to obtain a unique solution
to (31). Throughout this section, we assume m �= n and 
nn = 0.

3.2.1 Orthogonal gauge

The orthogonal gauge choice is motivated from the zero temperature setting, where
δφP

n = 0 allows to trivially preserve the orthogonality amongst the computed orbitals
φn under the perturbation. For the case involving temperature, we additionally impose

0 = δ 〈φm, φn〉 = 〈φm, δφn〉 + 〈δφm, φn〉 , (36)
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and therefore

1

fn

mn + 1

fm

nm = 0, (37)

yielding


orth
mn = fn

εn − εm
δVmn for m �= n. (38)

As a result fnδφn features a possibly large contribution 
orth
mn , which is going to be

almost compensated in (33) by the large contribution 
orth
nm to fnδφ∗

n due the require-

ment to sum to the moderate-size contribution 
orth
mn + 
orth

nm = 
mn . This can lead to
numerical instabilities because small errors, e.g.due to the fact that the φn’s in (33) are
eigenvectors only up to the solver tolerance, will get amplified by the 
mn . The next
gauge choices provide solutions to this issue.

3.2.2 Simple gauge choice

Possibly the simplest gauge choice is 

simple
mn = 1

2
mn . Since (
mn)1≤n,m≤N is Her-
mitian, (31) is immediately satisfied.

3.2.3 Quantum Espresso gauge

The DFPT framework presented in [1] and implemented in Quantum Espresso [12]
suggests choosing


QE
mn = fFD

(
εn − εm

T

)

mn, (39)

where fFD = 1
2 f is the Fermi–Dirac functional. Since fFD(x) + fFD(−x) = 1, we

have 

QE
mn + 


QE
mn = 
mn .

3.2.4 Abinit gauge

In the Abinit software [17, 41], the choice is


Ab
mn = 1{ fn> fm }
mn . (40)
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3.2.5 Minimal gauge

Motivated by our analysis of the instabilities we suggest minimizing δφn , that is to
ensure 
mn/ fn to stay as small as possible. This leads to the minimization problem

min
N∑

n,m=1,m �=n

1

f 2n
|
mn|2 ,

s.t. 
mn + 
nm = 
mn, ∀ 1 ≤ n,m ≤ N , m �= n.

(41)

As the constraint (31) only couples (n,m) and (m, n), this translates into an uncoupled
system of constrained minimization problems: for 1 ≤ n,m ≤ N , m �= n, solve

min
1

f 2n
|
mn|2 + 1

f 2m

∣∣
nm
∣∣2 ,

s.t. 
mn + 
nm = 
mn,

(42)

whose solution is


min
mn = f 2n

f 2n + f 2m

mn . (43)

This gauge choice is implemented by default in the DFTK software [25]. Another

gauge choice inspired from this one would be to directly minimize |
mn|2 + ∣∣
nm
∣∣2,

but it can be shown that this leads to the simple gauge choice 

simple
mn = 1

2
mn .

3.2.6 Comparison of gauge choices

From (20),we can see that the growth of δρ with respect to δV cannot be higher than the
growth of
mn with respect to δV . The latter is of the order ofmaxx∈R 1

T

∣∣ f ′(x)
∣∣ = 1

2T ,
which thus provides an intrinsic limit to the conditioning of the problem. For all gauge
choices but the orthogonal one easily verifies

|
mn| ≤ |
mn| ≤ max
x∈R

1

T

∣∣ f ′(x)
∣∣ |δVmn| = 1

2T
|δVmn| . (44)

If we make an error on δV , it is thus at most amplified by a factor of 1
2T . All choices

but the orthogonal one thus manage to stay within the intrinsic conditioning limit, see
Fig. 2.

3.3 Computation of unoccupied–occupied contributions employing a Schur
complement

Since the φm for m > N are not exactly known, a different approach is needed
for obtaining the contribution δφ

Q
n . Usually one resorts to solving the Sternheimer
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Fig. 2 Comparison of gauge choices for δVmn = 1. Except the orthogonal gauges, all contributions 
mn
are bounded by 1

2T

equation

∀ 1 ≤ n ≤ N , Q(Hρ − εn)QδφQ
n = −QδVφn=:bn (45)

using iterative schemes restricted to Ran(Q). However, for n = N the difference
εN+1−εN can become small, which deteriorates conditioning and increases the num-
ber of iterations required for convergence.

We overcome this issue by making use of the Nex extra bands, which are anyway
available after the SCF algorithm has completed. Following Sect. 2.3, the Nex extra
bands can be divided into two categories:

(1) Some (usually the lower-energy ones) have been discarded during the response
calculation because they have a too small occupation. Up to the eigensolver tol-
erance these are exact eigenvectors.

(2) The remaining ones have served to accelerate the successive diagonalization steps
during the SCF. These have not yet been fully converged.

In any case, these extra bands thus offer (at least) approximate information about some
φm form > N , which is the underlying reasonwhy the following approach accelerates
the computation of δφ

Q
n .

For the sake of clarity, we place ourselves here in the discrete setting: Hρ ∈ C
Nb×Nb ,

� ∈ C
Nb×N and �̃ ∈ C

Nb×Nex . We assume that the number of computed bands
N + Nex is larger than the number of occupied states N and that we trust � =
(φ1, . . . , φN ) but not �̃ = (φ̃N+1, . . . , φ̃N+Nex) to be eigenvectors. These Nex extra
bands consist of both contributions (1) and (2) described at the beginning of this
section. We assume in addition that (�, �̃) forms an orthonormal family and that
�̃∗Hρ�̃ is a diagonal matrix whose elements, denoted by (̃εn)n=N+1,...,N+Nex , are not
necessarily all exact eigenvalues. Note that Rayleigh–Ritz-based iterative methods
such as the LOBPCG algorithm fit exactly in this framework.
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Fig. 3 Graphical representation of the Schur decomposition to solve the Sternheimer equation. P is the
orthogonal projector onto the occupied states. Q is the orthogonal projector onto the unoccupied states, and
we decompose it as the sum of T (extra states which we can use) and R (remaining states)

We decompose

Ran(Q) = Ran(T ) ⊕ Ran(R), (46)

where T is the orthogonal projector onto Span(φ̃m)N<m≤N+Nex and R = Q−T is the
projector onto the remaining (uncomputed) states, see Fig. 3. Then, as δφ

Q
n ∈ Ran(Q),

we can decompose

δφQ
n = �̃αn + δφR

n , (47)

where αn ∈ C
Nex and δφR

n ∈ Ran(R). Plugging this into (45) we get

Q(Hρ − εn)�̃αn + Q(Hρ − εn)δφ
R
n = bn . (48)

Using a Schur complement, we deduce

αn = (
�̃∗(Hρ − εn)�̃

)−1
(
�̃∗bn − �̃∗(Hρ − εn)δφ

R
n

)
. (49)

Inserting (49) into (48) and projecting on Ran(R) yields an equation in δφR
n :

R(Hρ − εn)
[
1 − �̃

(
�̃∗(Hρ − εn)�̃

)−1
�̃∗(Hρ − εn)

]
RδφR

n

= Rbn − R(Hρ − εn)�̃
(
�̃∗(Hρ − εn)�̃

)−1
�̃∗bn .

(50)

This equation can then be solved for δφR
n with a conjugate gradient (CG) method

which is enforced to stay in Ran(R) at each iteration. Afterwards, we compute αn

from (49), which yields δφ
Q
n from (47). This scheme has been implemented as the

default solver for the Sternheimer equation in DFTK.

4 Numerical tests

For all the numerical tests, we use the DFTK software [25], a recent plane-wave DFT
package in Julia. All the codes to run the simulation of this paper are available
online.1 The Brillouin zone is discretized using a uniform Monkhorst–Pack grid [36].

1 https://github.com/gkemlin/response-calculations-metals.
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Fig. 4 Number of iterations of
the linear solver for the
Sternheimer equation for
n = N = 4 vs the gap, with and
without the Schur complement
(50)

We use the PBE exchange–correlation functional [39] and GTH pseudopotentials [13,
20]. The other parameters of the calculation will be specified for each example. In
all the tests, we generate a perturbation δV from atomic displacements, with local
and nonlocal contributions. Then, we perform two response calculations: one with the
standard approach to solve directly the Sternheimer equation (45) to compute δφ

Q
n and

the other with the (new) Schur complement approach (50). Both linear systems are
solved using the conjugate gradient (CG) algorithm, with kinetic energy precondition-
ing (the linear solver is preconditionedwith the inverse Laplacian, which is diagonal in
Fourier representation), and we compare the number of iterations required to converge
the norm of the residual below 10−9. Note that the Sternheimer equation is solved for
all N occupied orbitals and for each k-point.

If T > 0, the contribution δφP
n is nonzero and has been computed using the sum-

over-states formula with the minimal gauge choice (43). In terms of runtime, we
expect only negligible differences between the gauge choices. Moreover, since the
time for this contribution is much smaller compared to the time required to solve the
Sternheimer equation, we do not report a detailed performance comparison on this
step in the following.

Note that our purpose in this paper is only to improve the numerical algorithms used
in response computations. Although the parameters used here (exchange–correlation
functionals, pseudopotentials, smearing and Brillouin zone sampling parameters, cut-
off energies) might not represent physical reality appropriately, they are representative
of practical calculations.

4.1 Insulators and semiconductors

For insulators and semiconductors, the gap between occupied and virtual states
is usually large. One would therefore not expect a large gain from using the Schur
complement (50) when computing δφn = δφ

Q
n . However, for distorted semiconductor

structures or semiconductors with defects the gap can be made arbitrarily small, such
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that one would expect to see the Schur complement approach to be in the advantage.
We test this using an FCC Silicon crystal for which we increase the lattice constant
from 10 bohrs to 11.4 bohrs to artificially decrease and eventually close the gap. All
calculations have been performed using a cut-off energy of Ecut = 50 Ha and a single
k-point (the 
-point). In Fig. 4, we plot the number of iterations required for the
linear solver of the Sternheimer equation to converge, for n = N = 4. Using the
Schur complement, the number of iterations stays almost constant even when the gap
decreases. In contrast, with a direct approach, the linear solver requires about 30%
more iterations near the closing gap.

4.2 Metals

The real advantage of using the Schur complement (50) instead of directly solving the
Sternheimer eq. (45) becomes apparentwhen computing response properties formetals
at finite temperature.We use a standard heuristic which suggests to fully converge 20%
more bands than the number of electrons pairs of the system, with 3 additional extra
bands that are not converged by the successive eigensolvers of the SCF.We then select
the “occupied” orbitalswith an occupation threshold of 10−8. In addition to the number
of iterations, we also compare the cost of the response calculations with and without
the Schur complement (50). For this, we consider the total number of Hamiltonian
applications which was required to compute the response δρ. For the small to medium-
sized systems we consider here, the Hamiltonian vector product is the most expensive
step in an DFT calculation and thus provides a representative cost indicator. Notice
that both the implementation of the Schur complement and the direct method require
exactly one Hamiltonian application per iteration of the CG. Additionally, the Schur
approach requires the computation of Hρφ̃, which is only a negligible additional cost
as this is only needed once per k-point.

4.2.1 Aluminium

We start by considering an elongated aluminium supercell with 40 atoms. We use a
cut-off energy Ecut = 40 Ha, a temperature T = 10−3 Ha with Fermi–Dirac smearing
and a 3 × 3 × 1 discretization of the Brillouin zone. To ensure convergence of the
SCF iterations, we employ the Kerker preconditioner [28]. Since the system has 120
electrons per unit cell, our usual heuristic converges 72 bands up to the tolerance of
the eigensolver accompanied by 3 bands, which are not fully converged.

The convergence behaviour when solving the Sternheimer equation for k-points of
particular interest is shown in Table 1 and Fig. 5. As expected, for k-points with a small
difference εN+1 − εN , the Schur complement (50) brings a noteworthy improvement
with roughly 50% fewer iterations required to achieve convergence. Since the system
we consider here has numerous occupied bands—between 60 and 70 depending on
the k-point—most bands already feature a well-conditioned Sternheimer equation.
Considering the cost for computing the total response, the Schur approach therefore
overall only achieves a reduction by 17% in the number of Hamiltonian applications,
from about 17, 800 (direct) to 14, 800 (with Schur). However, it should be noted that
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Fig. 5 Convergence of the Sternheimer solver for three different orbitals for Al40. Each curve represents
the convergence of the CG which solves the Sternheimer equation for one orbital: those with the slowest
convergence are associated to the occupied orbitals with the highest energy

Table 1 Convergence data for k-points 1, 2 and 5 for Al40. Other k-points are not displayed but they all
behave as one of these by symmetry. N is the number of occupied bands, for an occupation threshold of
10−8

k-point–coordinate 1 − [0, 0, 0] 2 − [1/3, 0, 0] 5 − [1/3, 1/3, 0]
N 69 58 67

εN+1 − εN 0.0320 0.0134 0.0217

#iterations n = N Schur 48 44 41

#iterations n = N direct 56 83 58

this improvement essentially comes for free as the extra bands are anyway provided
by the SCF computation as a by-product.

4.2.2 Heusler system

Next we study the response calculation of Heusler-type transition-metal alloys. We
focus mainly on the Fe2MnAl system but other compounds, such as the Fe2CrGa and
CoFeMnGa alloy systems, have been tested and similar results were obtained. Heusler
alloys are of considerable practical interest due to their rich and unusual magnetic
and electronic properties. For instance, Fe2MnAl shows half-metallic behaviour: the
majority spin channel (denoted by ↑) behaves like a metal, whereas the minority spin
channel (denoted by ↓) behaves like an insulator as it has a vanishing density of
states at the Fermi level. See [23], and reference therein, for more details as well as
an analysis of the SCF convergence on such systems. For these systems, we use a
cut-off Ecut = 45 Ha, a temperature T = 10−2 Ha with Gaussian smearing and a
13 × 13 × 13 discretization of the Brillouin zone. The SCF was converged using a
Kerker preconditioner [28]. Moreover, as we deal with a spin-polarized system, the
numerical simulation slightly differs. The orbitals φσ

(n,k) and the occupation numbers
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Table 2 Convergence data for
the two spin channels of the
k-point with reduced coordinates
[0.385, 0.231, 0.077] for
Fe2MnAl. N is the number of
occupied bands, for an
occupation threshold of 10−8

spin channel ↑ ↓
N 28 26

εN+1 − εN 0.0423 0.0154

#iterations n = N Schur 45 45

#iterations n = N direct 86 103

Fig. 6 Convergence of theSternheimer solver for three different orbitals for Fe2MnAl.Each curve represents
the convergence of the CG which solves the Sternheimer equation for one orbital: those with the slowest
convergence are associated to the occupied orbitals with the highest energy

f σ
(n,k) depend on the spin orientation σ ∈ {↑,↓} and the f σ

(n,k)’s belong to [0, 1)
instead of [0, 2). Furthermore, we modify the heuristic to determine the number of
bands to be computed: Fe2MnAl has Nel = 50 electrons per unit cell and we use
25+ 0.2× 50 = 35 fully converged bands per k-point, complemented by 3 additional
bands, which are not checked for convergence.

We show in Table 2 and Fig. 6 the results for the two spin channels of the k-point
with reduced coordinates [0.385, 0.231, 0.077]. The other k-points behave similarly.
Since both channels feature a small difference εN+1−εN using the Schur complement
(50) to solve the Sternheimer equation has a significant impact: for the orbitals with
highest energy, it reduces the number of iterations by half. For the direct approach, we
notice a plateau where the solver encounters difficulties to converge the Sternheimer
equation for the N -th orbital due to the small gap.

Unlike the aluminium case, the improvements observed for the Heusler alloys are
not restricted to a small number of bands. In Fig. 7, we contrast the number of iterations
required to solve the Sternheimer equation for every band at every k-point with and
without using the Schur complement. Notice that lattice symmetries allow to reduce
the number of explicitly treated k-points to 140 albeit we are using a 13 × 13 × 13
k-point grid. In terms of the total number of Hamiltonian applications required for
the response calculation, the Schur complement achieves a reduction by roughly 40%,
from around 344, 000 (without Schur) to 208, 000 (with Schur). It should be noted
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Fig. 7 Histogram of the number of iterations of the CG to solve the Sternheimer equation, with and without
the Schur complement (50). On the x-axis, the k-point index number: the first 140 (blue ◦) have spins up,
and the last 140 (green ×) have the same coordinates but with spins down. For each of these k-points, we
plot the number of iterations for every occupied band of the k-point

that in this system the standard heuristic caused a large portion of the available extra
bands to be fully converged, thus providing an ideal setting for the Schur complement
approach to be effective. For example for the k-point discussed in Table 2, seven extra
bands have been fully converged and an additional three partially. Given the enormous
importance of Heusler systems and the known numerical difficulties for computing
response properties in these systems, our result is encouraging and motivates the
development of a more economical heuristic for choosing the number of converged
bands in future work.

4.3 Comparison to shifted Sternheimer approaches

In the literature, other strategies for computing δρ have been reported. We briefly
consider the approach proposed in [1], where the response is computed as

δρ(r) =
N∑

n=1

2φ∗
n (r)δφn(r) − f ′

nδεF|φn(r)|2. (51)

Instead of splitting δφn into two contributions, the full δφn is computed for all n ≤ N
by solving the shifted Sternheimer equation

(Hρ + S − εn)δφn = −( fn − Sn)δVφn . (52)

Here, S : Ran(P) → Ran(P) is a shift operator acting on the space of occupied
orbitals, chosen so that the linear system is nonsingular. (For any n ≤ N , Hρ − εn is
not invertible.) Then, Sn is chosen for every n ≤ N such that δρ from (51) satisfies
(20). However, as S only acts on Ran(P), equation still becomes badly conditioned if
εN+1 − εN is too small. This becomes apparent when solving the shifted Sternheimer
eq. (52) for the Fe2MnAl system, see Fig. 8.
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Fig. 8 Resolution of the Sternheimer equation for both spin channels of one specific k-point for the Fe2MnAl
system, with the Schur approach (50) and the shifted approach (52). Note that for this particular k-point,
the spin ↓ channel has a starting point with already small residual for the highest occupied energy level.
This is due to the term fn appearing in (52), and the convergence is still slow

For the orbital responses of the highest energy occupied bands, the CG iterations
on the shifted Sternheimer equation converge very slowly—in contrast to the Schur
complement approach (50) we proposed in this work. In terms of the number of
Hamiltonian applications, the shifted Sternheimer strategy required around 492, 000
applications versus 208, 000 for the Schur complement approach.

5 Conclusion

In density functional theory, the simulation of many physical properties requires the
computation of the response of the ground-state density to an external perturbation.
In this work, we have reviewed the standard formalism of such response calculations
from the point of view of numerical analysis. We provided an overview of the possible
gauge choices for representing the density response, summarizing and contrasting the
approaches employed by state-of-the-art codes such as Quantum Espresso [12] or
Abinit [41] in a common framework.

Based on our analysis, we furthermore suggested two novel approaches for DFT
response calculations. For the occupied–occupied part of the response, we developed
a gauge choice based on the idea to maximize numerical stability in the involved
sums by minimizing the numerical range of the individual orbital contributions. For
the occupied–unoccupied part of the response, we suggested a novel approach to
solving the Sternheimer equation based on a Schur complement. Key idea of this
approach is to make use of the additional (partially) converged bands, which are
available as a by-product from the preceding self-consistent field (SCF) procedure
(which yields the ground-state density). Without additional computational effort, this
allows to improve the conditioning of the Sternheimer equation and thus accelerate its
convergence. We demonstrated this numerically on a number of practically relevant
problems, including response calculations on small-gapped semiconductors, elongated
metallic slabs or numerically challenging Heusler alloy systems. Overall the Schur
complement approach allowed to obtain a converged response saving up to 40% in
the requiredHamiltonian applications—the cost-dominating step in small- tomedium-
sized DFT problems. For larger systems, we similarly expect savings from introducing
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a Schur complement technique, even though algorithms commonly employ different
trade-offs.

In thiswork,we followed standard heuristics for selecting the number of extra bands
to employ in the SCF calculations and thus the number of additional bands available
when solving the response problem. However, our results emphasize the need for a
more robust understanding between the computed number of bands and the observed
rate of convergence. We have provided some initial ideas for such an analysis in the
appendix, but leave a more exhaustive discussion for future work.
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Appendix A Choosing the number of extra bands

In this paper, we saw through various numerical examples that using a Schur com-
plement to compute the unoccupied–occupied contributions to the orbitals’ response
improves the convergence of the Sternheimer equation. In this appendix, we quantify
this acceleration and discuss how this idea can be used to select the number of bands to
be computed. Considering the straight convergence curves from Figs. 5, 6 suggest that
the convergence of the CG is indeed led by the square root of the condition number of
the system matrix (see [43, Section 9]) when using the Schur complement. Key idea
will thus be to estimate the condition number of the linear system (50).

A.1 Numerical analysis

To analyse the condition number of the Schur complement, we consider the following
specific setting

{
Hρφn = εnφn, ε1 ≤ ε2 ≤ · · ·
〈φn, φm〉 = δnm,

(53)

where Hρ ∈ C
Nb×Nb is typically the discretized self-consistent Hamiltonian of the

system, at some k-point. We assume that we have N occupied orbitals that have an
occupation number higher than the threshold we fixed and that we have Nex extra
bands, as explained in Sect. 3.3. In summary, we have at our disposal N + Nex bands
in total: � = (φ1, . . . , φN ) are occupied, fully converged bands and the extra bands
��

ex = (φ�
N+1, . . . , φ

�
N+Nex

) are not necessarily all converged. We added here the
exponent � as we make the following assumptions:

• for any � ∈ N, (�,��
ex) is an orthonormal family;

• for any � ∈ N, (��
ex)

∗Hρ��
ex ∈ C

Nex×Nex is a diagonal matrix whose elements are
labelled ε�

m := 〈
φ�
m, Hρφ�

m

〉
for N + 1 ≤ m ≤ N + Nex;

• as � → +∞, (φ�
m, ε�

m) → (φm, εm).
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All these assumptions are satisfied, for instance, if the sequence (�,��
ex)l∈N is gener-

ated by any Rayleigh–Ritz-based eigensolver (for instance, the LOBPCG eigensolver
[31]), which is the case by default in DFTK. For every �, we can thus decompose the
plane-wave approximation space H = XNb (with Nb � N + Nex) in two different
ways:

H = Ran(P) ⊕ Ran(T ) ⊕ Ran(R) and H = Ran(P) ⊕ Ran(T �) ⊕ Ran(R�),

(54)

where

P:=
N∑

n=1

φnφ
∗
n and

{
T :=∑Nex

n=N+1 φnφ
∗
n , R:=1 − P − T

T �:=∑Nex
n=N+1 φ�

n(φ
�
n)

∗, R�:=1 − P − T �,
(55)

are all orthogonal projectors. In these two decompositions, Hρ has the associated block
representations:

Hρ =
⎛

⎜⎝
E 0 0
0 Eex 0

0 0
. . .

⎞

⎟⎠ and Hρ =
⎛

⎝
E 0 0
0 E�

ex R�HρT �

0 T �HρR� R�HρR�

⎞

⎠ (56)

where E :=Diag(ε1, . . . , εn), Eex:=Diag(εN+1, . . . , εN+Nex) and E�
ex:=Diag(ε�

N+1,

. . . , ε�
N+Nex

) are diagonal matrices. Moreover, note that as ��
ex → �ex, the residuals

R�HρT � converge to 0.
Now, we fix n ≤ N and we compute the condition number of the linear system

(50). Enforcing the CG to stay at each iteration in Ran(R�), this condition number is
given by the ratio of the largest and smallest nonzero eigenvalues of

H �
n + X�

n, (57)

where

H �
n :=R�(Hρ − εn)R

� and X�
n = −R�(Hρ − εn)�

�
ex(E

�
ex − εn)

−1

(��
ex)

∗(Hρ − εn)R
�

= −R�Hρ��
ex(E

�
ex − εn)

−1(��
ex)

∗HρR
�.

(58)

Here, E�
ex−εn is diagonal and thus explicitly invertible if � is large enough as ε�

N+1 →
εN+1 > εN ≥ εn . We focus for the moment on the smallest nonzero eigenvalue, that is
ε�
N+Nex+1−εn . The condition number being proportional to the inverse of the smallest

eigenvalue, we now derive a lower bound of ε�
N+Nex+1 − εn in order to get an upper

bound on the condition number of (57). When � → +∞, we have X�
n → 0 (as

RHρ�ex = 0) and H �
n → Hn :=R(Hρ − εn)R whose smallest nonzero eigenvalue is
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εN+Nex+1 − εn . We use next a perturbative approach to effectively approximate the
condition number of (57).

Weuse a standard eigenvalue perturbation result,whose proof is recalled for the sake
of completeness. It is directly adapted from the general case of self-adjoint bounded
below operators with symmetric perturbations studied, for instance, in [11].

Proposition 1 Let N ∈ N, H0,W ∈ C
N×N be Hermitian matrices and α ≥ 0 such

that H0 + α > 0. Then, the eigenvalues of H :=H0 + W and H0 satisfy

|νi (H) − νi (H0)| ≤ (νi (H0) + α) ‖W‖H0,α , (59)

where ‖W‖H0,α is the operator norm of (H0 + α)−1/2W (H0 + α)−1/2 and νi (A) is
the i-th lowest eigenvalue of the matrix A.

Proof Let u ∈ C
N and define v:=(H0 + α)1/2u. Then,

|〈u, Hu〉 − 〈u, H0u〉| = |〈u,Wu〉| =
∣∣∣
〈
v, (H0 + α)−1/2W (H0 + α)−1/2v

〉∣∣∣

≤ ‖W‖H0,α
〈v, v〉 = ‖W‖H0,α

〈u, (H0 + α)u〉 .

(60)

Therefore,

(1 − ‖W‖H0,α) 〈u, H0u〉 − α ‖W‖H0,α
〈u, u〉 ≤ 〈u, Hu〉 ≤ (1 + ‖W‖H0,α) 〈u, H0u〉

+α ‖W‖H0,α
〈u, u〉 . (61)

The min–max theorem then yields for i = 1, . . . , N ,

(1 − ‖W‖H0,α)νi (H0) − α ‖W‖H0,α

≤ νi (H) ≤ (1 + ‖W‖H0,α)νi (H0) + α ‖W‖H0,α , (62)

which gives the desired inequality. ��
In our case, we can apply this result to

H �
n + X�

n = Hn + (H �
n − Hn) + X�

n, (63)

with H0 = Hn ,W = W �
n :=(H �

n −Hn)+X�
n and α = εN+Nex+1−εn > 0. Proposition

1 applied to the (N + Nex + 1)-th eigenvalues then yields

ε�
N+Nex+1 − εn ≥ (

εN+Nex+1 − εn
) (

1 − 2
∥∥∥W �

n

∥∥∥
Hn ,εN+Nex+1−εn

)

≈ (
εN+Nex+1 − εn

)
, (64)

where we assume that 2
∥∥W �

n

∥∥
Hn ,εN+Nex+1−εn

is small enough to be negligible with
respect to 1, which is the case if the extra states are sufficiently converged. Now, if
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this bound is valid in theory, in practice we do not have access to εN+Nex+1 as we
work with N + Nex bands only. However, up to loosing sharpness, we can use that
εN+Nex+1 ≥ εN+Nex where εN+Nex can be estimated using the last extra band. Indeed,
using, for instance, the Bauer–Fike bound ( [24, Theorem 1] or [42]), we obtain

εN+Nex ≥ ε�
N+Nex

−
∥∥∥r�

N+Nex

∥∥∥ , (65)

where r�
N+Nex

is the residual associatedwith the last extra band.Of course, this estimate
is not sharp as we expect the error on the eigenvalue to behave as the square of the
residual, but this requires to estimate the gap to the rest of the spectrum, see, for
instance, the Kato–Temple bound [24, Theorem 2]. In the end, we have the following
lower bound for ε�

N+Nex+1 − εn :

ε�
N+Nex+1 − εn ≥

(
ε�
N+Nex

− εn −
∥∥∥r�

N+Nex

∥∥∥
)

≈ ε�
N+Nex

− εn, (66)

where we assume again that
∥∥∥r�

N+Nex

∥∥∥ is small enough with respect to ε�
N+Nex

− εn .

We can now derive an upper bound on κ�
n , the condition number of (57). It is given

by the ratio of its highest eigenvalue and ε�
N+Nex+1 − εn . Since the Laplace operator

is the higher-order term in the Kohn–Sham Hamiltonian, the highest eigenvalue is, as
usually in plane-wave simulations, of order Ecut. With proper kinetic preconditioning,
we can assume that its contribution to the condition number of the linear system is
constant with respect to Ecut and n so that, finally,

κ�
n � C

ε�
N+Nex+1 − εn

� C

ε�
N+Nex

− εn
. (67)

Therefore, the condition number is bounded from above by C/(ε�
N+Nex

− εn) to first
order. The number ofCG iterations to solve the linear system (50)with a given accuracy
is then proportional to the square root of the condition number of the matrix (57) (see
[43]):

√
κ�
n �

√
C

ε�
N+Nex

− εn
. (68)

Note that this upper bound is valid provided that the extra bands are converged enough,
not necessarily fully, and proper kinetic preconditioning is employed.

Estimate (68) leads, as expected, to the qualitative conclusion that the more extra
bands we use, the higher the difference ε�

N+Nex
− εn and the faster the convergence.

However, note that it is not possible to evaluate directly the convergence speed as the
constant C is a priori unknown, in particular if we use preconditioners.
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Fig. 9 Comparison between the ratio ξ�
Nex

(×) and the ratios of the experimental number of iterations
between the first and last occupied bands, with (�) and without (◦) the Schur complement (50). On the
x-axis is the index of the k-point. [Left] Al40 [Middle] Fe2MnAl spin up channels [Right] Fe2MnAl spin
down channels

A.2 An adaptive strategy to choose the number of extra bands

The main bottleneck of (68) is the estimation of the constant C . However, one can
reasonably assume that this constant does not depend too much on n, so that the ratio
between the number of iterations to reach convergence between the last occupied band
(n = N ) and the first band (n = 1) can be estimated by

ξ�
Nex

:=
√√√√ ε�

N+Nex
− ε1

ε�
N+Nex

− εN
, (69)

This ratio can be of interest as (68) suggests that the Sternheimer solver converges the
fastest for n = 1 and the slowest for n = N .

We plot in Fig. 9 the upper bound ξ�
Nex

as well as the computed ratios between the
number of iterations of the first and last bands for the systems we considered in Sect. 4.
These plots show that ξ�

Nex
is indeed an upper bound of the actual ratio. This bound

does not seem to be sharp however. This is due to the successive approximations we
made to obtain this estimate. Plots in Fig. 9 also confirm that if, for every k-point, the
ratio of the number of iterations between the first and last occupied bands is assumed
to be an accurate indicator of the efficiency of the Sternheimer solver, then using the
Schur complement (50) always makes this ratio smaller.

Ifwewant the ratio of the number of iterations between the first and the last occupied
bands to be lower than some target ratio ξT (for instance, 3), Fig. 9 suggests that the
computable ratio ξ�

Nex
can help in choosing the number of extra bands to reach this

target ratio. We propose in Algorithm 1 an adaptive algorithm to select the number of
extra bands as a post-processing step after termination of the SCF. The basic idea is
that, given the initial output (�,��

ex) with � = 0 of an SCF calculation, one iterates
��

ex → ��+1
ex where ��

ex gathers the extra bands. At each iteration �, we compute
ξ�
Nex

and check if it is below the target ratio. If not, we compute more approximated

eigenvectors, that we converge until the residual
∥∥∥r�

N+Nex

∥∥∥ is negligible with respect

to ε�
N+Nex

− εN , and so on. To generate such a residual, after adding a random extra
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band properly orthonormalized, we update the extra bands using a LOBPCG with
tolerance

tol = (ε�
N+Nex−1 − εN )/50. (70)

Note that we use ε�
N+Nex−1 instead of ε�

N+Nex
: this is done for the sake of simplicity,

instead of updating the tolerance on the fly with ε�
N+Nex

changing at each iteration of
the LOBPCG.
Algorithm 1: Adaptive choice of the number of extra bands

Data: target ratio ξT , Nex, �, ξ�
Nex

while ξ�
Nex

> ξT do
add random extra band φnew in the orthogonal of Span(�,��

ex);
Nex ← Nex + 1;
update on the fly the extra bands with tolerance from (70) using the LOBPCG
method;
��+1

ex ← (��
ex, φnew) and E�+1

ex ← (��+1
ex )∗Hρ��+1

ex ;
� ← � + 1;
compute ξ�

Nex
with (69);

end

A.3 Numerical tests

We test this strategy on the systems investigated in Sect. 4, with different values for the
target ratio ξT in order to see a noticeable improvement for each system. In practice,
we suggest this ratio to be between 2 and 3.

We first start with the Al40 system. Figure9 [Left] suggests that the default choice
of extra bands already gives satisfying results by reaching a ratio of approximately 2.5
for all k-points but the 
-point (for which there is no real issue with the Sternheimer
equation, according to Table 1). We thus run Algorithm 1 with a smaller target ratio
ξT = 2.2. We use as initial value for Nex the default value for each k-point. Results
are plotted in Table 3 [Left] and suggests adding 15 extra bands. Running again the
simulations from Sect. 4 with 72 fully converged bands and 18 additional, not fully
converged, bands yields indeed an improvement in the convergence of the CG when
solving the Sternheimer equation with the Schur complement method. Moreover, in
Fig. 10, the ratio ξ�

Nex
indeed lies below the target ratio ξT = 2.2 and matches this

ratio for the k-points that caused difficulties for the Sternheimer equation solver to
converge. In terms of computational time, the number of Hamiltonian applications to
compute the response has been reduced from ∼ 14, 800 with the default number of
extra bands to∼ 12, 800.However, running the algorithm required∼ 3, 400 additional
Hamiltonian applications, making the total amount of Hamiltonian applications higher
than that of the Schur approach with the standard heuristic.

Similarly, for Fe2MnAl, we run Algorithm 1 with target ratio ξT = 2.5 as well as
initial value the default Nex for all the 140 k-points and spin polarizations. We present
in Table 3 [Right] the output for both spin polarizations of two particular k-points. The
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Table 3 Suggested number of extra bands for Al40 and Fe2MnAl to reach the target ratio ξT , obtained with
Algorithm 1 with default Nex as starting point, as well as the number of iterations to reach convergence
with the newly suggested Nex. Note that the ratio between iterations indeed lies below the target ratio ξT

Al40, ξT = 2.2 Fe2MnAl, ξT = 2.5

k-point 1 2 5

N 69 58 67

default Nex 6 17 8

suggested Nex 21 29 12

#iterations n = 1 Schur 21 19 18

#iterations n = N Schur 32 36 28

k-point / spin 96 ↑ 96 ↓ 72 ↑ 72 ↓
N 28 26 29 26

default Nex 10 12 9 12

suggested Nex 16 18 17 20

#iterations n = 1 Schur 15 15 15 15

#iterations n = N Schur 36 35 35 35

Fig. 10 Comparison between the ratio ξ�
Nex

(×) and the ratios of the measured number of iterations between
the first and last occupied bands, with (�) and without (◦) the Schur complement (50). On the x-axis is the
index of the k-point. [Left] Al40 with 15 additional extra bands. [Left] Fe2MnAl spin ↑ with 8 additional
bands. [Right] Fe2MnAl spin ↓ with 8 additional bands

results are similar for the rest of the k-points and the maximum additional extra bands
suggested by the algorithm is 8. We thus run the same simulations as in Sect. 4 but this
time with 35 fully converged bands and 11 extra, nonnecessarily converged, bands.
We indeed see for these two k-points that the target ratio has been reached, and that
the number of iterations to converge is smaller than for the default choice we made in
Table 2. In Fig. 10, we plot the ratios ξ�

Nex
as well as the actual ratios and they almost

all lie below the target ratio. Contrarily to Al40, we note, however, that the actual
measured ratios are not always below the indicator ξ�

Nex
. In terms of computational

time, the number of Hamiltonian applications has been reduced from ∼ 208, 000
with the default choice of Nex to ∼ 179, 000. Again, running the algorithm required
∼ 49, 000 additional Hamiltonian applications, making it more expensive than using
the default number of extra bands.
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It appears that Algorithm 1 can be used to choose the number of extra bands in
order to reach a given ratio ξT . However, using the algorithm as such is not useful
in practice as it requires a too high number of Hamiltonian applications, making this
strategy less interesting than the Schur approach we proposed with the default choice
of extra bands. Strategies to reduce the number of Hamiltonian applications in order
to choose an appropriate number of extra bands will be subject of future work.
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