EPFL MSE-468 Classical Molecular Dynamics - 2025

Lab 4
Handout: Classical Molecular Dynamics of Silver Iodide *

Simone Cigagna' and Xing Wang?
! simone.cigagna@epfl.ch ? xing.wang@psi.ch

May 2025

1 Molecular dynamics codes and references

In this Lab, we will be using the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) package to run classical molecular dynamics (MD) simulations. You should
already be familiar with LAMMPS from the first Lab, but we will provide a brief review
nonetheless.

We also suggest two books that are standard references for learning MD simulations:

e Frenkel & Smit, Understanding Molecular Simulations, Academic Press (2002). In
particular, Chapter 4 gives a detailed description of the basics of MD, we recommend
you read this part. A good description of the various ensembles is provided in Chapter
6. A nice explanation of the methods to treat electrostatic interactions is reported
in the first part of Chapter 12, whereas the algorithms to speed up the calculation of
non-bonded interactions are reported in Appendix F.

Science Direct link

o Allen & Tildesley, Computer Simulations of Liquids, Oxford (1987). This text is more
formal than the previous one, but it also contains some important derivations and
formulas. Green-Kubo relations and other quantities important in MD runs are well
described in Chapter 2. The expression of the errors in the statistical averages is quite

clear and can be found in Chapter 6.4.
Google Books link

2 Quick summary of molecular dynamics

In the MD technique, the time evolution of a set of N interacting atoms is followed by
integrating the set of classical (Newton’s) equations of motion

—

Fy = mz‘ﬁu (1)

*This handout is a modified version of the notes written by former lecturers of this Lab.

Page 1 of 20

http://www.sciencedirect.com/science/book/9780122673511
https://books.google.ch/books/about/Computer_Simulation_of_Liquids.html?id=O32VXB9e5P4C&redir_esc=y

EPFL MSE-468 Classical Molecular Dynamics - 2025

where 4 labels the " atom in the system, m; is the mass of the atom, a; = d?7;/dt? its
acceleration, and ﬁl the force that acts on it, due to its interaction with the other atoms. In
principle, from any set of initial positions and velocities, the positions {7;}, velocities {;}
at each MD time step will be determined by knowing the forces and thus the acceleration.
The force on each atom ¢, ﬁi, is the negative of the derivative of the potential energy with
respect to the position of the atom

F,=-V:U (2)

where, U = U(7},...,7y) is the potential energy of the system. For simple systems (for
example the harmonic oscillator), the equation of motion can be integrated analytically, but
for more complex systems, we need to integrate numerically using a finite timestep, which
can eventually cause the computed trajectory to deviate from the true trajectory.

MD can therefore be seen as a technique to follow the time evolution of a system: the
trajectory of N atoms (i.e., the set of the 2N vectors {r;}, {0;}) is determined from the initial
set of positions and velocities by numerically integrating the equations of motion (once given
a form of the potential U).

However, one can also use MD as a statistical mechanics method, which is the more com-
mon use-case and also what this Lab is about. This means that we are not interested in the
trajectory itself, but rather in a set of configurations distributed according to a statistical
ensemble (i.e. to some distribution function). For example, if we place N atoms in a box
with constant volume V' and keep their total energy E (kinetic + potential) constant during
the simulation, it automatically follows that each time step of the system trajectory will
be a point in the microcanonical phase space (N,V, E) at those constant values N,V E.
Statistical mechanics calculates thermodynamic variables as averages of the corresponding
(microscopic) dynamical variables over the phase space (i.e. the 6/N coordinates and mo-
menta) multiplied by a distribution function appropriate to that ensemble. Such an average,
indicated by the angular brackets (), is indeed called ensemble average. Below we provide
the ensemble averages in the microcanonical (NVE) and canonical (NVT) ensembles of a
quantity A:

_ JAF p)6(H(7, p) — E)drdp

A =

(Alwye [0(H (7, p) — E)drdp)
 JAG pe PP drdp

<A>N,V,T - f 67’83{(F’ﬁ)d7?dﬁ (4)

where H is the Hamiltonian used and A(7, p) is the value of A at the point 7, 7'in phase space.
If we let the system evolve in time, after a reasonable time evolution, it will explore different
regions of the phase space according to its ensemble distribution function. This means that,
after a long enough evolution time, the temporal average along the trajectory will be equal
to the ensemble average over the phase space, also known as the ergodic hypothesis. We
can thus use our trajectory as a sequence of “samples” to be averaged in time to obtain the
macroscopic thermodynamic quantity of interest:

A= lim = /0 " AR dt — (A) (5)

Page 2 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

From now on we will use the angular brackets () simply to mean a time integral over our
trajectory, as implied by the ergodic hypothesis.

According to these considerations, any MD code will look like the following pseudo-
algorithm which includes five main steps:

program md
call initialize
loop
call compute_energy_and_forces
call integrate_equation_of_motion
call sample_averages
if (converged_averages .or. exceed_time) exit
end loop
end program md

In short, we need to: 1) Initialize positions and velocities, 2) calculate the energies and
forces, 3) integrate the equations of motion, 4) sample averages and 5) check the convergence
of the average quantities or wall time.

In the next sections we will briefly explain these steps to get you familiar with classical
MD. We advice you to consult the provided references and, in case you have doubts, ask the
tutors.

2.1 Initialization of positions and velocities

MD codes that deal with solids and liquids employ periodic boundary conditions (PBC).
But, it is not mandatory, if you work with molecules you can turn the PBCs off. When using
PBCs, the cell vectors and starting positions are explicitly provided in the input file. As
an alternative, an ordered crystal structure can be chosen as starting point. When starting
a new run, velocities can be given in the input (for example, in case of restarting from a
previous run) or can be randomly generated according to the Maxwell-Boltzmann or another
kind of distribution.

Both the initial positions and the initial velocities can be quite far from the equilibrium
at the beginning of the simulation. Thus, except when restarting a previously equilibrated
simulation, an equilibration run should be performed to bring the system to the desired
thermodynamic state. The length of the equilibration run depends on how far the starting
state of the system is from the required one and is very system dependent. For example,
to get liquid water at 350 K will require a much shorter equilibration time by starting an
equilibration run from a configuration of liquid water obtained at 300 K, than it would by
starting from ideal crystalline ice. Effective achievement of the final thermodynamic state
can be difficult to detect, especially when dealing with slow, non-ergodic systems, such as
liquids at low temperatures or amorphous solids. In these cases, a careful estimation of the
error in the averages of the thermodynamic quantities of interest (e.g., temperature, volume,
pressure, etc.) should be performed.

Page 3 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

2.2 Empirical energy and forces

Calculation of energy and forces depends on the choice of the interaction potential. In
Lab 4 exercises, we will study silver iodide (Agl), which exhibits a superionic phase where
the silver ions are mobile, while the iodine ions maintain a rigid crystal structure. To
accurately describe this peculiar phase, we will employ a promising' Morse-Coulomb hybrid
pair potential with parameters derived from DFT simulations.

2.3 Integration of the equations of motion

Newton’s equation of motion can be integrated numerically by means of several different
integration algorithms. Preservation of the phase space volume and time reversibility are
important features of some of the most commonly used integrators, such as the velocity
Verlet and the leap-frog algorithm. Nonetheless, in order to speed up the calculations some
less accurate schemes can be adopted. The Verlet algorithm is very well described in the
Allen & Tildesley book, it consists of simple Taylor series expansions around ¢t + At and
t — At summed up, giving a local error on the atomic positions of the order of At* per
integration step.

In order to simulate a system in the canonical (NVT) ensemble, a thermostat is added to
the equations of motion. Some of the most commonly used thermostats include stochastic
velocity rescaling, Berendsen and Nose-Hoover thermostats. Again, the interested reader can
find this in the book Allen & Tildesley. It should be noted that some of these thermostats
require the tuning of their frequency, which is related to how strongly the system would be
coupled to the thermostat. If the coupling is too strong, the system will thermalize fast, but
quantities will be affected by the thermostat. If the coupling is very weak, the system will
not reach the desired temperature.

2.4 Sample averaged quantities

MD is a tool for computing thermodynamic quantities from time averages under the as-
sumption of ergodicity (see above). As the system visits different regions of the configuration
space, most of the quantities that are computed in an MD run fluctuate. The average of
these quantities over the entire simulation will provide an estimate of the thermodynamic
quantity of interest. Even though the ergodic theorem is valid only for infinitely long MD
simulations, a simulation can be stopped when the mean has converged. Suppose we are
analyzing simulation results that contains a total of t,,, time steps, or configurations. The
run average of some property A is:

1 trun
<A>7’un = ; Z A(t) (6)
run t 1
and its variance is: .
1 T™un
04 = ; > (A = (A)un)” (7)
run t:1

INiu, Hongwei, Yuhang Jing, Yi Sun, and Narayana R. Aluru. “Ab Initio Based Interionic Potential for
Silver Todide.” Solid State Ionics. Elsevier BV, November 2018..

Page 4 of 20

https://books.google.ch/books?id=O32VXB9e5P4C&lpg=PP1&pg=PA78#v=onepage&q&f=false
https://doi.org/10.1016/j.ssi.2018.07.027
https://doi.org/10.1016/j.ssi.2018.07.027

EPFL MSE-468 Classical Molecular Dynamics - 2025

Looking at the fluctuations of a quantity A is very important in some cases. Firstly, fluctu-
ations inform you how much you can trust your results:

e we will see in the Lab how the fluctuations (in this case standard deviation) in the
temperature in a microcanonical run scale with system size (i.e. the number of atoms).
In such a case, large fluctuations are an indication that you are very far from the
thermodynamic limit;

e other kinds of fluctuations have a direct physical interpretation: the specific heat
capacity can be directly computed from variance in the total energy in the canonical
ensemble.

For an extensive explanation on error estimates in MD simulations, refer to Allen & Tildesley
Chapter 6. But please note that this is not needed for this assignment.

3 LAMMPS getting started

3.1 Before you begin any calculation

Compared to the ab-initio calculations in Lab 2 and Lab 3, the classical MD simulations
in this Lab are faster and require less memory. Therefore we don’t need to use any high-
performance supercomputing resources. As in previous Labs, we provide a LAB4.zip file
which contains an example of how to run the MD simulation with LAMMPS. Unzip the file
and copy its contents to the virtual machine.

3.2 LAMMPS input data parameters

Now you will perform a test run of LAMMPS. Assuming you have LAB4 in your shared
folder, you first create the directory Test and then copy the input file that we provided to
that directory.

max@mse468:~/LAB4$ mkdir Test

maxOmsed68:~/LAB4$ cd Test

max@mse468:~/LAB4/Test$ cp ../examples/Agl.in .
max@mse468:~/LAB4/Test$ cp ../examples/restart Agl.in .

The file AgI.in is an example of input file that contains the information needed to
compute a MD run at constant number of particles, volume and energy (NVE). You can
view the input file with the command:

maxOmse468:~/LAB4/Test$ less AgIl.in

it will look like this:

Page 5 of 20

https://books.google.ch/books?id=O32VXB9e5P4C&lpg=PP1&pg=PA78#v=onepage&q&f=false

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

43

44

45

46

EPFL MSE-468 Classical Molecular Dynamics - 2025

LAMMPS input script for a molecular dynamics simulation of alpha-Agl using combination of Con

By Lab 4 team (Spring 2025)

Variables

Only make changes here!
variable lattice_parameter equal 5.37 # Angstrom
variable supercell equal 2

variable timestep equal 0.005

variable stride equal 100

variable temperature equal 300.0
variable t_damp equal ${timestep}*100.0
variable sim_length equal 5000

Initialise simulation

Variables for AgI; after https://aluru.web.engr.illinois.edu/Journals/SSI18.pdf

species 1 =
species 2

(D
(Ag)

Conventional cell creation

dimension
units
boundary
atom_style
lattice

al

a2

a3

basis

basis
region
create_box
create_atoms
lattice

al

a2

a3

basis

basis
create_atoms

3

metal

PpPPpP

charge

custom 1.0 &
${lattice_parameter} 0.0
0.0 ${lattice_parameter}
0.0 0.0 ${lattice_par
0.00 0.00 0.00

0.50 0.50 0.50

0.0 &
0.0 &
ameter} &

&
Lattice for I system

box block 0 1 01 0 1 units lattice

2 box # 2 atom-type number (I
1 box # type 1 is I

custom 1.0 &
${lattice_parameter} 0.0
0.0 ${lattice_parameter}
0.0 0.0 ${lattice_par

0.25 0.00 0.50
0.75 0.50 0.00
2 box # type 2 is Ag

Masses and charges

mass 1 126.90447 # mass I
mass 2 107.8682 # mass Ag
set type 1 charge -0.3181

set type 2 charge 0.3181

Hybrid potential: Morse + Coulomb

have two species), box is the name

0.0 &
0.0 &
ameter} &

&
Lattice for Ag system

Page 6 of 20

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

EPFL MSE-468 Classical Molecular Dynamics - 2025

kspace_style ewald 1.0e-6

pair_style hybrid/overlay coul/long 10.0 morse/smooth/linear 10.0
pair_coeff * * coul/long

type type D alpha 0

pair_coeff 1 2 morse/smooth/linear 0.5500 1.6000 2.6000
pair_coeff 1 1 morse/smooth/linear 0.1600 0.6840 5.7000

replicate ${supercell} ${supercell} ${supercell}

Define simulation parameters
timestep ${timestep}

Set initial temperature and velocity
velocity all create ${temperature} 87287 loop geom

Following will be returned in the output file
thermo 5000
thermo_style custom cella cellb cellc

Run equilibration for the first 10000 timesteps in canonical ensemble

fix 1 all nvt temp ${temperature} ${temperature} ${t_damp}
run 5000

Calculate mean square displacement
group I type 1

group Ag type 2

compute mymsdI I msd com yes

compute mymsdAg Ag msd com yes
variable msd_normI equal c_mymsdI[4]
variable msd_normAg equal c_mymsdAg[4]

Following will be returned in the output file
thermo ${stride}
thermo_style custom time temp pe ke press v_msd_normI v_msd_normAg

Dumping positions and velocities

dump dpl all custom ${stride} positions.lammpstrj id type xu yu zu
dump dp2 all custom ${stride} velocities.lammpstrj id type vx vy vz
dump_modify dpl format line "¥%d %d %g %g %g"

dump_modify dp2 format line "%d %d %g %g %g"

Run production simulation
unfix 1
fix 2 all nve

run ${sim_length}

Dumping recovery file

Page 7 of 20

95

EPFL MSE-468 Classical Molecular Dynamics - 2025

write_data recovery.data

NOTE: Lines starting with # are ignored by LAMMPS and are used as comments to explain
the input file.

Below you will find a brief explanation for each of the input parameters. For an exhaustive
explanation of the physical meanings of these parameters please refer to the html version of
the LAMMPS manual, or by clicking on the links that we provide for each of them.

e lines 6-12
To specify all the variables used in the simulation. This is the only place where you
should make changes to the inputs like timestep, temperature, etc. Mind the syntax
for performing mathematical operations on variables in line 11.
See variable.

e line 20
To set the dimensionality of the simulation, so 3 for a 3D simulation.
See dimension.

e line 21
This specifies all the units of the input quantities and also the units in which quantities
are written in the output. In our case we use the style metal.
See units.

e line 22
Enable periodic boundary conditions
See boundary.

e line 23
To setup the attributes the atoms can achieve in a simulation. For example the atomic
attributes would depend on the underlying potential model used in a simulation, a
metallic system would have different attributes compared to biological molecules.
See atom _style.

e lines 24-39
The first command defines the lattice of the system. The following two setup the
simulation box that contains all the atoms generated by create_atoms command. We
create two lattices, one for each species.
See lattice, region, create _box and create_atoms

e lines 42-45
To set the mass and charges of the atoms. The units are those previously specified by
the units command.
See mass and set

e lines 48-53
To define the type of interaction potential and the coefficients of the potential.
See pair_style, pair_coeff, kspace_style

Page 8 of 20

https://docs.lammps.org/commands_list.html
https://docs.lammps.org/variable.html
https://docs.lammps.org/dimension.html
https://docs.lammps.org/units.html
https://docs.lammps.org/boundary.html
https://docs.lammps.org/atom_style.html
https://docs.lammps.org/lattice.html
https://docs.lammps.org/region.html
https://docs.lammps.org/create_box.html
https://docs.lammps.org/create_atoms.html
https://docs.lammps.org/mass.html
https://docs.lammps.org/set.html
https://docs.lammps.org/pair_style.html
https://docs.lammps.org/pair_coeff.html
https://docs.lammps.org/kspace_style.html

EPFL MSE-468 Classical Molecular Dynamics - 2025

line 55

To replicate the unit cell in the three dimensions. The number of unit cells in each
direction is defined by the variable supercell defined in line 8.

See replicate.

line 58

To setup the timestep of the simulation. Note that we use a variable defined in line 9
here for better readability and editing of the input script.

See timestep.

line 61

To initialize the velocities sampled from Maxwell-Boltzmann distribution based on a
given temperature and a random seed. Please keep the same seed to ensure repro-
ducibility of your simulations.

See velocity.

line 64-65

To write specific quantities evaluated during a simulation. In this case the cell vectors
are outputted every 5000 timesteps.

See thermo and thermo_style.

lines 68-69

To setup the kind of simulation you want to run. In this case we are running an
MD simulation in the canonical ensemble to equilibriate the system at the desired
temperature. run command simply runs the simulation for 5000 timesteps.

See fix and run.

line 72-77
To compute MSD and store it in the variables msd norm I and msd norm_Ag.
See compute and group.

line 80-81
Same as lines 63-64, this time we output time, temperature, potential energy, kinetic
energy, pressure, and msd every 100 timesteps.

lines 84-87
Dumping positions and velocities in LAMMPS trajectory format.
See dump and dump_modify.

lines 90-92

Delete the fix command, in this case, we delete the canonical ensemble (equilibration
run) and then run a microcanonical ensemble as production.

See unfix.

line 95

Dumps recovery file, if simulation is interrupted. Useful in cases of extremely long and
expensive simulations.

See write data.

Page 9 of 20

https://docs.lammps.org/replicate.html
https://docs.lammps.org/timestep.html
https://docs.lammps.org/velocity.html
https://docs.lammps.org/thermo.html
https://docs.lammps.org/thermo_style.html
https://docs.lammps.org/fix.html
https://docs.lammps.org/run.html
https://docs.lammps.org/compute.html
https://docs.lammps.org/group.html
https://docs.lammps.org/dump.html
https://docs.lammps.org/dump_modify.html
https://docs.lammps.org/unfix.html
https://docs.lammps.org/write_data.html

EPFL MSE-468 Classical Molecular Dynamics - 2025

3.3 Running the classical molecular dynamics
Now there two ways to execute LAMMPS:
max@mse468:~/LAB4/Test$ lmp mpi < Agl.in > Agl.out &

where the optional & lets you keep control of the terminal while the job is running. This will
be usually a slower and an inefficient way of running LAMMPS on only a single processor.
To run LAMMPS on multiple processors, you can use mpirun. So run on two processors
execute following command:

max@mse468:~/LAB4/Test$ mpirun -np 2 lmpmpi -in AgI.in > Agl.out

We recommend running LAMMPS in parallel to significantly reduce simulation time,
especially for larger systems or longer simulations. For more information on how to run
LAMMPS refer to the documentation (see running).

Once the program has been executed, a few files are written. The AgI.out file contains
all the details of the input files and of the run itself. This file is quite similar to log.lammps
that contains more information regarding the run. Another file called recovery.data is
used to restart a simulation when the job crashes or when you want to improve the statistics
of your calculations. Two more files are generated containing positions and velocities in
LAMMPS trajectory format. To restart the calculation, first we save the output files of the
first run:

maxOmse468:~/LAB4/Test$ cp Agl.out old AgI.out
max@mse468:~/LAB4/Test$ cp positions.lammpstrj old positions.lammpstrj
max@mse468:~/LAB4/Test$ cp velocities.lammpstrj old velocities.lammpstrj

Then, use the restart_AgI.in as input file’:
maxOmse468:~/LAB4/Test$ mpirun -np 2 lmp mpi -in restart_AgI.in > Agl.out

You can modify the AgI.in file to change supercell size, timestep, stride i.e. after how
many timesteps quantities should be written in the output (we suggest keeping it as is),
temperature, damping factor of the thermostat (we suggest keeping it as is), an the duration
of the MD run.

3.4 Using bash scripts to run LAMMPS multiple times

In order to check the numerical convergence of your calculations with respect to MD time-
step, supercell size etc, you will have to run LAMMPS multiple times with different values
for those parameters. Of course you may create a new input file for every set of parameters,
but using bash scripts can help you to speed up and automate your work. In this Lab we
provide you (in the /LAB4/scripts directory) with a useful bash script, called script.sh,
that automatically loops over the size of the cell, temperature and timestep values. You can
also write a bash script by yourself, or modify this one according to your own taste or even
use Python to automate this process.

The script looks like this:

2this file is a simpler version AgI.in, check out the documentation for the read data command.

Page 10 of 20

https://docs.lammps.org/Run_basics.html
https://docs.lammps.org/read_data.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

43

44

45

46

47

EPFL MSE-468 Classical Molecular Dynamics - 2025

#!/bin/bash -f

Script written to run LAMMPS multiple times on one node.
The script can loop over 3 different input parameters:
the time step, specified in list_time_steps

The temperature, specified in list_temperatures

The supercell size, specified in list_supercell_size

There are several ways to set your list in BASH.
For explicit definition of e.g. your time_steps, you can do
####### list_supercell_size="2 3 4 5 6 7 8 9 10" #######

You can also use the seq command to create a sequence as in:
#HHH####E list_temperatures=‘seq 1000 100 3000 #i######
This creates a sequence of values between 1000 and 3000, every 100

list_time_steps="0.0001 0.0005 0.001 0.002 0.003 0.005 0.007 0.01"
list_temperatures="300"
list_supercell_size="2"

R R as | IMPORTANT ! #HHHHEHHHHH R RS
To run in canonical ensemble for problem 2 comment out line 100 and uncomment line 101
Remember to change the 2 to 1 if your virtual machine is running on 1 CPU in line 104
#HHHHEEEAAA R R aE | IMPORTANT ! #HHHEHEHEH R R

This is the executable path for LAMMPS
exec=‘which lmp_mpi°

This is the executable path for the parser
Change it if you moved the ‘parser.py‘ to some other location
parser="python3 /home/max/Desktop/SHARED/LAB4/scripts/parser.py"

These are constants that the script does not loop over.

You need to change them during the exercise.

Equilibration and production time in ps, lattice parameter in Angstrom and
how often (in ps) everything will be outputted

sim_time="6"

equilibration_time="5"

lattice_parameter="5.37"

stride_time="0.1"

Start loops
for supercell in $list_supercell_size; do
for temperature in $list_temperatures; do
for time_step in $list_time_steps; do
sim_steps=$(echo "scale=0; $sim_time / $time_step" | bc)
stride=$(echo "scale=0; $stride_time / $time_step" | bc)

Page 11 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

a8 equilibration_steps=$(echo "scale=0; $equilibration_time / $time_step" | bc)
49 base_name="${supercell}_${temperature}_${time_stepl}"
50 cat > md_${base_name}.in << EOF

o1

1 # LAMMPS input script for a molecular dynamics simulation of Fe using an EAM potential
52

53 # Initialise simulation

s4 clear

55 # Variables for Agl; after https://aluru.web.engr.illinois.edu/Journals/SSI18.pdf

ss # species 1 = (I)

57 # species 2 = (Ag)

ss # Conventional cell creation

59 dimension 3

60 units metal

61 boundary PPP

62 atom_style charge

63 lattice custom 1.0 &

64 al ${lattice_parameter} 0.0 0.0 &

65 a2 0.0 ${lattice_parameter’ 0.0 &

66 a3 0.0 0.0 ${lattice_parameter} &

67 basis 0.00 0.00 0.00 &

68 basis 0.50 0.50 0.50 # Lattice for I system
60 region box block 0 1 0 1 0 1 units lattice

70 create_box 2 box # 2 atom-type number (I have two species), box is the name
71 create_atoms 1 box # type 1 is I

2 lattice custom 1.0 &

73 al ${lattice_parameter} 0.0 0.0 &

7 a2 0.0 ${lattice_parameter’ 0.0 &

75 a3 0.0 0.0 ${lattice_parameter} &

76 basis 0.25 0.00 0.50 &

77 basis 0.75 0.50 0.00 # Lattice for Ag system

78 create_atoms 2 box # type 2 is Ag

79 # Masses and charges

go mass 1 126.90447 # mass I

s1 mass 2 107.8682 # mass Ag

82 set type 1 charge -0.3181

83 set type 2 charge 0.3181

g« # Ewald sums

85 kspace_style ewald 1.0e-6

s # Hybrid potential: Morse + Coulomb

87

88 pair_style hybrid/overlay coul/long 10.0 morse/smooth/linear 10.0
g0 pair_coeff * * coul/long

o0 # type type D alpha rO

o1 pair_coeff 1 2 morse/smooth/linear 0.5500 1.6000 2.6000
92 pair_coeff 1 1 morse/smooth/linear 0.1600 0.6840 5.7000
93

¢ replicate ${supercell} ${supercell} ${supercell}

Page 12 of 20

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

EPFL MSE-468 Classical Molecular Dynamics - 2025

Define simulation parameters
timestep ${time_step}

Set initial temperature and velocity
velocity all create ${temperature} 87287 loop geom

Following would be returned in the output file

thermo ${stride}

thermo_style custom cella cellb cellc

Run equilibration for the first 5000 timesteps in canonical ensemble

fix 1 all nvt temp ${temperature} ${temperature} $(echo "$time_step * 100.0" | bc)
run ${equilibration_steps}

Calculate mean square displacement
group I type 1

group Ag type 2

compute mymsdI I msd com yes

compute mymsdAg Ag msd com yes
variable msd_normI equal c_mymsdI[4]
variable msd_normAg equal c_mymsdAgl[4]

Following would be returned in the output file
thermo ${stride}
thermo_style custom time temp pe ke press v_msd_norml v_msd_normAg

Dumping positions and velocities

dump dpl all custom ${stride} positions_${base_name}.lammpstrj id type xu yu zu
dump dp2 all custom ${stride} velocities_${base_name}.lammpstrj id type vx vy vz
dump_modify dp2 format line "%d %d %g %g %g"

Run production simulation
unfix 1
fix 2 all nve
fix 2 all nvt temp ${temperature} ${temperature} $(echo "$time_step * 100.0" | bc)
run ${sim_steps}
EQF
mpirun -np 2 $exec -in md_${base_namel}.in > md_${base_name}.out
$parser md_${base_name}.out positions_${base_name}.lammpstrj velocities_${base_nams
done
done
done

As you can see, the script is well commented. And, from line 51 to line 129 you will have
already recognized the input file that we described above, with the addition that some
parameters are inserted based on the variable value in the loop. The only new command
here is clear which is used to set all settings to their default values (see clear). Here you

Page 13 of 20

https://docs.lammps.org/clear.html

EPFL MSE-468 Classical Molecular Dynamics - 2025

have the possibility of changing and looping over the values of timestep, temperature and
cell size by setting the respective “lists”.

First copy the script to your test directory by:
max@mse468:~/LAB4/Test$ cp ../scripts/script.sh .

You can now run the script by using:
max@mse468:~/LAB4/Test$ bash script.sh

or
max@mse468:~/LAB4/Test$ nohup ./script.sh &

The nohup part allows the program to keep running even if you close the terminal in
the computer. At the end, you will find all the output files in your working directory. Type
the command 1s -1h to get a list of the produced files. In the problems of this Lab, you
can modify the script appropriately in order to run the different calculations that you might
need.

The LAMMPS program will generate two .lammpstrj trajectory files that contain the
configurations generated during the MD simulation. We provide a parser (parser.py) in
the scripts directory® that takes the output file and trajectory of LAMMPS and provides:

e A text file that for every sampled trajectory point lists the time, temperature, potential
energy, kinetic energy, pressure and msd. You specify the text file name with the -e
option. This file can be easily visualized with gnuplot.

e A JSON file that contains positions, velocities etc, that will be an input to the other
analysis scripts we provide. The filename is the last positional input.

As a first example of analysis script, python3 scripts/converter_to_xcrysden.py
output. json takes the JSON output you provide and writes a file that can be visualized
with xcrysden, a program you have used before. Note that all possible input options to a
python script can be viewed when passing -h, as in python3 myscript.py -h.

4 Thermodynamics of bulk silver iodide (exercise)

In this section, we study the thermodynamics of bulk silver iodide employing an empirical
force field to describe the interatomic potential.

In order to solve the problems in Lab 4, you will have to run several MD calculations at
different temperatures (within 293 K and 800 K). In the first part of the exercise you will
be asked to determine the optimal parameters in order to ensure that the structural and
dynamical properties that you will compute in the second part of the exercise are converged.

3Tn order to speed up the setup and the analysis of the simulations, we provide some useful python scripts
that you can find in the scripts folder. All the scripts are intended to simplify your life during the set up
of the simulations required by the different exercises. You are not forced to use them, you can analyze each
calculation as you wish.

Page 14 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

4.1 Convergence of the parameters

When starting a simulation, it is fundamental to have well converged parameters. These
usually include the timestep of the simulation, the supercell size, and the production run
length, which must be large enough to allow the sampling of uncorrelated structures.

A good choice for the equilibration time is at least 5000 steps. You can also try 10000 or
more, as LAMMPS is quite fast it shouldn’t incur any noticeable cost.

In general, you should choose a timestep large enough in order to save CPU time, but
small enough to minimize integration errors, that can lead to an unstable simulation with
non-physical behavior. The main limitation imposed by the system here is the highest-
frequency motion that must be considered: a vibrational period must be split into around
100 segments for molecular systems to satisfy the Verlet assumption that the velocities and
accelerations are constant over the timestep used. A very safe timestep in this system is
around 107! seconds (= 0.001 ps = 1 fs). The standard way to test the convergence of your
timestep is to measure the energy conservation in the NVE ensemble, because in this case
total energy (kinetic 4+ potential) is expected to be constant. If the timestep is too big,
the total energy may drift or the atoms may crash into each other. A practical hint is to
use the highest temperature and the smallest supercell that you are interested in. As the
temperature increases, the vibrational frequencies are higher, and the vibrational periods
are shorter, thus if your timestep is converged for the higher temperatures it will also be
converged for the lower temperatures. Notice that the conserved quantity, even if there is
no drift, is not truly constant, as there are small fluctuations that are due to the numerical
integration. Thus, the amplitude of these standard deviation as a function of timestep can
be used to study how the integration error scales. This convergence test should be done
for a production time of 6 ps (with extra 5 ps of equilibration). Remember to analyze only
the production part of your simulation: the equilibration part in LAMMPS has a velocity-
rescaling algorithm to speed up the equilibration which induces strong oscillations in the
total energy. By default, the scripts provided will automatically neglect the equilibration
part for all post processing.

Once you have a good timestep (which you should use from now on), you are asked to
check how much the temperature fluctuates around the average in an NVE simulation as a
function of the supercell size. As seen above, the latter can be easily tuned in the calculation
by changing the parameter “supercell”. As a rule of thumb, the standard deviation of
the temperature should be below 3% of the target temperature, i.e., the one used in the
equilibration run and set up in the input file. You should check both the highest and
lowest temperatures, and use the smallest supercell that converged for both temperatures.
To see how the fluctuations decrease with increased system size, perform a linear fit on
log(or) against log(V), where N is the number of atoms in the system. Also here, 5 ps of
equilibration and 6 ps of production are fine.

NOTE: Always use a production time, denoted as sim_time in the input script, greater
than 5 ps, otherwise you will need to make necessary changes to the vaf.py and rdf.py
scripts.

As a last step, you should figure out how long the production time should be. As
everything else, this quantity is also something you would ideally converge for every quantity
of interest that you get get from your simulation, but this can be very cumbersome. A faster

Page 15 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

estimation of the production time can be obtained if we know the effective decorrelation
time of our system, that is to say the time it takes for a trajectory to lose memory. That
can be estimated by looking at the velocity auto-correlation function (VAF):

N 3

VAF() = 203 3 (V)i (0)) 0

I a=1

where V (t);, stands for the velocity of particle I at time ¢ in direction o and () denotes a
time average over the trajectory. From some time ¢, (called the decorrelation time) onwards,
this quantity fluctuates randomly around 0. Only simulation times above t. give us new
information about the system. If you simulate 50 x ¢, you will have 50 independent estimates
of your quantity to average, and that is usually a sufficient choice. The VAF can be computed
using the script vaf.py provided in the scripts directory.

max@mse468:$ python3 scripts/vdf.py output_xxx.json

Problem 1 - Convergence tests [35 points]

A) Determine a suitable timestep for molecular dynamics simulations at the high-
est simulated temperature (800 K) by analyzing the conservation of the total
energy (the constant of motion, defined as the sum of the potential and ki-
netic energies). You can read the energies (E for potential energy and K for
kinetic energy) from the output file (e.g., E_of t_6_800.0.001.dat).

Since the total energy is not perfectly constant due to numerical integration
errors, quantify these fluctuations by calculating the standard deviation of the
total energy over time for different timesteps. Plot the standard deviation of
the total energy as a function of the timestep. [5 points]

Based on your simulations, select a timestep where the standard deviation of
the total energy fluctuations is below 1 x 107° eV /atom. [5 points]

Note: The standard deviation should be reported per atom. The unit cell
contains 4 atoms; so e.g. in a 2 x 2 X 2 supercell there are 32 atoms.

B) Converge the system supercell size such that the standard deviation of tem-
perature is below 3% of the target temperatures (293 K and 800 K). [5 points]
How does the standard deviation decrease with increased system size (number
of atoms)? [5 points]

C) Estimate the ideal production length from the velocity auto-correlation func-
tion VAF(t) at room temperature (293 K). [5 points]

Explain why this estimate should be made at the lowest temperature you plan
to simulate. [5 points]

Derive how the value of VAF(t = 0) is related to (FEj;,), and check this for
one of your trajectories. [5 points]

Page 16 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

4.2 Structural and dynamical properties of silver iodide

In this section we perform MD simulations at constant volume and temperature (NVT) to
compute structural and dynamical properties of silver iodide. To run in the NVT ensemble,
please refer to the ensemble nvt part of the above commented LAMMPS input file.

Throughout this problem, you will be required to consider a significant number of different
temperatures and extract several structural and dynamic information from the output of MD
calculations.

4.2.1 Radial distribution function

The radial distribution function is one of the major observables to determine the structure
of a system. In a pair potential, it uniquely determines all the thermodynamic properties.

The radial distribution function (RDF) measures the density of atoms (normalized by
its average value p) as a function of the distance d from a reference one. It is calculated
by summing the number of atoms found at a given distance in all directions. For a multi
component system, the RDF can be computed for each species individually. In a solid, the
radial distribution function will consist of sharp peaks, whereas as a material melts these
peaks will broaden and some will disappear, as you can see in Figure 1.

7 T [T I T [T I T
6 n — liquid o

— solid .
o — gas

g(r)

0.5 1.0 1.5 2.0 2.5 3.0
rlo

Figure 1: Examples of radial distribution functions for different phases of matter (source:
100 Years of the Lennard-Jones Potential).

You can use the provided script to calculate the radial distribution function:

max@mse468:$ python3 scripts/rdf.py output.json

Page 17 of 20

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00135

EPFL MSE-468 Classical Molecular Dynamics - 2025

You have several options to choose from, which you can access with the -h option. Such
options are bin-size, the stepsize that you can use to speed up the calculation by not
considering every step, etc. For example:

max@mse468:$ python3 scripts/rdf.py output.json --init-time 5.0 --n-bins
100 --stepsize-t 10 -o RDF.dat

This command writes the histogram in an output file (RDF.dat by default). As in other
scripts, the initialization time is the interval of time to discard from the start of the trajectory
when performing statistics. Note that the python script rdf.py, by default, uses only data
from the production part of the LAMMPS run, the equilibration part (see equilibration
flag in the .in file) is discarded by default. So, with —-init-time = 0, all data from the
production part will be considered.

The script computes the RDF up to the maximum radial distance in the cell, which is
half the cell size in a cubic cell. As customary, the RDF is normalized to the mean density
in the system. The script also integrates the RDF, and you can use this integral to estimate
the number of nearest neighbors. The distance r, RDF(r), and [RDF(r)dr are written in
the first, second, and third columns in the output file produced by the script.

The number of bins to use is a number you have to tune: too many bins will give you
a histogram that is not a smooth function, whereas with too few bins you lose resolution.
When you have figured out a good bin size, plot the radial distribution functions for the
different simulated temperatures.

4.2.2 To diffuse or not to diffuse

The mean square displacement (MSD) is useful to determine if atoms can move freely or
are bound to their position. With the MSD one can obtain the self-diffusion coefficient (D),
which is related to how fast the atoms are moving in the system, and can also be obtained
experimentally, thus it is a good benchmark for the simulations. The MSD is defined as:

N 3
1
MSD(t) = 5= > D (| Rra(t) = Rra(O)) (9)
I a=1
where R(t);, stands for the coordinate a of particle I at time ¢ and () denotes a time
average over your trajectory. From the MSD we obtain the self-diffusion coefficient, using

the Einstein relation, as follows:

1 d
where d is the dimensionality of the system, in our case 3, as we are dealing with a three-
dimensional system. One should note that the limit to infinite time is being taken, whereas
the simulations are finite. Thus, a careful evaluation of convergence as a function of time
should be performed. Note also that, since we are dealing with a material that is a superionic
conductor, i.e., a system made by a diffusive subsystem and a non-diffusive one, it is crucial
here to distinguish between the diffusive behaviour of Ag and I. To calculate the self-diffusion
coefficients, the MSD for both Ag and I are already outputted by LAMMPS. The diffusion

coefficient can then be estimated from the slope of the MSD curve.

Page 18 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

4.2.3 Arrhenius equation

The Arrhenius equation describes the temperature dependence of the rate constant of a
reaction, such as the diffusion coefficient. Indeed it is natural to expect an increase of the
diffusion coefficient with increasing temperature, as the atoms have more energy and can
move more easily. Empirically, it can be shown that

D = Dyexp (— g}) (11)

where Dq is a pre-exponential factor, E, is the (molar) activation energy, R is the gas
constant® and 7 is the temperature. In the literature, it is standard practice to show instead
the linear relation between log(D) and 1/T. In this exercise you will be asked to follow this
convention and estimate Dy and E, through a linear fit.

Problem 2 - Structural and dynamical properties [65 points]

IMPORTANT: Make sure to change your ensemble to NVT in the input
script before attempting this problem.

A) Plot the radial distribution function (RDF) at room temperature (293 K) for
both species [5 points].
Then, show the same plot at a very low temperature (e.g. 10 K) and explain
the differences [5 points].
NOTE: express all lengths in angstrom [A].

B) For both Ag and I ions, plot the MSD(t) as a function of time for six distinct
temperatures within the range 293 K to 800 K.
What can you infer about the mobility of the two species as the temperature
changes? [10 points].
NOTE: Give the MSD in units of [A?] and times in picoseconds [ps].

C) Estimate the diffusion coefficient for Ag at room temperature [10 points].
HINT: focus on a region of the MSD(t) curve that is roughly linear and
perform a fit.

NOTE: to be consistent with the literature, the diffusion coefficient should
be expressed in units of [cm?/s].

D) Repeat the procedure from the previous point to calculate the diffusion coef-
ficient for Ag at all six temperatures you simulated for point B [15 points].
Subsequently, plot the natural logarithm of the diffusion coefficients versus
the inverse of the temperature. Fit the data to verify Arrhenius law and pro-
vide an estimate for the activation energy E, and the pre-exponential factor
Dy [20 points].

NOTE: report the activation energy in units of [cal mol™!].

4This is related to the Boltzmann constant k; through the Avogadro number N4, R = kyN4.

Page 19 of 20

EPFL MSE-468 Classical Molecular Dynamics - 2025

NOTE: Make sure to document all relevant simulation parameters. Discuss your results,
and explain how you arrived at your conclusions. Put meaningful labels and units on plots.

Page 20 of 20

	Molecular dynamics codes and references
	Quick summary of molecular dynamics
	Initialization of positions and velocities
	Empirical energy and forces
	Integration of the equations of motion
	Sample averaged quantities

	LAMMPS getting started
	Before you begin any calculation
	LAMMPS input data parameters
	Running the classical molecular dynamics
	Using bash scripts to run LAMMPS multiple times

	Thermodynamics of bulk silver iodide (exercise)
	Convergence of the parameters
	Structural and dynamical properties of silver iodide
	Radial distribution function
	To diffuse or not to diffuse
	Arrhenius equation

