Introduction to LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is an open-source molecular dy-
namics (MD) software package designed to simulate particles at atomic, mesoscopic, and continuum
scales. Developed by Sandia National Laboratories, it is optimized for high-performance parallel com-
puting (HPC) and is widely used in physics, chemistry, materials science, and engineering.

LAMMPS is particularly effective in simulating large systems containing millions of atoms due to its
domain decomposition method, which efficiently distributes computational work across multiple proces-
sors. It is highly modular, allowing users to integrate different force fields, computational models, and
external packages. The software supports classical molecular dynamics, as well as hybrid models that
incorporate quantum effects via external coupling.

Key Features

LAMMPS offers a wide range of functionalities, making it a versatile tool for molecular dynamics simu-
lations:

e Interatomic Potential Support: LAMMPS includes a variety of force fields such as Lennard-
Jones, EAM (Embedded Atom Method), Tersoff, ReaxFF (reactive force fields) etc., allowing for
the simulation of different materials and molecular systems.

e Parallel Computation: Designed for high-performance computing, LAMMPS efficiently scales
across CPUs and GPUs.

e Flexibility in Simulation Types: Users can perform energy minimization, equilibrium and non-
equilibrium MD, thermostating, barostatting, and shockwave simulations.

e Highly Customizable: It allows users to define complex simulation environments, manipulate
atomic structures, and apply external forces, making it useful for a wide range of scientific applica-
tions.

Basic Structure of a LAMMPS Input Script

A typical LAMMPS input script consists of several key components. Below is an overview of the most
important sections, along with an example command for each. Furthermore, for each presented command
you can find a short explanation. If you need more information, you can click on them to access the
official LAMMPS documentation. Alternatively, you can click here to view the LAMMPS commands
documentation.

1. Initialization

The initialization section defines the units of measurement, the system’s dimensionality, and the boundary
conditions. It is important to specify these settings before defining atomic structures.

units metal
dimension 3
boundary PPP

e The units|command sets the energy, length, time, and mass units (e.g., metal, 1j, real).
e dimension defines the simulation dimensionality (2D or 3D).

e boundary defines the boundary conditions (periodic, fixed, or shrink-wrapped).

2. System Definition

This section specifies the atomic lattice, defines the simulation box, and places atoms inside it.

lattice bcc 4.0

region box block 0 10 0 10 0 10
create_box 1 box

create_atoms 1 box
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e lattice|sets the crystal structure and lattice constant.

region| defines the spatial region of the simulation box.

create box initializes the simulation box.

e create_atoms populates the box with atoms.

3. Defining Atomic Interactions

LAMMPS provides various interatomic potentials to model atomic interactions.

pair_style eam/alloy
pair_coeff * % A199.eam.alloy Al

e pair_style selects the interatomic potential (e.g., 1j/cut, eam/alloy, reax/c).

e pair_coeff assigns potential parameters for atomic interactions.

4. Simulation Settings

Before running a simulation, neighbor list settings and velocity initialization are configured.

neighbor 0.3 bin
neigh_modify delay 5 every 1

e neighbor sets the neighbor list cutoff for force calculations.

e neigh modify refines how often the neighbor list updates.

5. Running the Simulation

Once the system is set up, integrators are defined, and the simulation is executed. Here, we run an
evaluation of the energy.

run O

e run/starts the simulation for a specified number of steps.

6. Output and Data Collection

LAMMPS provides various ways to collect simulation data, such as thermodynamic output and trajectory
dumps.

write_data output.data

e [write datal Write a data file in text format of the current state of the simulation.

Applications of the software

LAMMPS is extensively used in computational research for modeling the physical properties of materials.
Some of its key applications include:

e Material Science: Simulating the mechanical, thermal, and electrical properties of metals, ce-
ramics, and semiconductors.

e Biomolecular Simulations: Modeling proteins, lipid membranes, and DNA with force fields like
CHARMM and AMBER.

e Surface Interactions and Catalysis: Studying adsorption, diffusion, and chemical reactions
using reactive force fields.

e Extreme Environments: Simulating shock waves, radiation damage, and high-pressure condi-
tions in planetary science.
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Now, that we saw the basics of how LAMMPS works, we are ready to put everything to practice
during the next exercises. By calculating interesting properties for different materials.

In the rest of this document, red shaded boxes highlight the tasks and problems that you need
to solve (and for which you need to write a report afterwards). After each box, various useful
comments and tips will clarify some points and provide additional information.

Excercise 1

For this exercise, one has to calculate the minimum energy structure of silver (Ag). Silver is an element
that crystallizes in a face-centered cubic (FCC) structure. To achieve this, you will use the LAMMPS
simulation package and apply two different approaches.

r

Problem 1 : Relaxation of the FCC-Ag structure.

From a computational point of view, this involves providing a code (LAMMPS for this lab) with
an initial atomic configuration—specifically, a unit cell and a set of atomic positions. These
positions do not have to be perfectly accurate but should serve as a reasonable initial guess for the
compound of choice. The goal is to determine the equilibrium configuration, which corresponds
to the state of lowest energy.

The software employs a minimization algorithm to adjust the atomic positions, reducing the
potential energy, interatomic forces, and stresses. The configuration that results in the lowest
energy is known as a local minimum.

In general, both atomic positions and the cell size (lattice vectors) can be relaxed. However,
in some cases, it may be necessary to relax only one of the two. For this exercise, we will relax both.

Before you start your calculations, make a plot of the unit cell of FCC-Ag. What is the packing
fraction for it?

A. (5 points) Calculate the lattice constant (in A) and the total energy (in eV) for bulk silver
(Ag) in the FCC structure using LAMMPS. In this first problem, to model the interaction
between atoms, use the supplied 12-6 Lennard-Jones (LJ) potential (see input file below).

1 By using the minimizer in LAMMPS, which performs atomic relaxation, one can opti-
mize the structure. To optimize both the unit cell and atomic positions, the fiz: box/relax
command must be used before calling minimize. Record the total energy and the lattice
constant after this full optimization

2 By selecting different values for the lattice parameter near its equilibrium value and
performing an energy calculation for each, one can determine the optimal lattice con-
stant. To do this, manually set the unit cell parameters using the lattice command,
then use run 0 to perform a single-point energy evaluation in LAMMPS. Record the
total energy obtained for each lattice constant and plot total energy vs lattice constant.
What type of curve do you obtain?

J

For the problem A1, you will use the input file provided below. To keep your directories organized,
consider structuring your files properly so they are easy to locate later. To begin this exercise, follow
these steps:

—_

= W N

Create a directory using the mkdir command.
Open a new file with the editor of your choice.
Name the file with a .in extension.

Copy and paste the provided script into the newly created file. Sometimes when you copy-paste it
adds blank spaces, make sure your file looks exactly as the one in the handout.

For the script to run, you need to replace the placeholders for dimensionality, atomic mass, and lattice
constant with the correct values.
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# This section defines the units that you are using. The dimensions of your
# simulation and the periodic boundary conditions.

units metal
dimension <dimension_number >
boundary PPP

# Define the initial lattice structure and size.

atom_style atomic

lattice fcc <lattice_constant> # Initial lattice constant

region box block 0 1 0 1 0 1 # Define box with 1 unit cell per side

# Create the simulation box and populate it with atoms.
create_box 1 box
create_atoms 1 box

# Define atomic mass for the element being simulated.
mass 1 <atomic_mass_of_Ag>

# Define interatomic potential using Lennard-Jones potential.
pair_style 1j/cut 20.0
pair_coeff 1 1 0.341 2.648 # LJ parameters for Ag (e in eV, o in A )

# Define neighbor list settings to improve computational efficiency.
neighbor 0.3 bin
neigh_modify delay 5 every 1

# Allow isotropic box relaxation and atomic position relaxation.
fix 1 all box/relax iso 0.0 vmax 0.001

# Monitor thermodynamic properties with energy output at every step.
thermo 1
thermo_style custom step temp pe 1lx ly 1lz press

# Minimize energy to optimize geometry. Cut-offs and steps from energy and forces.
minimize 1.0e-6 1.0e-8 1000 10000

# Save the final structure and trajectory.
write_data optimized_structure.data

Read the script before you run the simulation and understand what does each keyword do. Make sure
you know what are the units that are specified here with units metal command. To run this script you
can do.

Imp_mpi -in filename.in

For the problem A2, the main part of the input script remains the same. The key adjustment needed is
the lattice constant, which should be modified each time you execute the script. To facilitate analysis, you
can define a [variable named pot_e (potential energy) and store the pe (LAMMPS keyword for potential
energy) of the system in it. At the end of the script, you can append this value to a file using this in the
end of the file.

print "${pot_e}" append energy_volume.dat

s 2
B. (5 points) Repeat these calculations using the supplied Embedded Atom Model (EAM) potential
(the potential is provided in the input file Ag_u3.eam).

1. How do the EAM and Lennard-Jones (LJ) lattice constants compare with experimental
values? (The experimental lattice parameter for Ag is 4.09 A.) Is this expected? Why?

2. The energies of the two calculations (A and B) will be different. Is this a problem? Justify

your answer.
\§ J

The procedure is the same. However, you are going to use the ag_eam_minimize.in input file. Make
sure to create a new directory and copy there all the necessary files (lammps input and potential). To
do this you can either use the command line (remember the commands mkdir, cp and cd) or the file
explorer.
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Some words regarding the Lennard-Jones potential.

The Lennard-Jones (LJ) potential is a widely used mathematical model that describes the interaction
between a pair of neutral atoms or molecules. It is expressed as:

o= [(6)"- )]

where € represents the depth of the potential well (measuring the strength of the interaction), o is
the finite distance at which the interparticle potential is zero, and r is the interatomic distance. The
repulsive term (%)12 accounts for the Pauli exclusion principle, while the attractive term (%)6 models
van der Waals interactions.

Another common form of the LJ potential uses A and B parameters:

V(r)=Ar—12 — Br=°

where A and B are alternative parameters related to € and o by:

A =4eo'?, B = 4e0’

These two forms are mathematically equivalent, and conversion between them is straightforward.

Why do E(V) curves matter?

You might wonder why one should use the second approach based on the energy-volume curve, instead
of just running the energy minimization leveraging common minimization routines.

The energy-volume curve gives you access not only to the equilibrium lattice constant but also to the
bulk modulus. The bulk modulus measures the resistance of a material to compression. Hence, it can
be of interest to desgign a material with a desired bulk modulus. In the last part of exercise 1, you will
perform a so-called Birch-Murnaghan fit (see details belwo) to obtain the bulk modulus of FCC-Ag.

e 2
C. Bulk modulus (5 points):

1 Calculate the bulk modulus of FCC-Ag using the LJ potential (the same that you have
already used in part 2. of this exercise). Explain how you performed the fit, and visualize
your energy vs. volume datapoints together with the fit.

2 Compare your results with the literature (experimental and/or other theoretical values) and

comment on your findings.
S J

The bulk modulus can be related to a number of thermodynamic quantities, such as the volume
V or the pressure P, through a so-called equation of state. A very well-known one is the third-order
Birch-Murnaghan isothermal equation of state:
2
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where By is the bulk modulus, B(/) its derivative, 1V the equilibrium volume and Ej the equilibrium
energy. Integration of the above expression yields:
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To find By, this is the equation you will need to fit your numerical results to.
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Note: You may reuse the calculations that you performed in the 2. part of this exercise in order to
extract a set of values of the lattice parameters and cell volumes.

Hint for the fitting: Be careful with the fitting tools you choose. Moreover, remember that the
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most important fitting region is the one around the equilibrium lattice constant. Therefore, the volume
range should be chosen with care: a too small volume range can give inaccurate fit results because of
numerical noise, while a too large volume range might not be well described by the Birch-Murnaghan
equation of state.

Exercise 2

This problem deals with the vacancy formation energy, that can be obtained from total energy calcu-
lations, defining the required energy to form a vacancy in a material. In order to estimate the vacancy
formation energy of FCC-Ag, we will study the effects of supercell convergence, relaxation and shortcom-
ings of different empirical potentials.

Note: Before starting this exercise, please run the following command:

pip install --user ase

Problem 2 (25+10 optional points): Calculation of the vacancy formation energy.

The vacancy formation energy in a crystal is defined as the cost of removing an atom and bringing
it at infinity, where it no longer interacts with the other atoms. Using equations:

N -1
Efy=FE;n_1— <N> E; N (1)

where E , is the the vacancy formation energy, N the number of sites in the cell and E; y_; and
E; n the energy of the crystal with V —1 and N atoms respectively.

A. (12.5 points) Compute the vacancy formation energy for FCC-Ag using the LJ potential. In
particular, compute the vacancy formation energy as a function of different supercell sizes.
Use the provided create_supercell.py script to construct the supercell, see further hints
below.

Important: For this part, do not relax the supercell after removing the atom.

1. What is the size (in the x,y,z directions) of the supercell that you used to achieve
convergence? Note: Remember to state the threshold that you used to define
convergence.

2. The cohesive energy is defined as the difference between the bulk energy per atom and
the energy of one isolated atom. For the potentials used, the energy of an isolated atom
is simply zero. What is the ratio of vacancy formation energy to cohesive energy? Is
this what you would expect? Justify your answer.

B. (12.5 points) Repeat the above calculations, but this time, relax the supercells after removing
one atom.

1. Again, what is the size (in the x,y,z directions) of the supercell that you used to achieve
convergence? Is it the same as part in A.? Note: Remember to state the threshold
that you used to define convergence.

2. How does the vacancy formation energy change when compared to the one obtained
without relaxation in part A.?

3. The experimental vacancy formation energy for FCC-Ag is 1.11 eV. How do the values
obtained from parts A. and B. compare to the experimental one? Comment on your
results.

C. (optional 10 points) Compute the vacancy formation energy using the provided EAM
potential. Compare the results with those obtained for the LJ potential and also with
the experimental value. Comment on the accuracy of the different potentials used in your
simulations.




Note: To save time, you may run calculations in part C. either by relaxing the supercells, or
by fixing the supercell geometry. In either case, justify your choice of calculation. Remember
that you still need to converge the size of the supercell.

You will need to copy over the EAM potential file and also take the parameters for the LJ potential
from the previous exercise.

Note: As mentioned in the beginning, LAMMPS allows to create supercells directly in the input file,
by setting the region parameter accordingly. Moreover, one could also delete an atom afterwards, using
the delete_atoms command (https://docs.lammps.org/delete_atoms.html). However, in this tuto-
rial, we provide a script to create the supercells and to manually remove an atom from the created file,
as described in the following paragraph.

How to run the create_supercell.py script

To build the supercells, which you will need to calculate the vacancy formation energies, you will use
the simple create_supercell.py script that we provide. The script relies on the Atomic Simulation
Environment (ASE) (https://wiki.fysik.dtu.dk/ase/)) library, which is a very useful toolkit to create
and manipulate crystal structures.

Use the following command to run the script:

python3 create_supercell.py <element> <lattice_constant> <nx> <ny> <nz>

You need to specify the chemical element, the lattice constant (use the optimized one from the previous
exercise), and the number replicates in each direction, specified by nz, ny, nz.

Either you simply create the supercells by running this command multiple times and change the size ac-
cordingly, or you wrap this in a bash or Python script (you can of course import the underlying function
into your own scripts).

The script directly stores the generated supercell in a . 1mp file: element_supercell <nx>x<ny>x<nz>.lmp.

Hint: Since you are dealing with a cubic system, it is sufficient to only consider the cases nx = ny = nz.
Next, you can simply remove one atom from each supercell, to simulate the vacancy.

How to read the supercell files and run the calculations

You can use the read_data command in your LAMMPS input file, to read the structural information

when running your calculations. This avoids the necessity of manually specifying the supercells. Remove
the following lines that you copied from exercise 1:

# Define the initial lattice structure and size.

atom_style atomic

lattice fcc 4.45 # Initial lattice constant

region box block 0 56 0 5 0 5 # Define box with 5 unit cells per side

# Create the simulation box and populate it with atoms.
create_box 1 box
create_atoms 1 box

# Define atomic mass for the element being simulated.
mass 1 107.8682

and replace them with the following line:

# Read the data file
read_data <file_name_of_your_supercell>
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Exercise 3

In general, studying surfaces is important for many applications, such as catalysis or adhesion. The goal
of this exercise is to demonstrate the calculation of the so-called surface energy (see the definition below).
In reality, many different surface terminations do exist (depending on how one cuts the bulk material).
To guide the analysis and focus on the most likely ones, the estimate of the surface energy is a relevant
quantity.

Note: Before starting this exercise, please run the following command:

pip install --user pymatgen

Problem 3 (20 points): Calculation of the surface energy.

Compute the surface energy of a solid (100) surface of FCC-Ag using the LJ potential. The
surface energy is defined as the energy cost of creating a termination of the bulk crystal along a
crystallographic plane. To compute it, you will need to build a supercell containing a slab (cut)
of the bulk and some vacuum, see Figure [I| for an exemplary visualization. To create these slabs,
we provide a Python script create_slab.py (the usage of the script is described below).

The surface energy can be computed according to the formula:

Esiab — N Epuik @)
2Aslab

FEgqp is the energy of the slab, Ep,; the bulk energy per atom, N number of atoms in the surface

slab and Ag.p is the surface area. The factor 2 comes from the fact that 2 surfaces are created

due to the periodic boundary conditions.

Vslab =

A. (3 points) Briefly comment why you need to converge the thickness of the vacuum and the
slab.

B. (10 points) Comment on your results studying the convergence of both the thickness of the
slab and the thickness of the vacuum. Note: Remember to state the threshold that
you used to define convergence.

C. (4 points) Why are we doing single point calculations? What do you think will happen if we
relax the entire slab (as done for the bulk before)?

D. (3 point) What do you notice? Is the surface energy positive or negative? What does this
mean and how could you explain it?

Bulk structure Vacuum Surface region Bulk region Surface region  Vacuum

Figure 1: Visualization of the FCC bulk structure and a surface slab (with seven layers and two layers
of vacuum).

How to run the create_slab.py script

To run the script, you need to provide the chemical element, the lattice constant (the one you obtained
in exercise ), the number of layers of your material (i.e., repetitions of the unit cell) and the number of
vacuum layers:



python3 script.py <element> <lattice_constant> <num_layers> <num_vacuum_layers>

The number of vacuum layers is internally expressed in terms of the lattice constant, and the slab will
be centered in the resulting supercell, see again Figure [1| for reference. The script uses the pymatgen
(https://pymatgen.org) library, which is another very useful and commonly adopted library to work
with structures and simplifies many analyses.

The script will produce a data file for the resulting slab, which can be directly read by LAMMPS,
as you have already seen in the context of exercise 2.
Exercise 4

Problems 4 and 5 require just a little calculation and are more focused on the theory. Try to be concise
and give your answer as clearly as possible. There is no need to write too much, but it is important to
be exhaustive.

e ~
Problem 4 (5 points): Choice of empirical potentials.

The choice of the empirical potential critically affects the results. In these exercises, we have used
the Lennard-Jones and EAM potentials.

1. For what other types of problems would you use Lennard-Jones potentials? When would
you use EAM instead? When would neither be appropriate?

2. Can you give an example of yet another empirical potential and explain when you would

expect it to perform well?
_ J

You can refer to the LAMMPS documentation for a list of existing potentials and after you pick one,
you can do some literature search.

Exercise 5

e ™
Problem 5 (5 points): Minimum of the Lennard-Jones potential.

Given the simple form of the Lennard-Jones potential, one might wonder why we use computers
to solve what appears to be a pen-and-paper problem. The following exercise will help to clarify
this issue.

1. Calculate the distance where the 12 — 6 form of the Lennard-Jones potential reaches the
minimum value, i.e., express 7o in terms of A and B.

A B
ULJ(T) = E —

= 3)
2. Insert the values of A and B appearing in the LAMMPS input file for the Ag Lennard-Jones

potential and compare the result with your answers of Problem 1. Explain the discrepancies.
_ Y,

Exercise 6

In the final exercise of this lab, we will focus on calculating the structural properties of a more complex
binary alloy. We have previously discussed the importance of these calculations, as they serve as the
initial step in a series of workflows aimed at determining more interesting properties.
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Problem 6 (30 + 5 points): Structural properties of the L1y CuAu binary phase.

In the previous exercises, you worked with single-element structures, which are arguably the
simplest cases. In the rest of this exercise, you will study a more complex material, namely the
L1y CuAu binary phase.

To do this, you will need to construct the empirical potential that you will use. This is typically
done by selecting a mathematical form based on physical and chemical insights (e.g., two-body
versus many-body interactions, covalent vs. ionic bonds) and then determining the parameters to
be used in these expressions. These parameters are usually obtained by fitting them to reproduce
known properties, such as lattice constants.

In this exercise, you will set up from scratch a calculation for a gold-copper alloy (CuAu) in the
L1y structure, by building the input file and the appropriate empirical potentials with the help of
the literature, and the previously created files.

A. (10 points) Firstly, look up in the literature for bulk CuAu in the L1y phase. Then, look for
the Lennard-Jones parameters for the elemental Au and Cu, useful resources for this can be
[1,[3} 141 6] [7), [§], of course not every set of Lennard-Jones parameters will give the same results,
so try to choose wisely. As you can see, the parameters that you find correspond to elemental
materials, for this exercise you need to use a mizing rule]2] to calculate the average Lennard-
Jones parameters. For this exercise you need to use the standard geometric. However, if
you have time, feel free to try any of the rest to experience for yourself if they give different
results.

B. (10 points) Compute the equilibrium lattice parameter (using the LAMMPS optimizer) for
CuAu. What are the initial lattice vectors and cell volume for this compound? What are the
final values after the optimization? How can you explain the large discrepancies from the
experimental /theoretical value (the one you found in the literature)? Also, a pre-fitted EAM
potential for the CuAu alloy is provided to you. Modify your LAMMPS script to use this
potential and recalculate the lattice parameters. How do they compare to those obtained
using the Lennard-Jones potential?

C. (10 points) Consider, the FCC-Au crystal. In the paper [5] an EAM potential particu-
larly suited to describe simple metals and their alloys has been derived. After reading the
referenced paper, answer the following questions about EAM potentials.

1. Is F' a pair-functional or a cluster one or some other type of many-body potential?
Briefly justify your answer. Is it taking into account many-body effects? If yes, explain
how.

2. Give an expression for p; assuming that only nearest neighbors contribute to its value
(think how many neighbors there are in an FCC lattice).

D. (optional 5 points) Show that in a monoatomic crystal with N atoms, Ei,t = NE, where
1
E=F(p)+ 5D 6(rm), (4)
m

based on the expressions in the paper.
& J

In this exercise, you will set up from scratch a calculation for binary Cu-Au alloy, by building the
input file and the appropriate Lennard-Jones potential with the help of the literature.

In problem A, you have to set up a simulation for CuAu in the so-called L1y phase. Begin by finding
out (either through a literature search or using a crystallographic database) what is the structure of this
compound (basis vectors, primitive vectors). Having done that you can start editing your LAMMPS
input file.

Having set up the first part of your simulation input script, where you define the units that you
are going to use throughout your simulation (ALWAYS careful with the units), the periodic boundary

10



conditions, etc. Now it is time to set up the simulation box and position the atoms inside it. Your script
should look like this:

region box block xlo xhi ylo yhi ylo yhi
create_box <num_types> box

# Define atomic positions for L1_0 CuAu
create_atoms 1 single X Y Z
create_atoms 2 single X Y Z

You can obtain all this information from the literature on the specific material phase you are trying
to simulate. Next, you need to edit the empirical potential section of the file. If you are using the 12-6
LJ potential, your input file will contain the following lines:

pair_style <style_of_the_potential> <cutoff_value> -> For metals a value of 8-10 A is
recommended.

pair_coeff <element 1> <element 1> <epsilon> <sigma> -> Make sure they are in the correct
units.

pair_coeff <element 2> <element 2> <epsilon> <sigma>

pair_coeff <element 1> <element 2> <epsilon> <sigma>

The rest of the file can be created using the one from Exercise 1 as a prototype. When replacing the
potential, you have to adapt the values in the section above accordingly.

In Problem C, consider the FCC-Au crystal. Read the following paper[5], especially Sections 2 and 3
(the paper can be downloaded from Moodle). In the embedded-atom method (EAM), the total energy is
expressed as:

E; :ZF(pi)Jqub(mj) (5)

i>j
where ¢(r;;) is a two-body potential between atoms ¢ and j, r;; is the distance between atoms ¢ and
J, and F(p;) is the embedding energy that depends on the quantity:

pi=_ f(rij) (6)
J#i
where f(r;;) represents the electron density at atom i due to all other atoms j. (This is where the
term ”"embedding” in the embedded-atom method comes from.) In the paper, you will find an analytic
formula for the density function f(r) (Eq. 4), as well as for the embedding function F' (Eq. 6).
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