

MSE-433

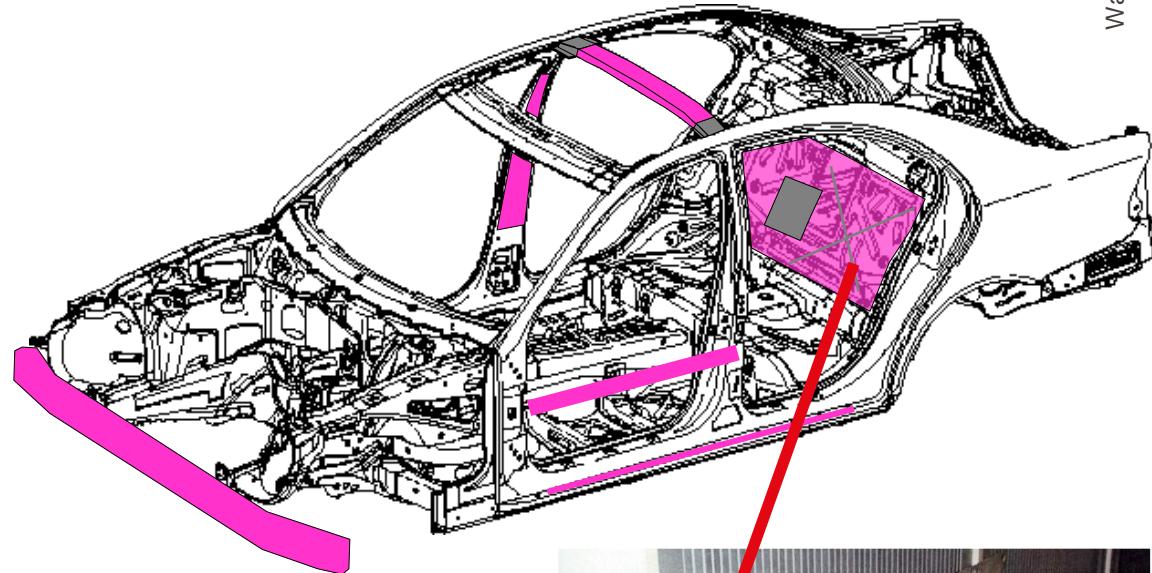
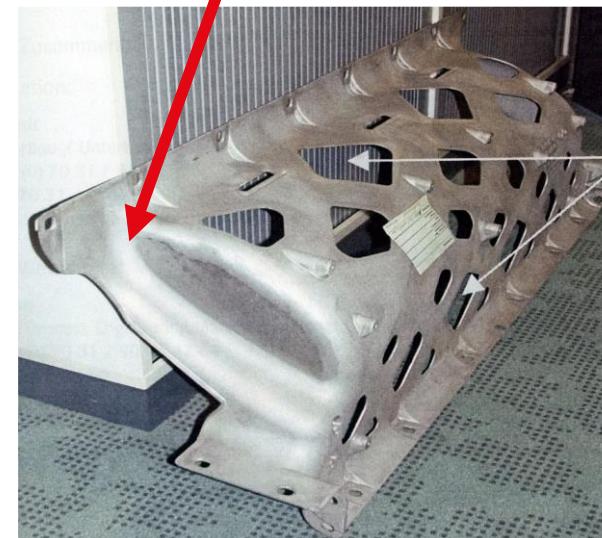
Cost modelling tool for sustainable innovation

Dr. Martyn D. Wakeman
martyn.wakeman@epfl.ch

A simple cost model to try out...

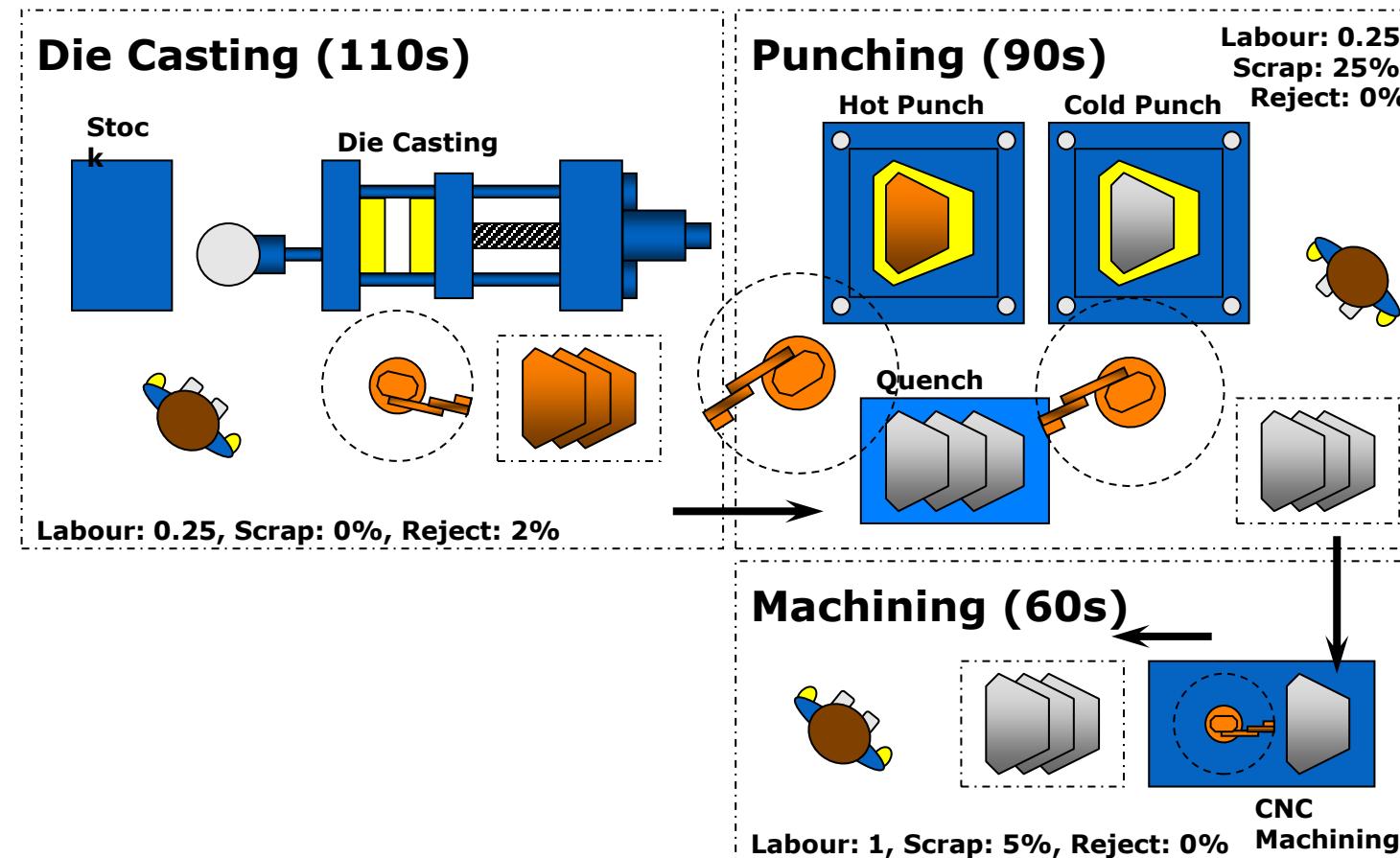
- See Template Provided (excel file can be opened click on the table below)

Simple technical cost model	Process Totals	Die casting	Punching	Machining
Process Goals				
Material 1 mass per part (kg)	2.2			
Material 2 mass per part (kg)				
Target production rate (p/yr)	120,000			
Production duration (yrs)	5			
Dashboard				
Hours per shift (hrs/d/sh)	7.3			
Days per year (d/yr)	220			
Available shift operational time at 100% efficiency (hr/yr/shift)		1,606	1,606	1,606
Time efficiency (.)		80%	80%	80%
Available shift operational time (hr/yr/shift)		1,285	1,285	1,285
Cycle time (s/p)		110	90	60
Available shift production rate (p/yr/sh)		42,048	51,392	77,088
Required production rate OUT (p/yr)	120,000	120,000	120,000	120,000
Reject (.)		5%	0%	2%
Actual production rate IN (p/yr)		125,654	120,000	122,449
Single shift utilisation (.)		2.99	2.33	1.59
No of shifts required (sh)	3	3	3	2
Max no of shifts (sh)	3	3	3	3
No of shifts employed (sh)		3	3	2
Available production rate (p/yr)		126,144	154,176	154,176
Actual utilisation rate (.) MUST BE < 1	1.00	1.00	0.78	0.79
Available operational time (hrs/yr)		4,818	4,818	3,212
Actual operational time (hrs/yr)		4,799	3,750	2,551
Dedicated / Utilised		dedicated	dedicated	dedicated
Effective utilisation (.)		1.00	1.00	1.00

Functional unit:**Curved structural panel**

- typical of BIW, rear bulkhead
- does not need to pass through E-coat process (but could)
- temperature capability if needed
- magnesium benchmark
- detailed sensitivity studies



- Rear Structural Bulkhead
 - Steel 5.8kg
 - Magnesium 2.2kg
 - SMC 2.5kg
 - GF/PA GMT 2.4kg
 - GF NCF/HP-RTM 2.3kg
 - CF NCF/HP-RTM 1.8kg (1.2kg)

Aluminum?

Example process

- Magnesium Die Casting

- Production Dashboard

Material mass per part (kg)

Target production rate (p/yr)

Production duration (yrs)

Actual operational time (hrs/yr)

Effective utilisation (.) = if a=dedicated then 1 else if a=utilised then b

└─ Dedicated / Utilised

└─ Actual utilisation (.)

No. of direct labour (pns)

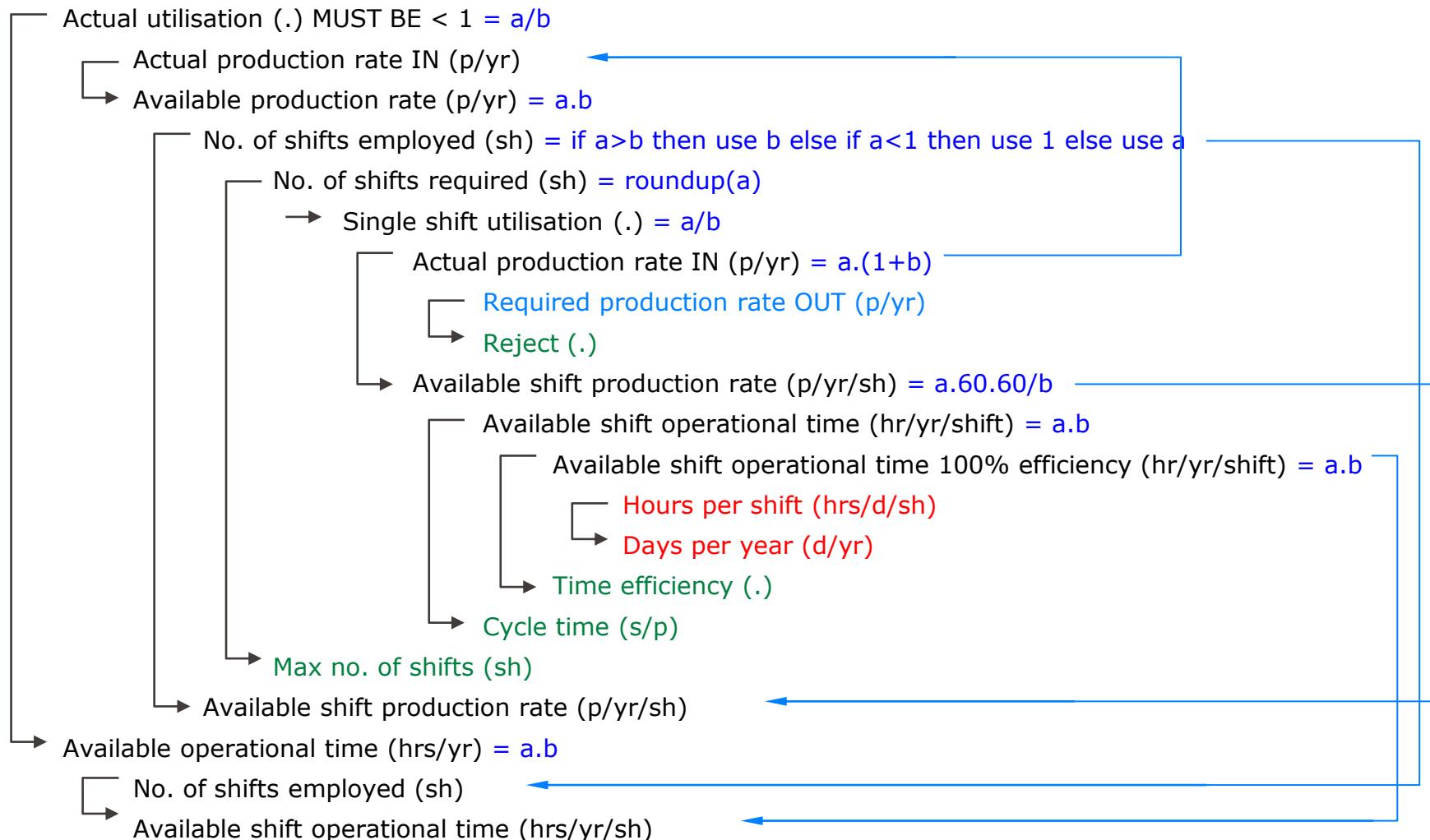
Key

Data valid for entire process

Data valid for an activity / machine

Value from downstream activity

Calculated value = formula e.g. a/b


└─ value a

└─ value b

Value calculated elsewhere

Production Dashboard

- Actual operational time (hrs/yr) = $a.b$

■ Total Production Cost

Total Production Cost (€/p) = a+b+c+d+e+f+g

■ Material Cost

$$\text{Material value IN (€/p)} = a/b$$

$$\square \text{Annual material cost IN (€/yr)} = a.b$$

$$\square \text{Material cost (€/kg)}$$

$$\rightarrow \text{Material mass IN per year (kg/yr)} = a.b$$

$$\square \text{Actual production rate IN (p/yr)}$$

$$\rightarrow \text{Material mass per part IN (kg/p)} = a.(1+b)$$

$$\square \text{Material mass per part OUT (kg/p)}$$

$$\rightarrow \text{Scrap (.)}$$

$$\rightarrow \text{Target production rate (p/yr)}$$

Equipment Cost Calculation

■ Equipment Cost

Machine depreciation (€/p) = a/b

Process depreciation cost (€/yr) = $a \cdot b$

Annual depreciation cost (€/yr) = a/b

Equipment capital cost (€)

Depreciation time (yrs) = if $a=$ utilised then b else c

→ Dedicated / Utilised

→ Time until replacement (yrs)

→ Production duration (yrs)

→ Effective utilisation (.)

→ Target Production rate (p/yr)

- Tooling Cost

$$\text{Tool cost } (\text{€/p}) = a/b$$

$$\text{Annual tool cost } (\text{€/yr}) = a/b$$

$$\text{Total tool cost } (\text{€}) = a.b$$

Tool cost (€/tl)

$$\rightarrow \text{No. of tools (tls)} = \text{roundup}(a/b)$$

$$\text{Total no of shots in process (shts)} = a.b$$

Actual production rate IN (p/yr)

Production duration (yrs)

Tool life in shots (shts)

Production duration (yrs)

Target production rate (p/yr)

Plant Operation Cost Calculation

■ Plant Operation Cost

Plant operating cost (€/p) = a/b

└ Annual plant operating cost (€/yr) = $a \cdot b$

└ Full plant operating cost (€/yr) = $a \cdot b$

└ **Plant operating cost (€/m²/yr)**

└ **Plant area (m²)**

└ Effective utilisation (.)

└ Target production rate (p/yr)

Energy Cost Calculation

- Energy Cost

$$\text{Energy cost (€/p)} = a/b$$

$$\text{Annual energy cost (€/yr)} = a.b$$


$$\text{Energy cost (€/hr)} = a.b$$

$$\text{Energy cost (€/kWh)}$$

Machine power (kW)

Actual operational time (hrs/yr)

Target production rate (p/yr)

Labor Cost Calculation

■ Labor cost (€/p) = a+b

 Direct labor cost (€/p) = a.b

 Direct labor cost per person (€/p/pn) = a/b

 Annual direct labor cost (€/yr) = a.b

 Direct labor cost per person (€/hr)

 Actual operational time (hrs/yr)

 Target production rate (p/yr)

 No. of direct persons (pns)

 Indirect labor cost (€/p) = a.b

 Indirect labor cost per person (€/p/pn) = a/b

 Annual direct labor cost (€/yr) = a.b

 Indirect labor cost per person (€/hr)

 Actual operational time (hrs/yr)

 Target production rate (p/yr)

 No. of indirect persons (pns) = a.b

 Direct / Indirect labor ratio (.)

 No. of direct labor persons (pns)

Consumable Cost Calculation

▪ Consumable Cost

$$\text{Consumables cost (€/p)} = a.b$$

└ No. of direct labour persons (pns)

→ Consumables cost per person (€/p/pn) = a/b

└ Annual consumables cost (€/yr) = a.b

Consumables cost per direct labour person (€/hr)

 └ Actual operational time (hrs/yr)

 └ Target production rate (p/yr)