


For which field direction do you expect the higher lying  $M(H)$  curve?

- A.  $H_1$
- B.  $H_2$



The field orientation indicated by  $H_1$  results in the higher lying magnetization curve assuming that the shape anisotropy provides the dominant anisotropy energy. The demagnetization tensor component acting along the long axis is smaller than the ones for the transversal directions. Magnetization  $M$  along the  $H_1$  direction results hence in a smaller magnetostatic energy, compared to  $H_2$  direction(s).  
 $H_1$  can be considered as being an easy axis. Consistently, the area between the hysteresis curve and the y-axis ( $M$ -axis) should be smaller when  $H$  is applied collinear to the easy axis compared to the other orientations.

For which of the scenarios do you expect the largest energy product?

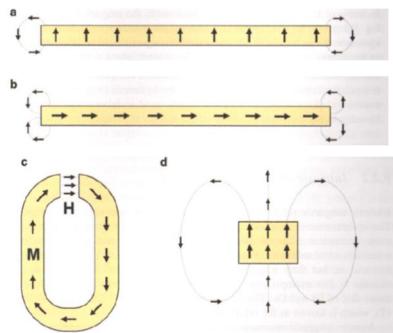
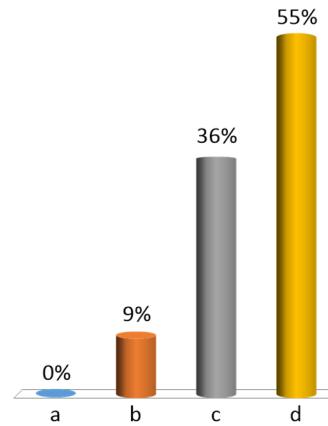




Fig. 9.3 Permanent magnetism and magnet shape: (a) thin film with perpendicular magnetization, (b) thin film with in-plane magnetization, (c) horseshoe-like flux closure geometry, and (d)

- A. a
- B. b
- C. c
- D. d

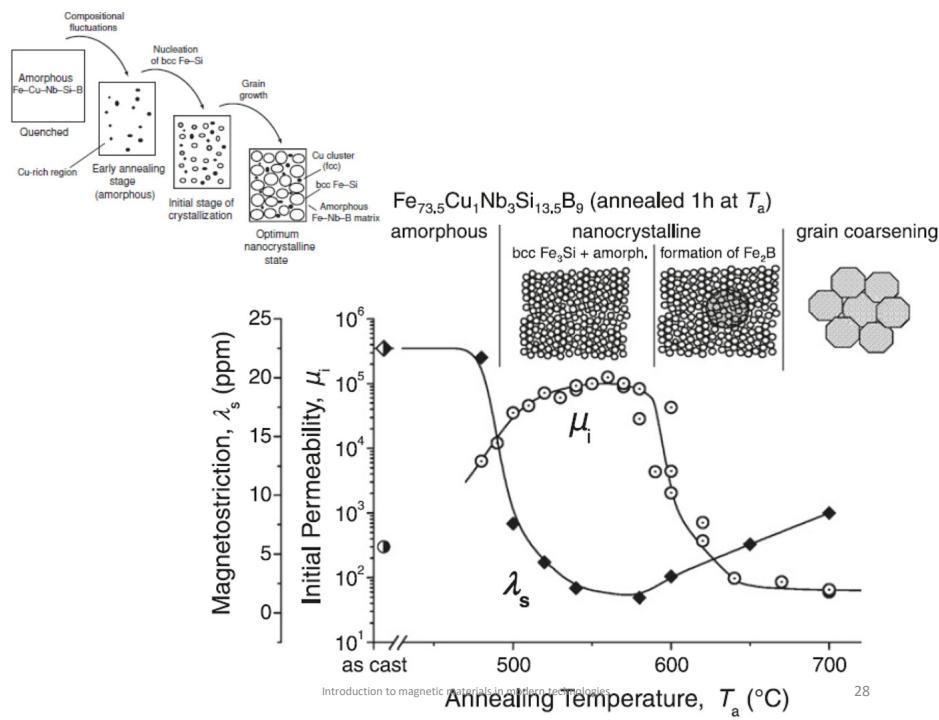


Introduction to magnetic materials in modern technologies


23

The energy product (BH) reflects the energy density provided by a (hard, permanent) magnet. The figure-of-merit maximum BH-product, i.e.,  $(BH)_{max}$  was defined in the 2nd quadrant of the  $B(H_{int})$  curve. As field lines B must close in space a large (BH) in the 2nd quadrant means also a large (but sometimes distributed) magnetic field density B in the space surrounding the magnet. In scenarios a and b there are only few field lines leaving the magnet, hence the energy density in the surrounding space is small. In c the density of field lines is locally high in the gap but the volume to harvest this field density in an application is very small. Scenario d is the "good compromise" for a magnet's shape which gives rise to a large energy product to be exploited outside the magnet.

Introduction to magnetic materials in modern technologies


24

The graph shows the permeability of a compound consisting of  $\text{Fe}_{73.5}\text{Si}_{13.5}\text{B}_9\text{Nb}_3\text{Cu}_1$ . The material is amorphous in the as-cast state. Find arguments why the permeability varies as a function of annealing temperature. Can you explain the increase and decrease of  $\mu$ ?



Introduction to magnetic materials in modern technologies

27



Introduction to magnetic materials in modern technologies

28

The complete answer can be motivated by the additional graph shown on page 4. The as-casted material is on the one hand still heterogenous and on the other has a large magnetostrictive coefficient. The first aspect means that domain walls might get trapped in defects such that a large( $r$ ) field is needed to magnetize the material coming from zero field. Close to zero field the initial permeability  $u_i = M/H$  is defined. The second aspect gives rise to (local) magnetic anisotropies in the material whenever there is a stress field or strain. Arbitrarily oriented anisotropies reduce a magnetic permeability as well assuming that  $H$  is not applied along the specific/local easy axis.

With moderate annealing the amorphous material becomes more homogeneous and the magnetostrictive coefficient reduces as well.

The impact of both aspect diminishes and the soft-magnetic properties improve. Annealing at too high temperatures lead to a growing diameter of crystallites such that magnetocrystalline anisotropies reduce the softness, particularly as energy barriers scale with  $K_u \times$  volume of a nanocrystal.