

FE modeling of fracture mechanics

Computational Solid Mechanics Laboratory

lsmms.epfl.ch

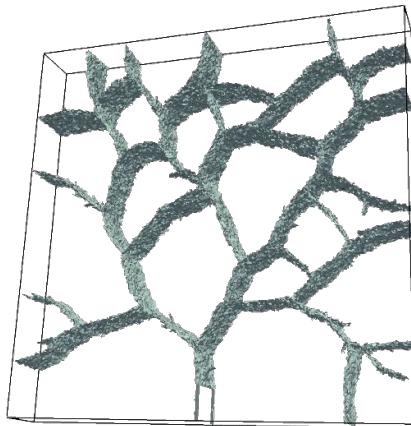
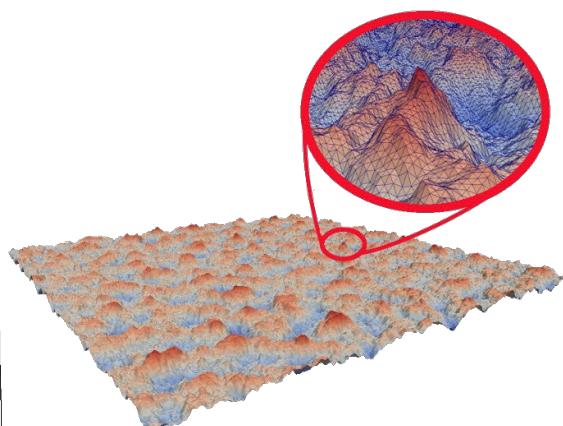
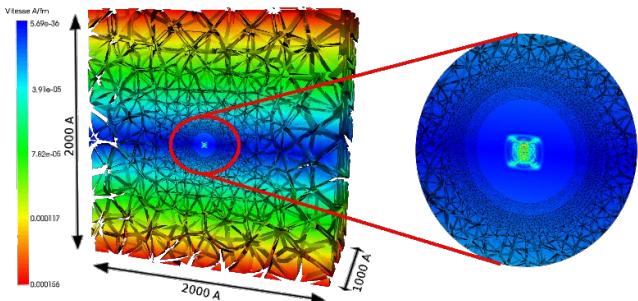
Director: J.F. Molinari

Affiliated with

ENAC (Civil Engineering)

and STI (Materials Science) schools at EPFL

- Mechanics of materials and structures
- Interdisciplinary research (civil engineering, mechanics, materials science, geoengineering and geophysics, scientific computing, applied mathematics)
- Theory and simulations (and experiments through collaborations)
- Alumni LSMS – LSMS - EPFL
- Two main areas: damage mechanics and tribology across scales

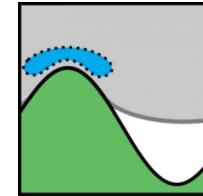


- Track record of development of novel numerical methods and open-source software (extensive V&V; all on GitLab; demonstrated HPC capabilities)

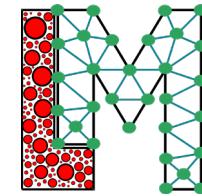
- Akantu

- Cracklet

- Tamaas



- Libmultiscale



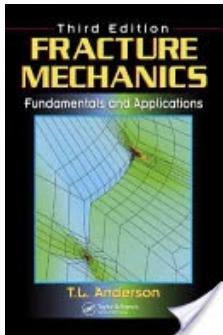
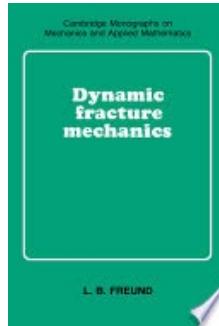
- Open-source software for granular materials, ex **LAMMPS**
- Two in-house codes examples:
 - Akantu: general purpose FE software (statics and dynamics, contact detection, cohesive elements, non-local continuum damage, phase-field fracture)
 - Cracklet: spectral boundary element code for elastodynamics of cracks and sliding friction (Geubelle and Rice 1995; Breitefeld and Geubelle 1998); very fast (discretization of interface only; semi-infinite elastic bodies in contact)

=, WOULD YOU BE INTERESTED IN SOME ... =

?

Part 1: Numerical methods for modeling fracture of materials and structures

- Brief recap of LEFM
- FEM approaches for fracture mechanics
- Discrete approach : cohesive zone approach
- Non-local continuum damage and phase-field approach



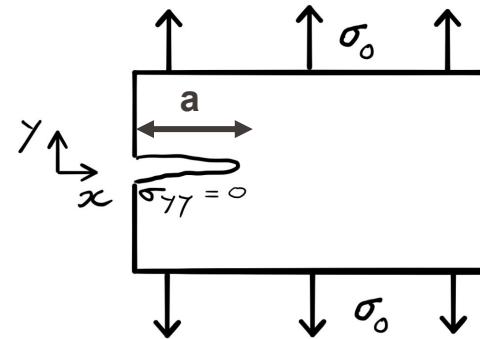
Not a class on fracture mechanics

Further reading: Anderson's or Freund's books

Defects exist in materials and structures (Inglis 1919)

Notion of damage tolerance: defects exist, will they propagate?

Mode I crack (within LEFM)



Stress drop on crack faces (zero stress)

⇒ Stress singularity ($1/r^{1/2}$) at crack tip

Stress intensity factor: $K_I \propto \sigma_0 \sqrt{a}$

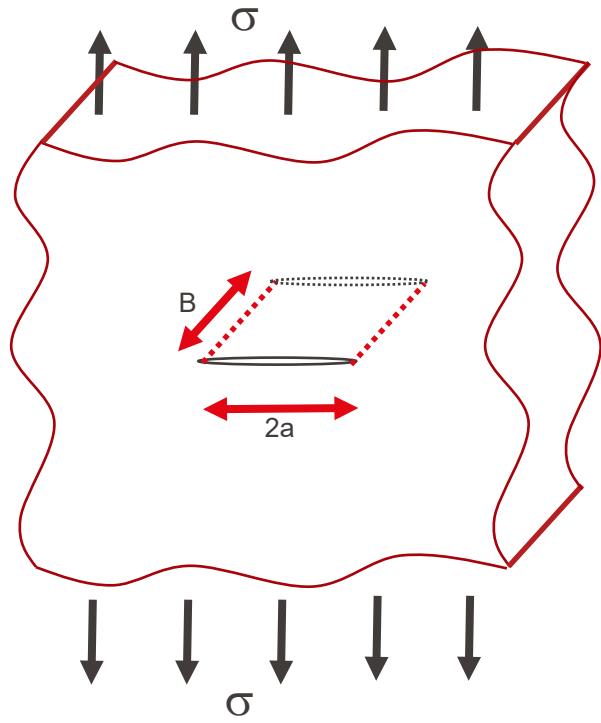
$$\text{Energy balance: } G = G_c \quad G = \frac{K_I^2}{E}$$

Griffith's energy criterion; global approach

Plate under far field load, through crack (1920)



Alan Arnold Griffith



Critical point for propagation of a crack

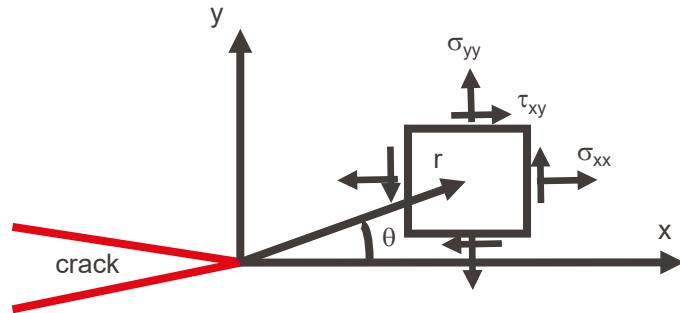
$$\frac{dE}{dA} = \frac{dE_{pot}}{dA} + \frac{dW_S}{dA} \leq 0$$

$$E_{pot} = E_{pot0} - \pi \frac{\sigma^2 a^2 B}{E}$$

$$W_S = 4aB\gamma_S = 2A\gamma_S$$

$$\boxed{\sigma_f = \sqrt{\frac{2E\gamma_s}{\pi a}}}$$

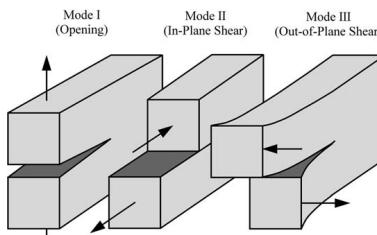
Local approach



Stress intensity factor (depends on geometry and load)

$$\sigma_{ij} = \left(\frac{K}{\sqrt{2\pi r}} \right) f_{ij}(\theta) + \sum_{m=0}^{\infty} A_m r^{\frac{m}{2}} g_{ij}^{(m)}(\theta)$$

3 modes of rupture
 Mode I (opening)
 Mode II (in-plane shear)
 Mode III (out-of-plane shear)
 (image from Anderson)



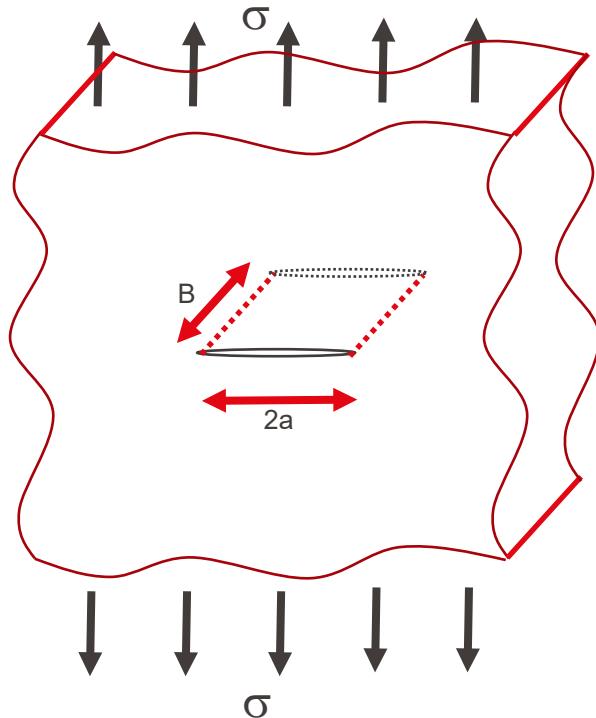
\exists analytical solutions:
 Westgaard 1939, Irwin 1957,
 Sneddon 1946, Williams 1957

Limit $r \rightarrow 0$, leading term is in $\frac{1}{\sqrt{r}}$
 Stress singularity at crack tip !

$f_{ij}^I(\theta)$, $f_{ij}^{II}(\theta)$, and $f_{ij}^{III}(\theta)$ are known adimensional functions of θ , and are independent of geometry

Known analytical solution for through crack: $K_I = \sigma \sqrt{\pi a}$

Equivalence between local and global approach



Energy release rate:

$$G = -\frac{dE_{pot}}{dA} = \frac{\square^2 a}{E}$$

Stress intensity factor:

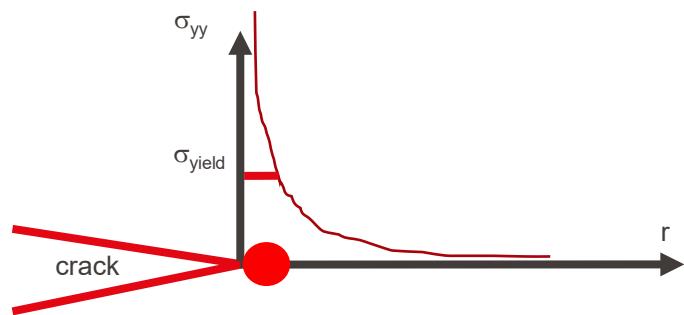
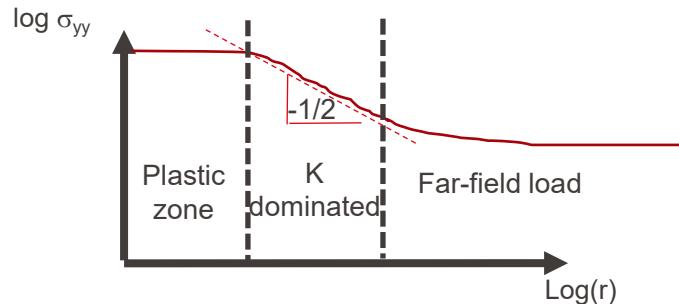
$$K_I = \sigma \sqrt{\pi a}$$

$$G = \frac{K_I^2}{E}$$

Mixed-mode:

$$G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}$$

Fracture: $G = G_c$



If no K dominated zone (and no separation of scale), then no LEFM, and we enter the realm of finite fracture mechanics

Stress singularity at crack tip, but stresses cannot be infinite

→ Plastic zone must exist

Its size can be estimated in some cases

Example, Rice and Palmer:

$$l_z = \frac{9\pi E G_c}{32(1-\nu^2)\sigma_c^2}$$

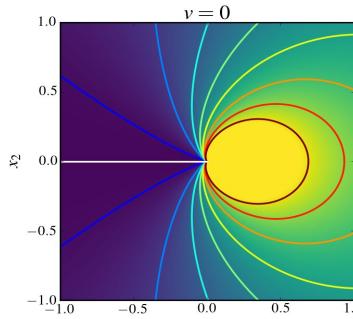
Numerically, non-linear zone added at crack tip (cohesive zone removes singularity)

Mesh size must be smaller than this lengthscale

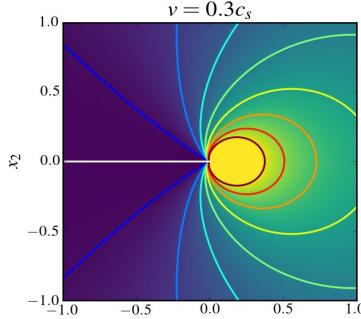
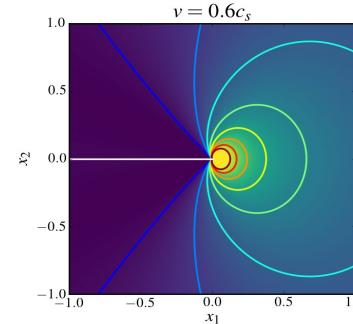
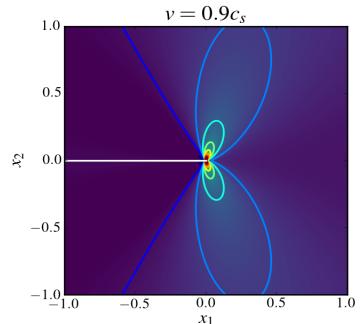
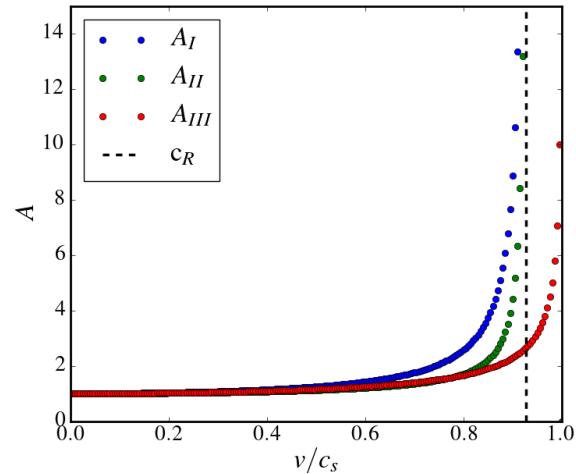
Dynamic crack propagation

Freund 1990, Kostrov and Das 1988, process zone size shrinks with crack speed

$$G(a, v) = \frac{1-v^2}{E} [A_I(v)K_I^2 + A_{II}(v)K_{II}^2] + \frac{1}{2\mu} A_{III}(v)K_{III}^2$$



Hoop
stress



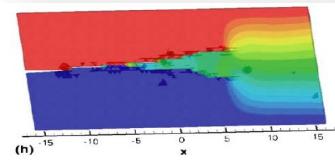
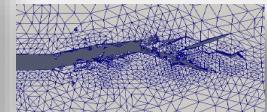
Part 1: Numerical methods for modeling fracture of materials

- Brief recap of LEFM
- **FEM approaches for fracture**
- Discrete approach : cohesive zone approach
- Non-local continuum damage and phase-field approach

A wide choice of numerical methods for fracture mechanics (beyond mesh erosion...)

Cohesive element approach (Camacho, Ortiz, Pandolfi, Needleman ...)

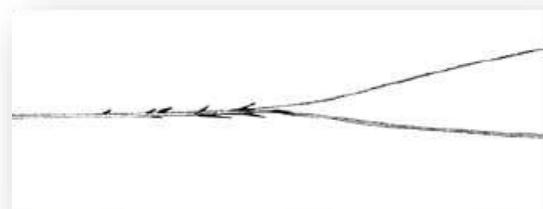
- + Crack description closest to frac. mech.
- + Ability to handle contact
- Mesh dependency (if no remeshing)



Zhou, Molinari and Shioya, Eng. Fract. Mech. (2005)

X-FEM (Belytschko, Moës, ...)

- + No mesh dependency
- Need ad hoc criterion for crack branching

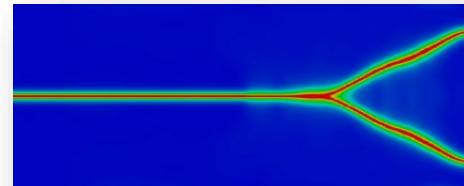


Song, Wang and Belytschko, Comput. Mech. (2008)

A wide choice of numerical methods for fracture mechanics

Phase field (*Karma, Bourdin, Marigo, Miehe, de Lorenzis...*)

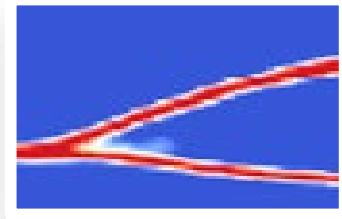
- + Crack path convergence
- Computational cost



Borden, et al., CMAME. (2012)

Classical Non-local continuum damage (*Bazant, Pijaudier-Cabot, Jirasek ...*)

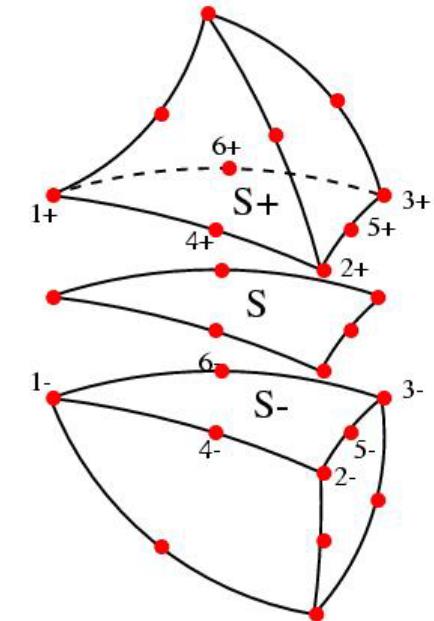
- + Crack path convergence
- Computational cost



+ Eigenerosion (*Ortiz Pandolfi*), **TLS** (*Moës*), **Peridynamics**, **MPM**, **CLIP...**

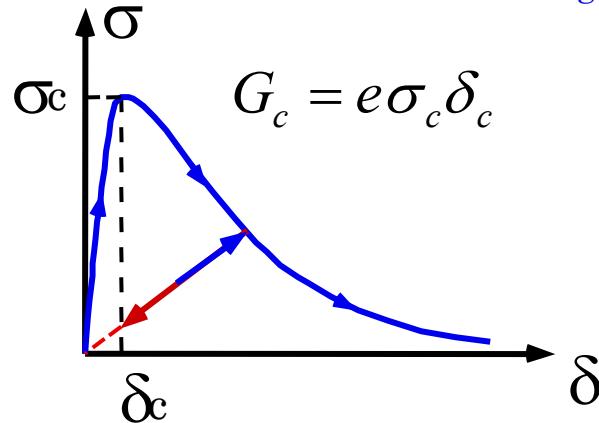
Discrete approach: cohesive zone model

- Cohesive zone model, Dugdale Barrenblat 1960's
- Cohesive element: Camacho Ortiz (2D) 1996, Pandolfi Ortiz (3D) 1999, Xu Needleman 1993, Rose et.al., etc...
- Cohesive elements glue two neighboring elements
Cracks created within ordinary elements boundaries
(Mesh dependency)
Computationally expensive ($h_{FE} < l_z < W$)
- Cracks explicitly described by cohesive elements
Easy to handle branching, fragmentation
Can incorporate contact
- The opening/closing properties of cohesive elements are governed by a cohesive law



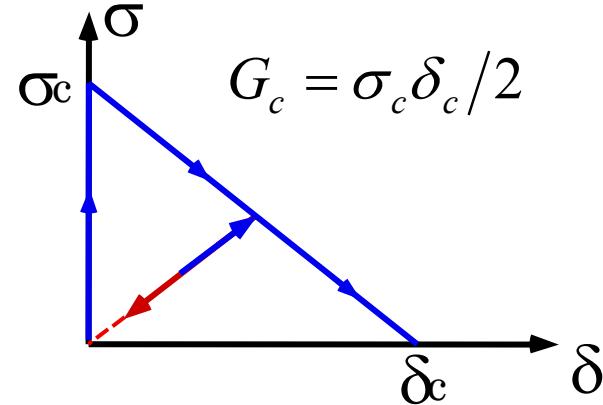
Two classical cohesive laws

- Opening : $d\delta > 0$
- Closing : $d\delta < 0$



Intrinsic exponential
irreversible model
(Smith-Ferrante Law)

Physically reasonable but modifies
structural response

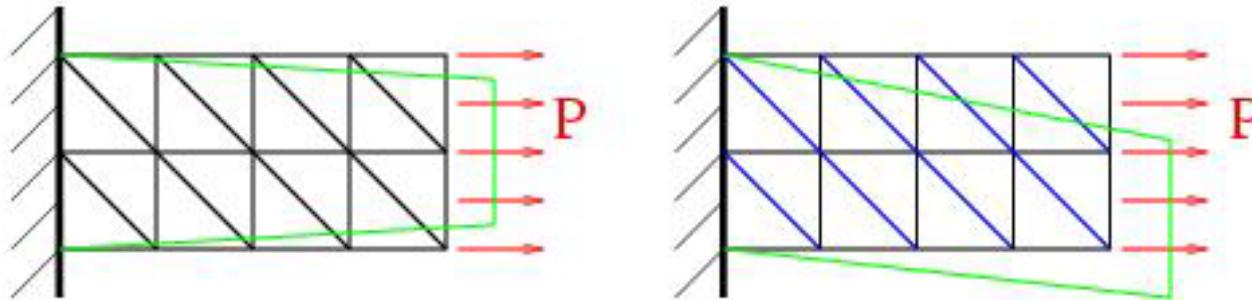


Extrinsic linear
irreversible model
(Camacho Ortiz)

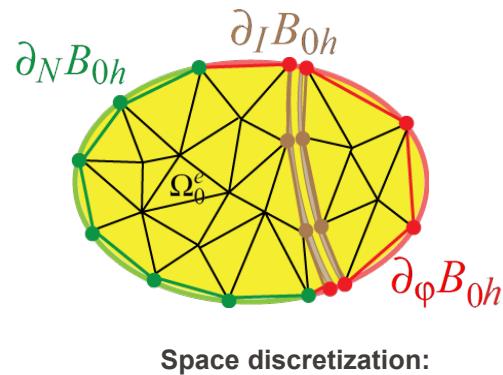
Does not modify elastic properties
Needs to be introduced dynamically

Why extrinsic is often a better choice

- Introduce a cohesive element if at a given time the opening forces applied on a facet (adjacent to two elements) is larger than a critical traction
- This is computationally challenging (particularly if mesh partition on parallel computers):
3D dynamic insertion → keep track of facets, edges, duplicated nodes...
- Can create stress perturbations
- But results in computational savings
- And removes “cohesive elements induced” mesh anisotropy

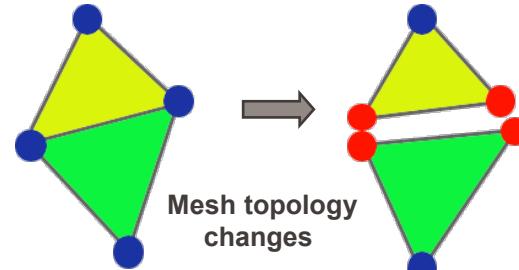


FEM implementation (PW)



$$B_{0h} = \bigcup_{e=0}^N \Omega_0^e$$

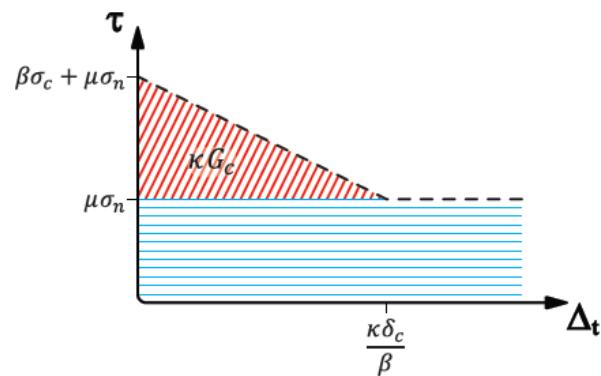
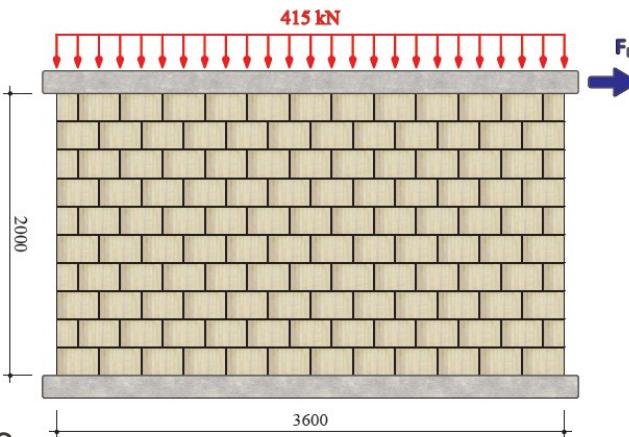
Dynamic insertion of cohesive elements



$$\begin{aligned}
 & \int_{B_{0h}} (\rho_0 \ddot{\varphi}_h \delta\varphi_h + P_h : \nabla_0 \varphi_h \delta\varphi_h) \, dV && \text{Continuum term} \\
 & - \int_{\partial_N B_{0h}} \bar{T} \delta\varphi_h \, dS - \int_{B_{0h}} \rho_0 B \delta\varphi_h \, dV
 \end{aligned}$$

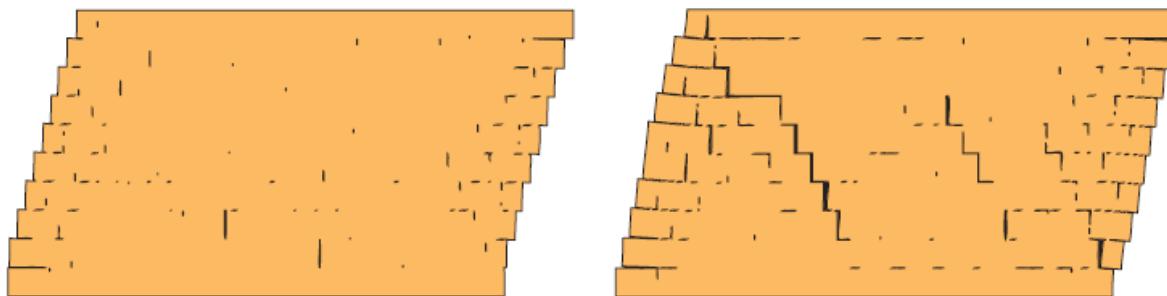
$$\begin{aligned}
 & + \int_{\partial_I B_{0h}} T([\![\varphi_h]\!]) [\![\delta\varphi_h]\!] \, dS = 0 && \text{Cohesive term} \\
 & [\![\bullet]\!] = \bullet^+ - \bullet^- && \text{Jump operator:}
 \end{aligned}$$

Ex: masonry wall subject to seismic load



Snozzi, Molinari, IJNME, 2013

Masonry wall loaded in shear at two loading rates



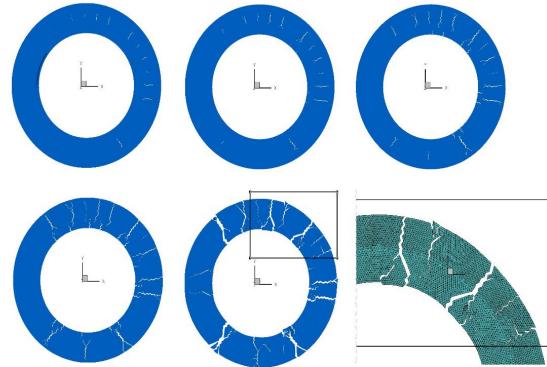
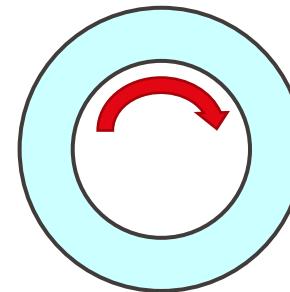
But beware: mesh dependency of crack path

Fragmentation of a rotating brittle ceramic (SiN) ring under centrifugal force

Symmetry: Mesh dependency of fracture paths if no adaptive meshing

Hoop stress maximum at inner radius: cracks initiate there and propagate outward

Strange:



Pathological mesh dependency!

Not only crack paths depend on mesh

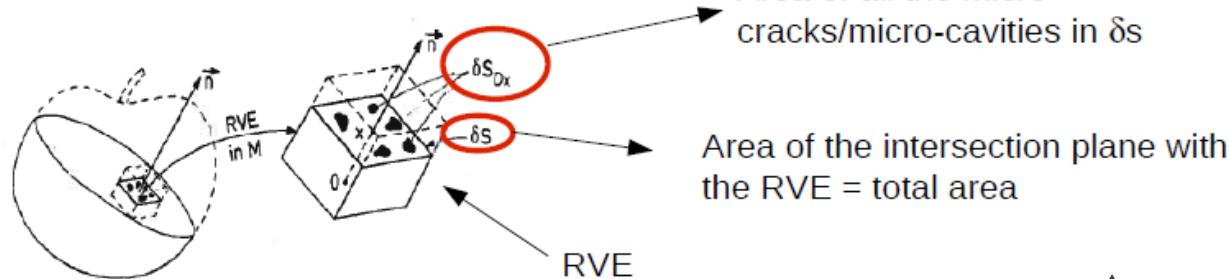
But they initiate in middle of ring (where small elements are perpendicular to load)
(can be fixed: "Weibull" cohesive elements, Zhou Molinari, IJNME, 2004)

Part 1: Numerical methods for modeling dynamic fracture of materials

- Brief recap of LEFM
- Many FEM approaches for dynamic fracture
- Discrete approach : cohesive zone approach
- **Non-local continuum damage and phase-field approach**

Continuum damage mechanics

1D surface damage variable



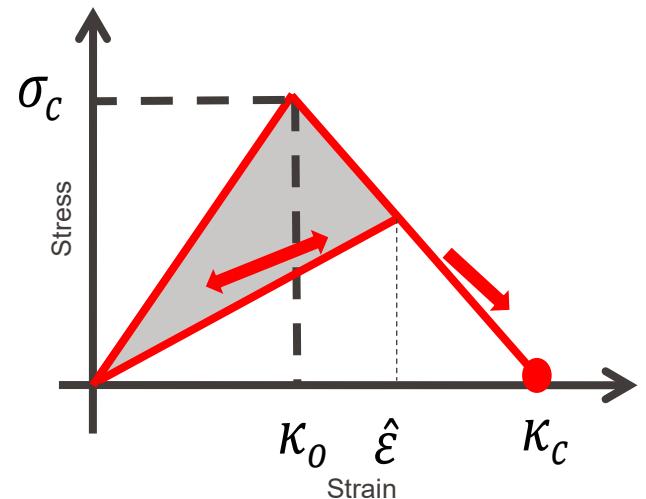
From a course on damage mechanics, J. Lemaître

Definition of continuous damage variable (Kachanov 58):

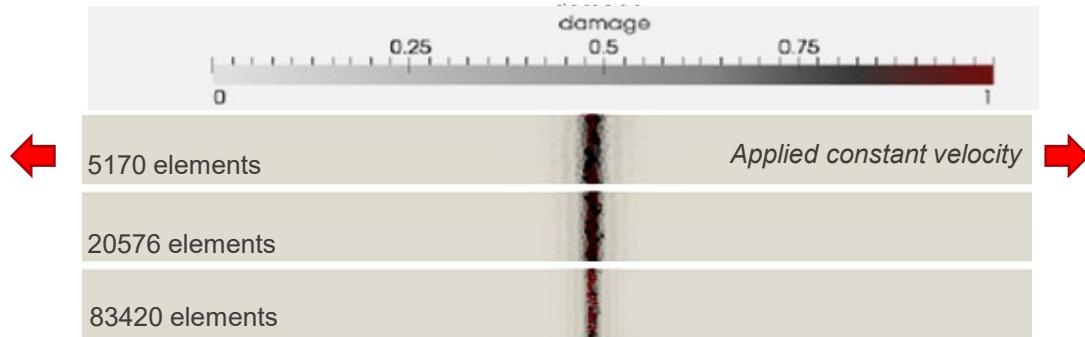
D between 0 and 1

$$\bar{\sigma} = (1 - D) \bar{\bar{E}} : \bar{\varepsilon}$$

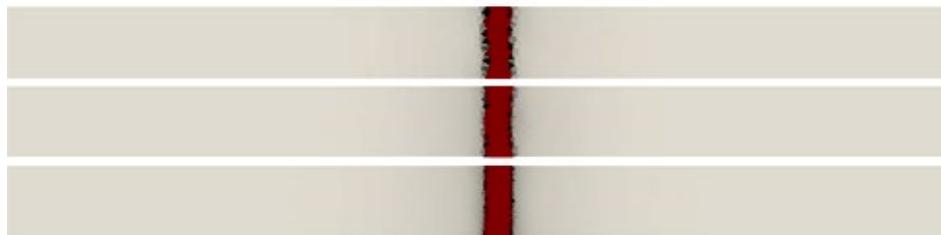
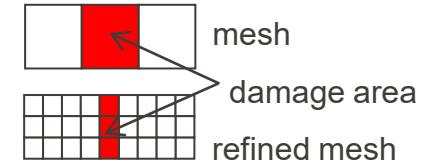
Many variations beyond this scalar definition of D



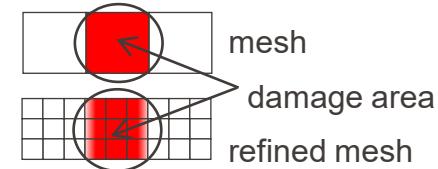
Local versus non-local continuum damage



Several methods to avoid localization
 Gradient, Delay, **Integral type** (for illustration)...
 Requires choice of interaction length scale



III-posed problem:
 equilibrium balance
 becomes elliptic in dynamics

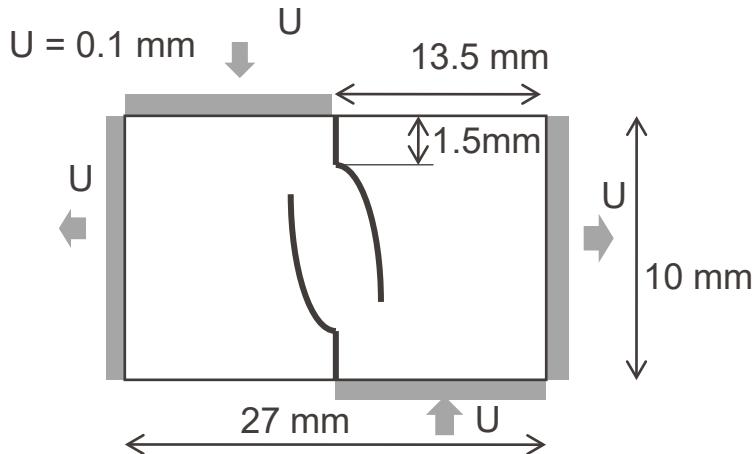
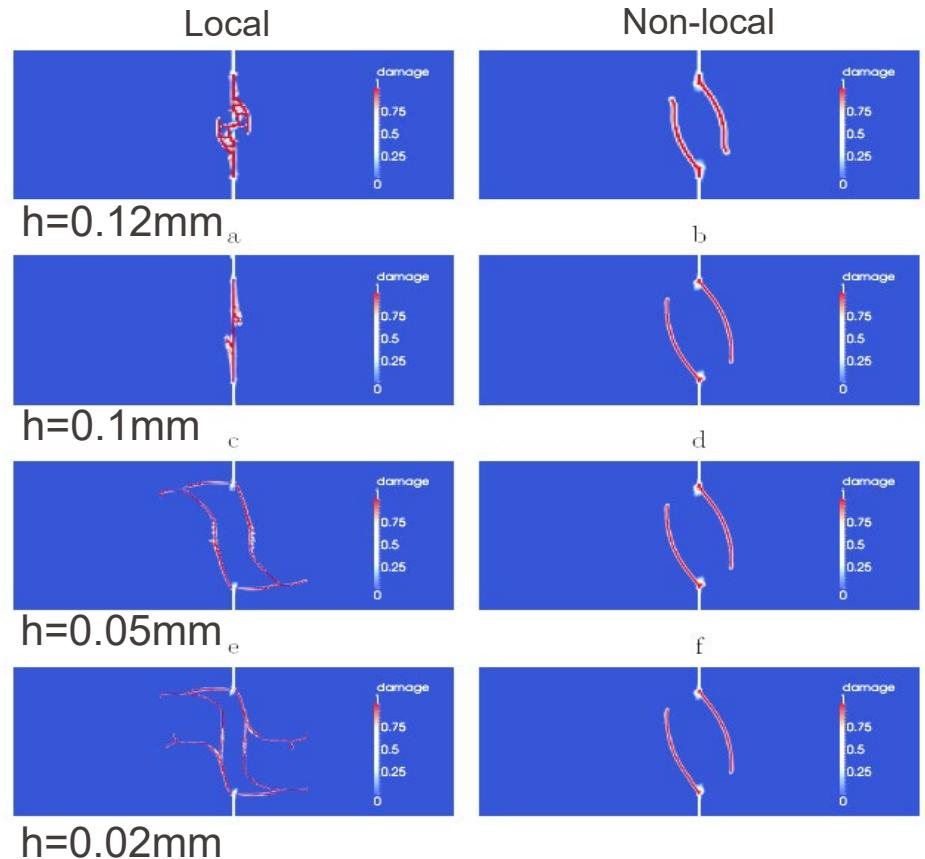


$$\varepsilon_{eq}^{nl}(\vec{x}) = \int_{\Omega} \alpha(\vec{x}, \vec{s}) \varepsilon_{eq}(\vec{s}) d\vec{s}$$

Pijaudier-Cabot and Bazant, J. Eng. Mech. (1987)

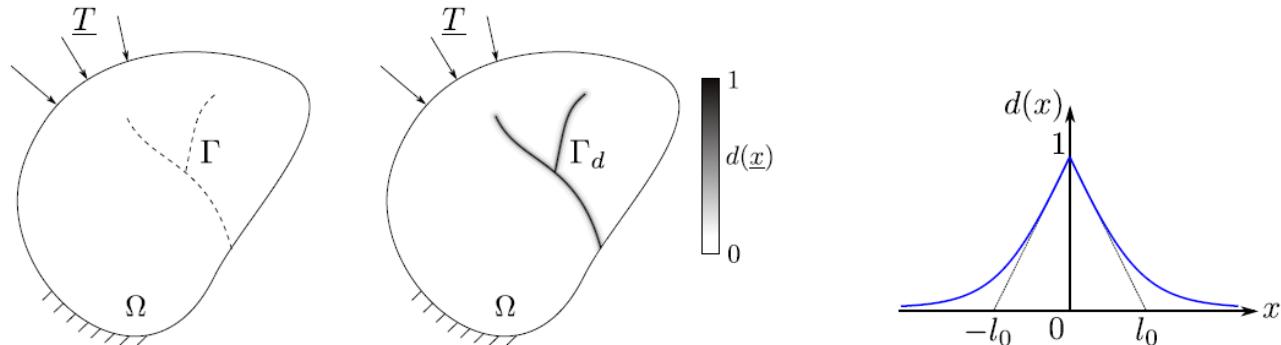
NL damage; mesh convergence

Nooru Mohamed test
Wolff Richard Molinari, IJNME, 2015



Phase-field: variational approach to fracture

The crack discontinuous topology is regularized by a **continuous** phase-field function $d(\underline{x}) \in [0; 1]$ and a length scale l_0



$$l_0^2 \Delta d - d = 0 \quad \Rightarrow \quad \min \Gamma_{l_0}(d) = \int_{\Omega} \left(\frac{d^2}{2l_0} + \frac{l_0}{2} \|\nabla d\|^2 \right) d\Omega$$

Better suited for :

- ▶ complex crack paths : dynamic crack branching, instabilities
- ▶ crack propagation in heterogeneous media
- ▶ multiphysics coupling

Phase-field: variational approach to fracture

Francfort and Marigo; Bourdin, Francfort and Marigo, J of Elasticity, 2008

$$E(\underline{u}, \Gamma) = \int_{\Omega \setminus \Gamma} \psi(\underline{\epsilon}) d\Omega + g_c |\Gamma|$$

The state at t_{n+1} is obtained as :

$$\min E(\underline{u}, \Gamma) \quad \forall \underline{u} \in KA(\Gamma, t_n) \text{ and } \Gamma \supseteq \Gamma_n$$

alleviates some limitations of Griffith theory but is ill-posed
 \Rightarrow regularization of the crack surface with a phase-field

$$\min E(\underline{u}, \Gamma_d) \quad \forall \underline{u} \in KA(\Gamma_d, t_n) \text{ and } \Gamma_d \supseteq \Gamma_{dn}$$

where

$$E(\underline{u}, \Gamma_d) = \int_{\Omega} \psi(\underline{\epsilon}, d) d\Omega + g_c \int_{\Omega} \left(\frac{d^2}{2l_0} + \frac{l_0}{2} \|\nabla d\|^2 \right) d\Omega$$

irreversibility : $\dot{d} \geq 0$

strong link with **damage gradient models**

Phase-field: variational approach to fracture

$d(\underline{x})$ is viewed as a scalar **damage variable**

- elastic energy density $\psi(\underline{\varepsilon}, d)$
- dissipated energy density $w(d) + w_1 l_0^2 \|\nabla d\|^2$ with $w_1 = w(1)$
- irreversible damage $\dot{d} \geq 0$

variational principle which yields :

$$\underline{\sigma}(d) = \partial_{\underline{\varepsilon}} \psi(\underline{\varepsilon}, d)$$

$$\rho \underline{\ddot{u}} = \operatorname{div}(\underline{\sigma}(d)) + \underline{f}$$

$$d = \arg \min_{d \geq 0} \int_{\Omega} \psi(\underline{\varepsilon}, d) d\Omega + \int_{\Omega} (w(d) + w_1 l_0^2 \|\nabla d\|^2) d\Omega$$

Proven convergence in statics to Griffith when $l_0/L \rightarrow 0$

Resolution algorithm : alternate minimization

At fixed u_n , solve for d_{n+1} (constrained optimization for irreversibility)

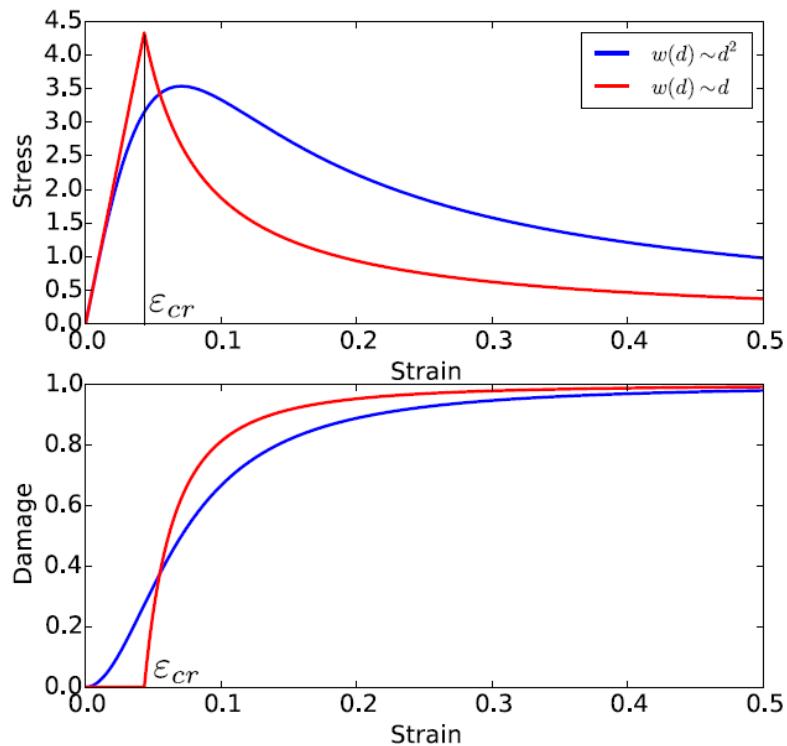
At fixed d_{n+1} , solve for u_{n+1} : elastodynamics problem with degraded stiffness

Phase-field: variational approach to fracture

- ▶ Stiffness degradation function (isotropic)
 - ▶ symmetric $\psi(\underline{\varepsilon}, d) = a(d)\psi(\underline{\varepsilon})$ with $a(d) = (1 - d)^2$
 - ▶ unsymmetric [Lancioni and Carfagni, 2009]
$$\psi(\underline{\varepsilon}, d) = a(d)\psi^+(\underline{\varepsilon}) + \psi^-(\underline{\varepsilon})$$
 with $\psi^+(\underline{\varepsilon}) = \frac{\kappa}{2} \langle \text{tr } \underline{\varepsilon} \rangle_+^2 + \mu \underline{\varepsilon}^d : \underline{\varepsilon}^d$ and
$$\psi^-(\underline{\varepsilon}) = \frac{\kappa}{2} \langle \text{tr } \underline{\varepsilon} \rangle_-^2$$
 - ▶ unsymmetric with positive/negative parts of eigenstrains [Miehe and Lambrecht., 2001]
- ▶ Dissipation function
 - ▶ $w(d) = \frac{g_c}{2l_0} d^2$: most widely used model in phase-field literature
[Miehe, Borden,...]
 - ▶ $w(d) = \frac{3g_c}{8l_0} d$: [Pham et al., 2010]

Phase-field: variational approach to fracture

Response to a 1D homogeneous test (same g_c/l_0)



- presence/absence of a purely elastic phase

Many constitutive modeling choices are possible, we follow [Li et al., 2016]

- elastic strain energy density :

$$\psi(\underline{\underline{\varepsilon}}, d) = (1 - d)^2 \left(\frac{\kappa}{2} \langle \text{tr } \underline{\underline{\varepsilon}} \rangle_+ + \mu \underline{\underline{\varepsilon}}^d : \underline{\underline{\varepsilon}}^d \right) + \frac{\kappa}{2} \langle \text{tr } \underline{\underline{\varepsilon}} \rangle_-$$

- non-local fracture energy :

$$w_{frac}(d, \underline{\nabla} d) = \frac{3G_c}{8l_0} (d + l_0^2 \|\underline{\nabla} d\|^2)$$

Remark : existence of an elastic phase for this model

Numerical resolution using a staggered approach :

- minimization of total energy with respect to u : explicit dynamics
- minimization with respect to d : quadratic function with bound constraints ($d_n \leq d_{n+1} \leq 1$) to enforce damage irreversibility

- Why Akantu ? Why open source ?
- History and structure
- Example of ongoing project exploiting specific features of Akantu (akantu.ch)
- Tutorials

Open Source Finite Elements
Connecting accurate models with high performance computations

Akantu

PRESOLUTION DOWNLOAD TUTORIALS CONTACT

DOWNLOAD DOCUMENTATION GETTING HELP CONTRIBUTE TUTORIALS STEERING COMMITTEE

General considerations on FE software

- Big business: ex. Dassault Systèmes (3,5 billions €)
- **Commercial software** : Ansys, Abaqus, Comsol, ...

Stable, robust, certified : great for industry

Cost, “black box”, slow evolution

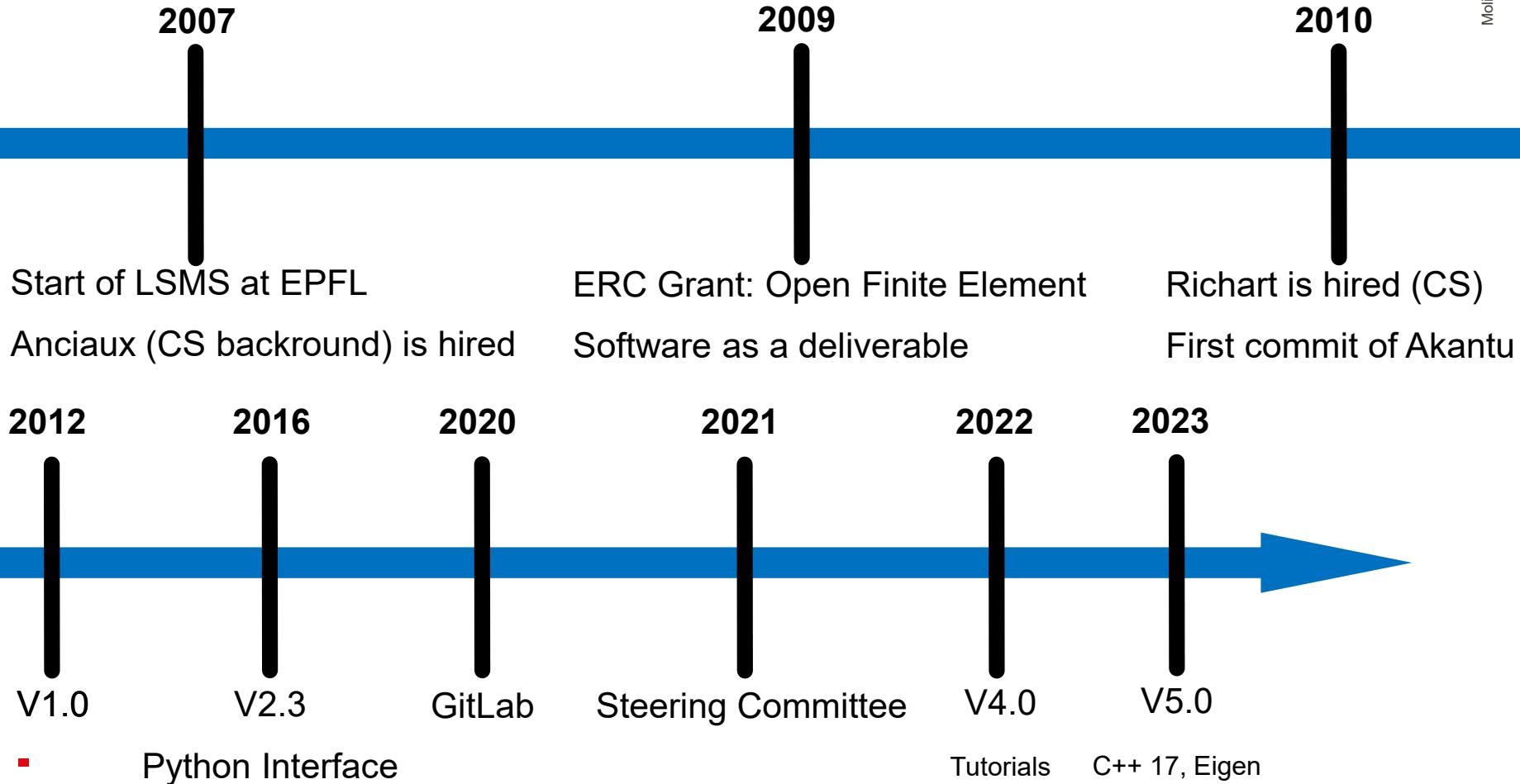
- **Academic software** : agile but confidential, tailored for specific pbs (Ex: Akantu has unique features for contact and damage mechanics)

- **Our philosophy:**

Knowledge creation and transmission for the greater good (tax payer money)

- Open-Source Software development

Timeline of Akantu

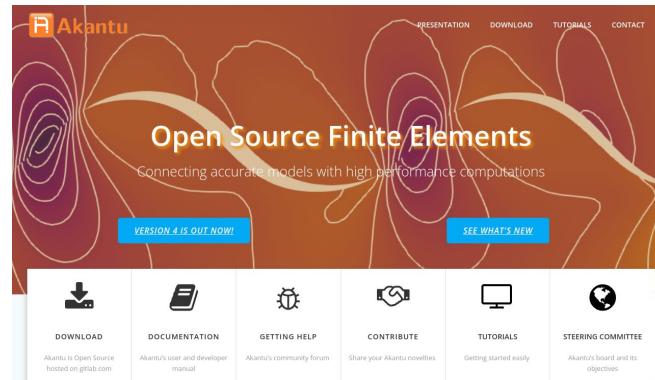


Akantu today

- 13 years of development
- C++ code with a python interface
- High performance parallel computing
- Hosted on GitLab

(continuous integration and delivery
with GitLab tools)

- Full documentation online
- Issues Review and Merge Requests
- Online tutorials on notebooks



- Currently on version 5.0.7
- ~ 110,000 lines of code
- ~ 7,900 commits
- 50+ contributors
- JOSS publication
- <https://akantu.ch>

- Steering committee (since 2021)
 - Organize and prioritize the development of new features
 - Guide strategic code changes for performance and multi-physics
- Nurture the broader Akantu's community by organizing workshops and discussions
- Give personalized support

Committee Members

Prof. Jean-François Molinari Head of the Computational Solid Mechanics Laboratory at EPFL	Prof. Kathryn Beyer Head of the Earthquake Engineering and Structural Dynamics Laboratory at EPFL	Prof. David Kammer Head of the Computational Mechanics of Building Materials Laboratory at ETH	Professor Tobias Schneider Head of the Emergent Complexity in Physical Systems Laboratory at EPFL

Support team

Dr. Guillaume Anciaux Technical Advisor	Dr. Nicolas Richart Technical Advisor	Shad Durussel Community Manager	Roxane Ferry Community Manager

- **Steps for community growth**
 - Better visibility of papers published through Akantu (including paper in JOSS)
 - Code dissemination in the academic community and industry
 - Tutorials and events to connect users
- **Use in a teaching environment**
- **Use in industry**
- **Sustainable funding**
- **Valuation / rewarding of developers and contributors ? (DORA convention)**

Reproducibility in science

Transparency

Efficiency

Transfer of knowledge

Sustainability

Visibility

- **Are you a hard core programmer?**

- Access to source code on gitlab; C++

- **Are you a proficient user ?**

- Interact with code with Python interface (see online tutorials)

- **Or are you more interested in direct applications ?**

- Wait for GUI ? 2024 or 2025
 - Or contact LSMS and we can prepare tailor made application for you
 - Some quick simple examples on streamlit: <https://cas-eth-ser-molinari.streamlit.app/>

Part 3: Applications of Akantu

ASR damage

EPFL Multiscale modeling of damage in hydroelectric dams induced by Alkali-Silica-Reaction

EPFL - LSMS

- Lucas Fourel
- Jean-François Molinari

Swiss Federal

- Office of Energy
- Russell Gunn

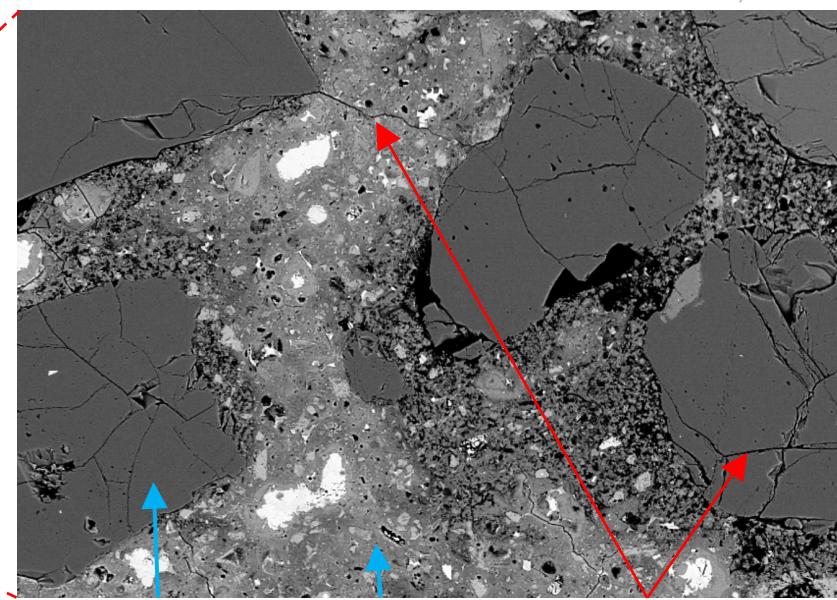
Dam operators

- RELL
- Alpiq

Illsee dam, Valais, Switzerland

Concrete mesostructure

Dunant, 2009



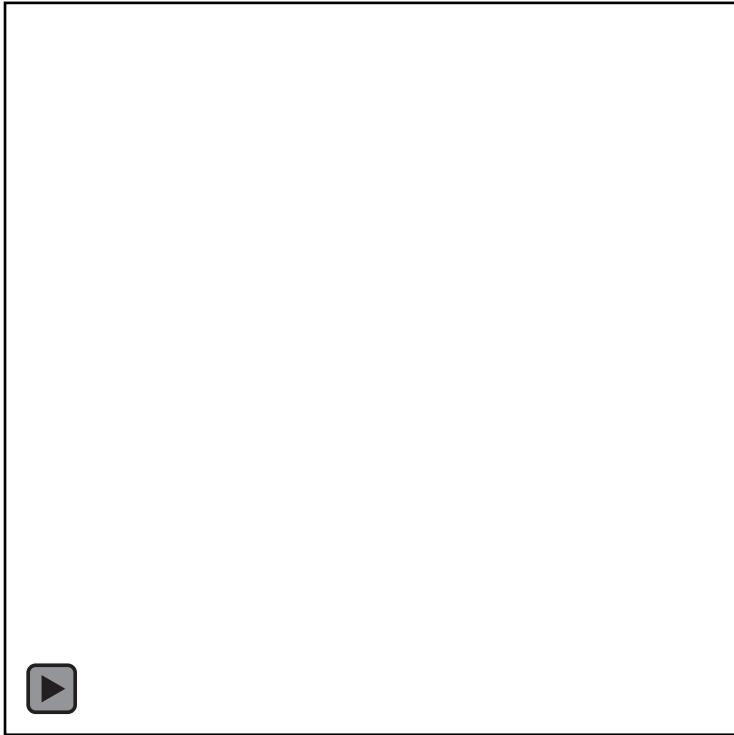
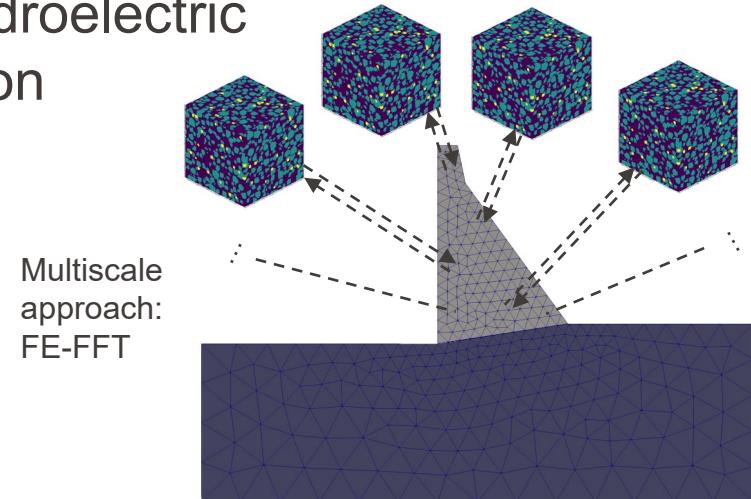
Aggregate

Cement paste

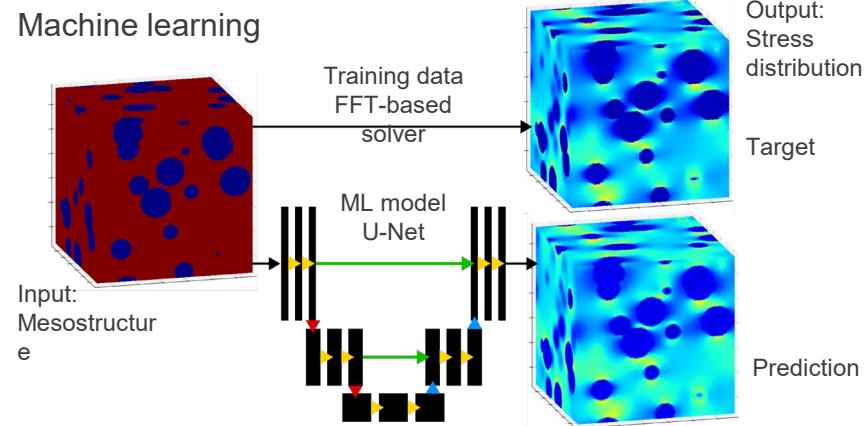
Cracks

EPFL Multiscale modeling of damage in hydroelectric dams induced by Alkali-Silica-Reaction

FFT based solver: chemical swelling + damage



Multiscale approach:
FE-FFT



Machine learning

Output:
Stress
distribution

Target

Prediction