

Mode I crack of length a in a solid with a far-field average stress σ and no work hardening.

First order approximate of plastic zone size with truncation

$$r_y = \frac{1}{2\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2$$

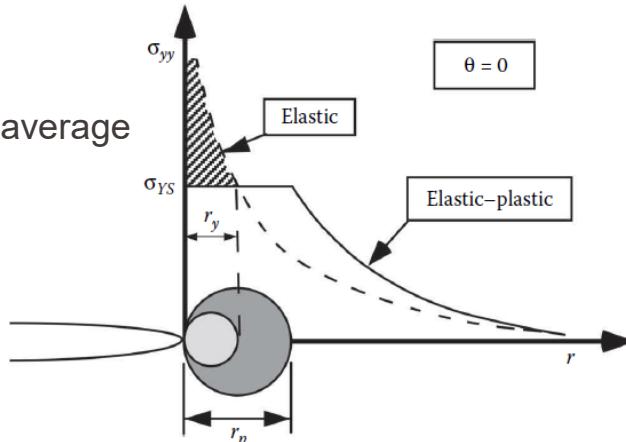


FIGURE 2.29

First-order and second-order estimates of plastic zone size (r_y and r_p , respectively). The cross-hatched area represents the load that must be redistributed, resulting in a larger plastic zone.

Second order approximate of plastic zone size with stress redistribution

$$\sigma_{YS}r_p = \int_0^{r_y} \sigma_{yy} dr = \int_0^{r_y} \frac{K_I}{\sqrt{2\pi r}} dr$$

$$r_p = \frac{1}{\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2$$

From T.L. Anderson, chap2 LEFM

First order approximate of plastic zone size with truncation

$$r_y = \frac{1}{2\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2$$

The reduction in stress in the yield zone must be compensated by an increase in K (small plastic zone so the stresses at the crack tip are controlled by K). In other words, **the specimen should behave as if the crack length has increased on yielding by some distance that we shall call Δa .**

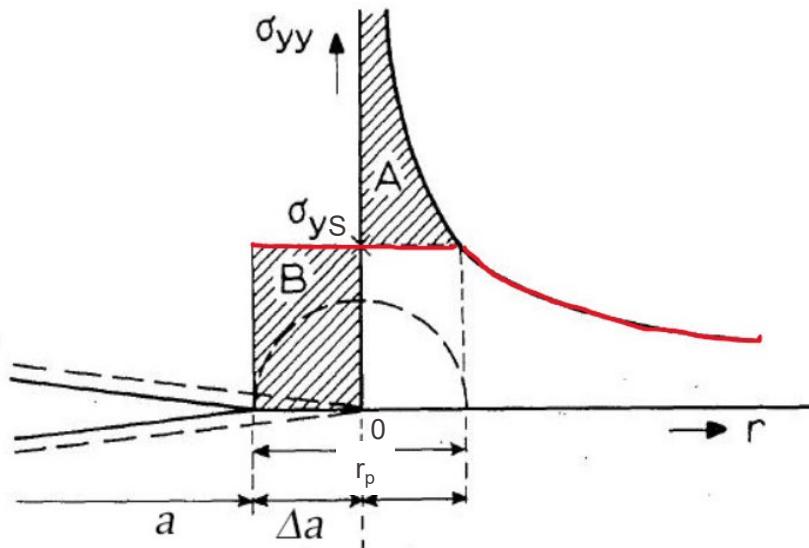
How to calculate Δa ? by iterations

Let's suppose that the specimen behaves as if it contains a virtual crack of length $a + \Delta a$ with a plastic zone of length $r_p - \Delta a$ ahead of its virtual tip.

$K_I = K_I(a + \Delta a)$ where a is the true crack length.

Therefore, area A must equal area B

$$\Delta a \sigma_{YS} = \int_0^{r_p - \Delta a} \frac{K_I [a + \Delta a]}{\sqrt{2\pi r}} dr - \sigma_{YS} (r_p - \Delta a)$$



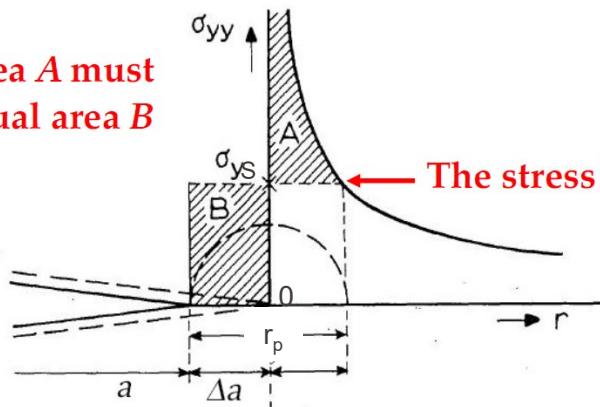
Crack tip plasticity

In an all-elastic solution, the normal stress ahead of the tip of this virtual crack will be given by

$$\sigma_{yy} = \frac{K_I [a + \Delta a]}{\sqrt{2\pi r}} \quad \text{taking the origin of } r \text{ to be at the virtual crack tip.}$$

Now assume that this stress distribution is the same as the stress distribution at the tip of the real crack of length a with a plastic zone of length r_p , when $r > r_p - \Delta a$, i.e. outside the plastic zone.

Area A must equal area B



The stress here must be $\sigma_{YS} = \frac{K_I [a + \Delta a]}{\sqrt{2\pi(r_p - \Delta a)}}$

$$\Delta a \sigma_{YS} = \int_0^{r_p - \Delta a} \frac{K_I [a + \Delta a]}{\sqrt{2\pi r}} dr - \sigma_{YS} (r_p - \Delta a)$$

$$r_p \sigma_{YS} = \int_0^{r_p - \Delta a} \frac{K_I [a + \Delta a]}{\sqrt{2\pi r}} dr = \frac{K_I [a + \Delta a]}{\sqrt{2\pi}} 2\sqrt{r_p - \Delta a}$$

$$r_p \sigma_{YS} = r_p \frac{K_I [a + \Delta a]}{\sqrt{2\pi(r_p - \Delta a)}} = 2 \frac{K_I [a + \Delta a]}{\sqrt{2\pi}} \sqrt{r_p - \Delta a}$$

$$r_p = 2(r_p - \Delta a) \text{ i.e. } r_p = 2\Delta a \text{ and } \Delta a = r_p/2$$

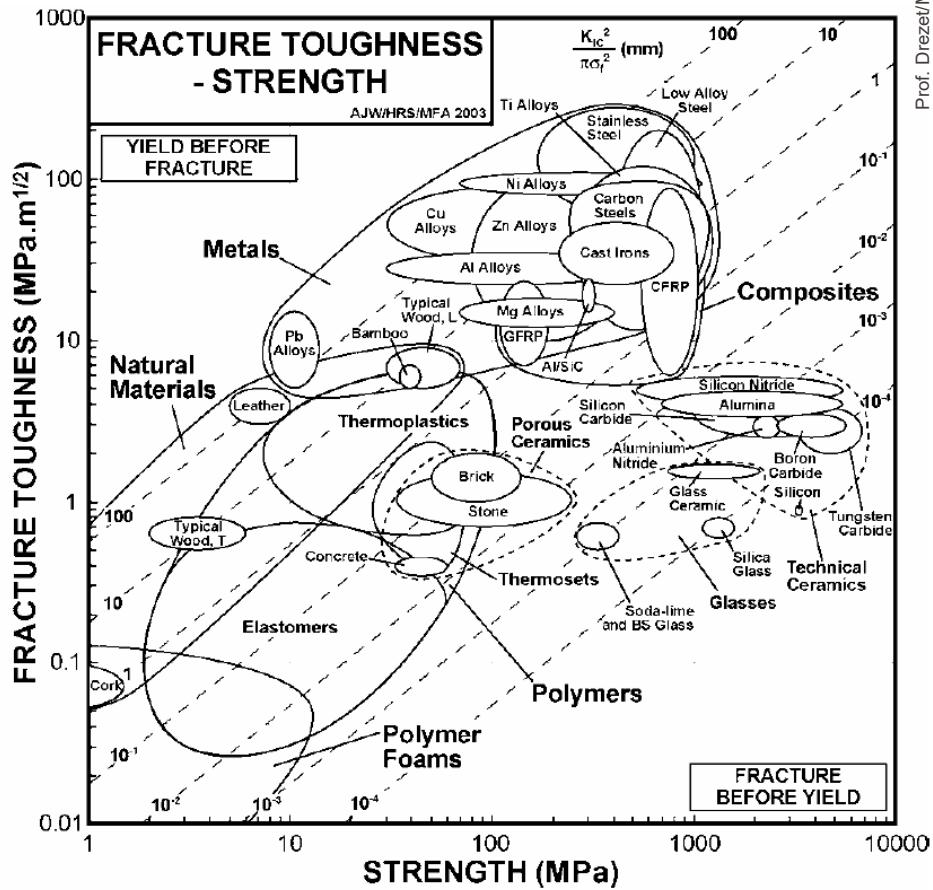
Fracture toughness, yield strength and process zone

Diameter of the process zone :

$$r_p = \frac{1}{\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2$$

can be larger than 100 mm !

Figure 3.4: Fracture toughness (plane strain), K_{IC} , against failure strength, σ_f . Failure strength is defined as the *tensile elastic limit* (usually yield stress) for all materials other than ceramics, for which it is the *compressive strength*. The contours show $K_{IC}^2 / \pi \sigma_f^2$, which is approximately the diameter of the process zone at a crack tip. Valid application of linear elastic fracture mechanics using K requires that the specimen and crack dimensions are large compared to this process zone. The design guide-lines are used in selecting materials for damage tolerant design. (Data courtesy of Granta Design Ltd)



Elastic stress field in mode I

Stress components along xx and yy

TABLE 2.1

Stress Fields Ahead of a Crack Tip for Modes I
Material

Mode I	
σ_{xx}	$\frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left[1 - \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \right]$
σ_{yy}	$\frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left[1 + \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \right]$
τ_{xy}	$\frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{3\theta}{2}\right)$
σ_{zz}	0 (Plane Stress) $\nu(\sigma_{xx} + \sigma_{yy})$ (Plane Strain)
τ_{xz}, τ_{yz}	0

Note: ν is Poisson's ratio.

From T.L. Anderson, chap2 LEFM

3 principal stress components

$$\sigma_1 = \frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left[1 + \sin\left(\frac{\theta}{2}\right) \right] \quad (2.94)$$

$$\sigma_2 = \frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left[1 - \sin\left(\frac{\theta}{2}\right) \right] \quad (2.95)$$

$$\sigma_3 = 0 \quad (\text{plane stress})$$

$$= \frac{2\nu K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \quad (\text{plane strain}) \quad (2.96)$$

Equivalent Von Mises stress:

$$\sigma_e = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 \right]^{1/2}$$

Locus $r_y(\theta)$ where Von Mises is equal to σ_{YS} :

$$\sigma_{YS} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 \right]^{1/2}$$

For plane stress:

$$r_y(\theta) = \frac{1}{4\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2 \left[1 + \cos \theta + \frac{3}{2} \sin^2 \theta \right] \quad (2.97)$$

For plane strain:

$$r_y(\theta) = \frac{1}{4\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2 \left[(1-2\nu)^2 (1 + \cos \theta) + \frac{3}{2} \sin^2 \theta \right] \quad (2.98)$$

With $\nu \approx 0.3$, $(1-2\nu)^2 \approx (1-0.6)^2 = 0.16$ so $(1-2\nu)^2 (1+\cos\theta)$ varies between 0. and 0.32

Butterfly shapes

From plane stress at the surface to plane strain at the center...

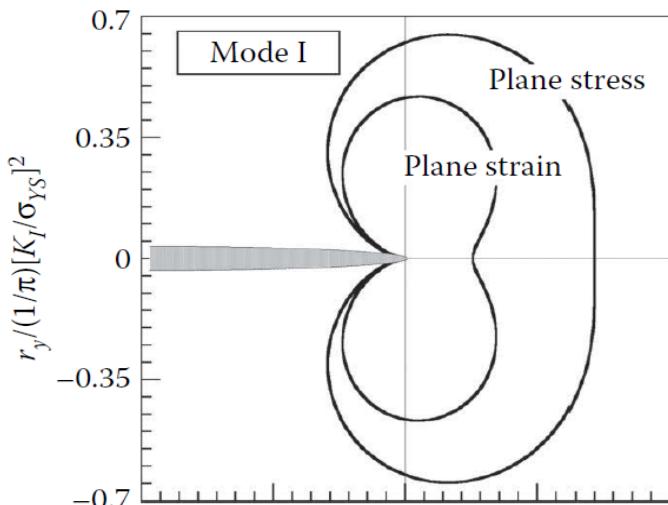
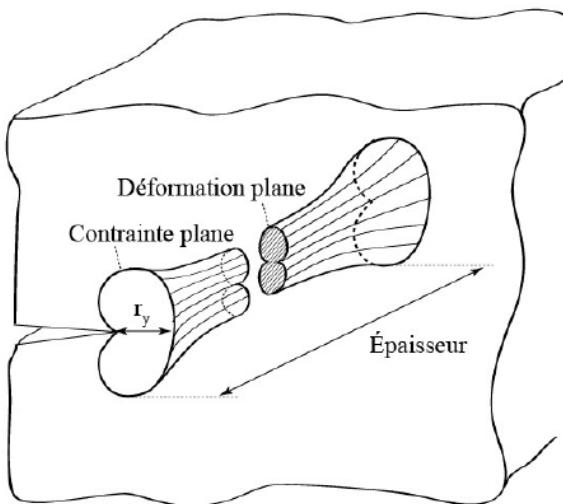
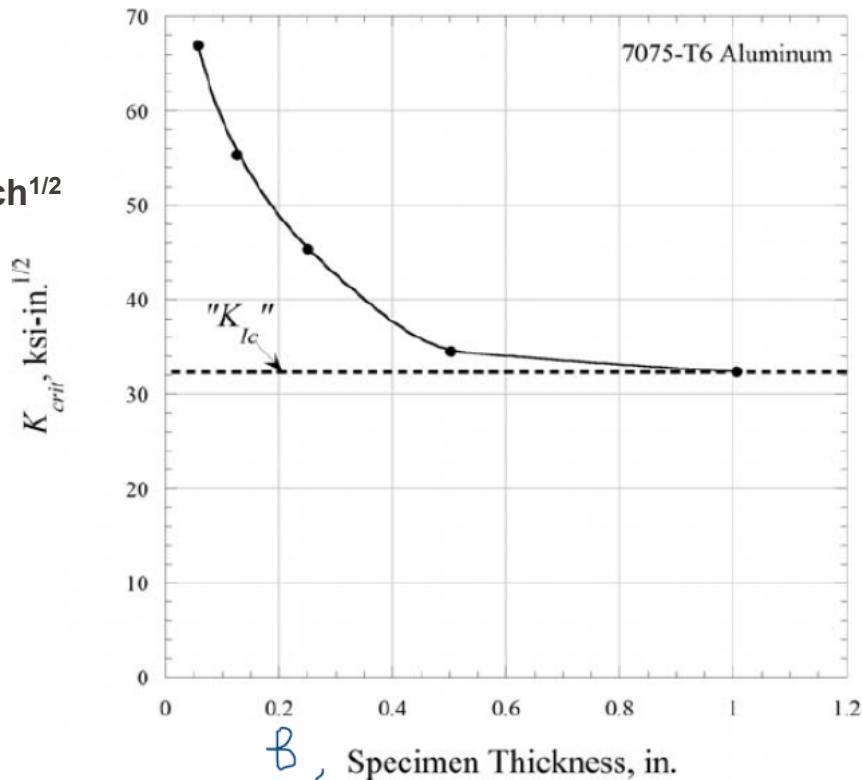


Figure 4-3. Sketch of the general shape of a Mode I crack tip plastic zone across a thick plate (from Janssen, Zuidema, Wanhill, Fracture Mechanics, 2nd Edition, CRC Press, London, 2014).

Influence of triaxiality

Mind the unit
of K_I ! $\text{Ksi}\cdot\text{inch}^{1/2}$

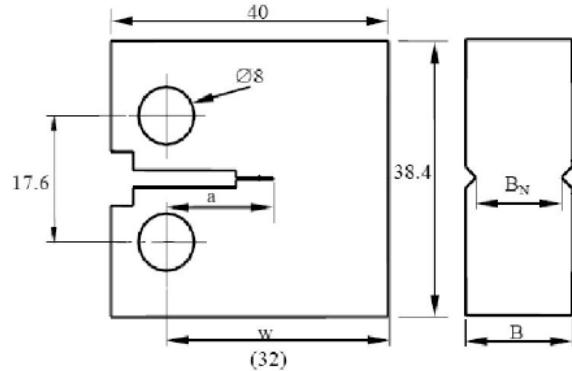


Variation of measured fracture toughness with specimen thickness for 7075-T6 Aluminium. (Adapted by Anderson from Barsom and Rolfe, Fracture and Fatigue Control in Structures. 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1987.)

A large plastic zone, i.e. a thin specimen is expected to lead to more energy dissipation during crack advance and a higher G_C or K_C .

Conditions for valid K_{Ic} testing

When performing laboratory plane strain mode I K_{Ic} tests on standard specimens, the following empirical size requirements have been adopted to ensure reproducible results for different elastic-plastic materials:



$$a, B, (W - a) \geq 2.5 \left(\frac{K_{Ic}}{\sigma_y} \right)^2$$

The minimum requirements for a and $W - a$ ensure that the plastic zone is sufficiently small for fracture to be K -controlled (20 to 50 times the plastic zone size). The requirement for B is intended to ensure plane strain conditions along the crack front, although it is often far more stringent than necessary.