
Exercises for the course MSE-423 Fall 2024

Solution of homework # 9

Exercise 1 - 2D lattices
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(a) Primitive cell of the hexagonal lattice.
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(b) Wigner-Seitz cell of the hexagonal lattice

Figure 1

1. There are several ways to choose the primitive vectors. One possible choice is given by:

a1 = a

(
1
0

)
, a2 = a

(
1
2√
3
2

)
. (1)

2. The Wigner-Seitz cell can be built around an atom by drawing straight lines perpendicular
to the segments connecting the atom to its nearest neighbors and passing through the
midpoint of the segment.

3. The primitive vectors of the reciprocal lattice can be obtained from the orthogonality
condition bi · aj = 2πδij . We get then:

b1 = b

(√
3
2
−1

2

)
, b2 = b

(
0
1

)
, (2)

where b = 4π
a
√
3
and we notice that the reciprocal lattice of the hexagonal lattice is still

and hexagonal lattice (with just a different orientation). The reciprocal lattice is a Bravais
lattice because any vector G satisfying the condition eiG·R = 1 (for any vector R of the
direct lattice) can be written as a linear combination of basis vectors, where the coefficients
are integer numbers. And this is exactly the defintion of a Bravais lattice.

4. The (first) Brillouin zone of the hexagonal lattice is drawn in Fig. 2.

5. The honeycomb structure is not a Bravais lattice. This can be easily shown by looking at
Fig. 3. The surrounding environment seen by the atoms 1 and 2 is different, while in a
Bravais lattice you should always have the same landscape.

6. To define the crystal structure of graphene, that is the honeycomb structure, we need to
define a basis in addition to the primitive lattice vectors. Such structure can be described
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Figure 2: Reciprocal lattice and Brillouin zone of the hexagonal lattice.
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(b)

Figure 3: (a) The honeycomb structure and (b) the different surroundings seen by atom 1 and
2.

by a triangular lattice with primitive vectors:

a1 = a

(
3
2

−
√
3
2

)
, a2 = a

(
3
2√
3
2

)
, (3)

and a basis for the atomic positions inside the primitive cell:

d1 = 0, d2 = a

(
1
0

)
. (4)

Exercise 2 - Cubic lattices.

1. The triple product of vectors a1 ·(a2×a3) can be computed by calculating the determinant
of the 3× 3 matrix whose columns (or lines) are the three vectors a1, a2, a3:

vSC = a3

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = a3, vBCC =
a3

8

∣∣∣∣∣∣
−1 1 1
1 −1 1
1 1 −1

∣∣∣∣∣∣ = a3

2
, vFCC =

a3

8

∣∣∣∣∣∣
0 1 1
1 0 1
1 1 0

∣∣∣∣∣∣ = a3

4
.

(5)
Since in each case the primitive cell contains only one atom, the most “packed” or dense
structure is the one with the smallest primitive cell, i.e. the FCC.
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2. To calculate the primitive vectors of the reciprocal lattice we use the definition for the
three-dimensional case:

b1 =
2π

v
(a2 × a3), b2 =

2π

v
(a3 × a1), b3 =

2π

v
(a1 × a2). (6)

Then we find

• SC: b1 = b

1
0
0

 , b2 = b

0
1
0

 , b3 = b

0
0
1

 ; (7)

• BCC: b1 = b

0
1
1

 , b2 = b

1
0
1

 , b3 = b

1
1
0

 ; (8)

• FCC: b1 = b

−1
1
1

 , b2 = b

 1
−1
1

 , b3 = b

 1
1
−1

 ; (9)

where b = 2π
a . We notice that the reciprocal lattice of a simple cubic is still a simple cubic,

while the reciprocal lattice of a body-centered cubic is a face-centered cubic and viceversa.
The volumes Ω of the three Brillouin zones are:

SC: Ω = b3 =
8π3

a3
, BCC: Ω = 2b3 =

16π3

a3
, FCC: Ω = 4b3 =

32π3

a3
. (10)

3. In the SC lattice, each atom has 6 nearest neighbors (the coordination number then is
6) at a distance a. In the BCC lattice (see Fig. 4a) the coordination number is 8 and

the nearest-neighbors distance is
√
3
2 a. In the FCC lattice (see Fig. 4b) the coordination

number is 12 and the nearest-neighbors distance is a√
2
.

(a) (b)

Figure 4: Nearest-neighbors in the (a) body-centered and (b) face-centered cubic systems.

4. The density is an intensive quantity, so we can calculate it from the ratio between the
mass contained in a primitive cell and the volume of the primitive cell. Since aluminum,
copper and gold have an FCC structure, there is only one atom inside a primitive cell,
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thus we find:

ρAl =
4 · 27 · 1.66 · 10−24 g

(4.05 · 10−8 cm)3
≈ 2.70 g/cm3,

ρCu =
4 · 63.5 · 1.66 · 10−24 g

(3.61 · 10−8 cm)3
≈ 8.96 g/cm3,

ρAu =
4 · 197 · 1.66 · 10−24 g

(4.08 · 10−8 cm)3
≈ 19.3 g/cm3,

(11)

where we used the previous result for the volume of the primitive cell, v = a3/4.

Exercise 3 – Bloch theorem and plane waves

1. The potential term of the Hamiltonian acts on unk as it acts on the ψnk, instead the kinetic
term is more interesting. We focus on the momentum operator p̂, which acts on ψnk as
follows:

p̂ψnk(r) = −iℏ∇
[
eik·runk(r)

]
= eik·r(−iℏ∇+ ℏk)unk(r), (12)

where we just used the derivative of a product of two functions. The momentum operator
acts on Bloch states in such a way that we can factor out the phase. Then, we redefine a
new momentum operator which depends on the crystal momentum k and it acts on the
periodic part only (−iℏ∇+ ℏk) - it is a gradient plus a constant term proportional to the
k vector. Similarly, we can obtain the following expression:

p̂2

2m
ψnk(r) =

p̂2

2m

[
eik·runk(r)

]
= eik·r

(−iℏ∇+ ℏk)2

2m
unk(r). (13)

Finally, we can write the Schödinger equation:( p̂2

2m
+ V̂ext

)
ψnk(r) = εnkψnk(r). (14)

Using the result of Eq. (13) we can rewrite Eq. (14) as:

eik·r
(
(−iℏ∇+ ℏk)2

2m
+ V̂ext

)
unk(r) = εnke

ik·runk(r). (15)

The phase factor eik·r appears on both sides of the Schödinger equation (15), so we can
remove it. We obtain an equation of the form Ĥkunk(r) = εnkunk(r), namely(

(−iℏ∇+ ℏk)2

2m
+ V̂ext

)
︸ ︷︷ ︸

=Ĥk

unk(r) = εnkunk(r). (16)

Ĥk is different from Ĥ as now the kinetic part depends on k. Hence, for each vector k
we need to diagonalize a different Hamiltonian Ĥk to get eigenvalues εnk and eigenvectors
unk(r).

2. By definition, unk(r) is lattice-periodic on the Bravais lattice (i.e. unk(r) = unk(r+R)).
Hence, all the components of its plane waves expansion must be periodic at least on the
Bravais lattice. We write the plane waves expansion as:

unk(r) =
1√
V

∑
G

eiG·rcnk,G, (17)
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where eiG·r is the plane wave, cnk,G are complex-valued coefficients representing the
“weight” of each plane wave, and V is the volume of the crystal (1/

√
V is the normaliza-

tion factor which is used to ensure the normalization of unk(r) to 1). In the following we
will use a shorter notation cnk,G ≡ cG, where dependence upon the band index n and the
k vector is implied. Now we impose the periodicity:

G ·R = 2πm, (18)

where m are integer numbers. Hence, only a discrete set of vectors G is allowed, in
particular every plane wave of the expansion has a vector G of the kind:

G = b1n1 + b2n2 + b3n3, (19)

where b1, b2, and b3 are the primitive vectors of the reciprocal lattice, and n1, n2, and n3
are integer numbers.

3. Let us act with momentum operator p̂ on a plane wave:

p̂ eiG·r = −iℏ∇eiG·r = ℏGeiG·r. (20)

Hence, the plane wave eiG·r is an eigenstate of the momentum operator with eigenvalue
ℏG.

4. We start to write εnk = ⟨unk|Ĥk|unk⟩ using the plane waves expansion for unk(r) given
by Eq. (17).

εnk = ⟨unk|Ĥk|unk⟩ =
1

V

∫
V
dr
∑
G

e−iG·rc∗G

(
(−iℏ∇+ ℏk)2

2m
+ Vext(r)

)∑
G′

eiG
′·rcG′ .

(21)
We start using the results of the previous answers and we act with the Hamiltonian on
the plane waves:

εnk =
1

V

∫
V
dr
∑
G

e−iG·rc∗G

(
(−iℏ∇+ ℏk)2

2m
+ Vext(r)

)∑
G′

eiG
′·rcG′ (22)

=
1

V

∫
V
dr
∑
G

e−iG·rc∗G
∑
G′

cG′eiG
′·r
(
(ℏG+ ℏk)2

2m
+ Vext(r)

)
(23)

=
1

V

∑
G

∑
G′

c∗GcG′

∫
V
dre−iG·reiG

′·r
(
(ℏG+ ℏk)2

2m
+ Vext(r)

)
(24)

=
∑
G

∑
G′

c∗GcG′

(
(ℏG+ ℏk)2

2m
δG,G′ +

1

V

∫
V
dre−i(G−G′)·rVext(r)

)
(25)

=
∑
G

|cG|2 (ℏG+ ℏk)2

2m
+
∑
G

∑
G′

c∗GcG′ Ṽext(G−G′), (26)

where Ṽext(G) is the Fourier transform of the external potential Vext(r). In Eqs. (20)-(21)
we used the fact that the first part of the integral (kinetic term) is different from zero only
when G = G′, and

∫
V dr = V .

5. It is a straightforward exercise in vector algebra to show that the volume of the Brillouin

zone is VBZ = (2π)3

Vc
where Vc is the volume of the primitive unit cell. You can prove it by

taking the definition of the primitive cell vectors and compute the volume. In a fcc lattice,
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the primitive cell has a volume Vc = a3/4. In fact, the primitive unit cell has one atom
per cell while the conventional fcc cell has four atoms per cell (see exercise 2, point 1, of
this homework). For aluminium a = 4.05Å and

VBZ =
(2π)3 · 4
a3

. (27)

The volume of the sphere of radius Gmax is:

Vsphere =
4

3
πG3

max =
4π(2π/δ)3

3
. (28)

Finally, the ratio between these two volumes gives the number of plane waves (PW):

NPW =
Vsphere
VBZ

=
4π(2π/δ)3a3

3(2π)3 · 4
=
π

3

(a
δ

)3
=
π

3

(
4.05Å

0.1 · 0.529Å

)3

≈ 470× 103. (29)

As we can see, we need a huge number of plane waves (almost half a million) in the expan-
sion of Bloch’s wave-functions in order to describe fine details in the electronic structure
which vary on a length scale of δ = 0.1 a.u.
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