
Exercices for the course MSE-423 Fall 2023

Solution of homework # 10

Exercise 1 – The aluminium crystal

1. First of all, we calculate the number of aluminium atoms per cell. We work with the fcc
conventional unit cell because it is easier to visualize than the primitive unit cell. There
are 6 atoms on the square surfaces (1 atom on the center of each square surface) and 8 on
the corners of the cube, so the number of atoms per cell is

natoms/cell = 6/2 + 8/8 = 4. (1)

Here we divided 6 by 2, because each atom on the square surface is shared between two
neighboring cells; and we divided 8 by 8, because each atom in the corner is shared between
8 cells. By doing so we obtain how many atoms we have per cell.

Now we compute the weight of an aluminium atom:

mAl = 27 · 1.66× 10−24g = 4.48× 10−23 g. (2)

The density of aluminium is then

ρ =
natoms/cell ·mAl

Vcell
=
natoms/cell ·mAl

a3
=

4 · 4.48× 10−23

(4.05× 10−8cm)3
= 2.7gr/cm3. (3)

2. By looking at the unit cell, we can easily realize that the two nearest-neighbour atoms are
one in the corner and one in the center of the adjacent square surface of the cube. Hence,
the distance between the nearest-neighbour atoms is:

dNN =
a
√
2

2
=

a√
2
= 2.86Å. (4)

So we can write a in terms of dNN :

a =
√
2 dNN . (5)

3. The close–packing condition is satisfied if the radius of the spheres is half the nearest-
neighbour distance:

r =
dNN

2
= 1.43Å. (6)

4. The packing factor is computed as

f =
Vspheres
Vcell

=
4 · 4

3πr
3

a3
=

4 · 4
3π

d3NN
23

2
3
2d3NN

=
2
3π

2
3
2

=
π

3
√
2
= 0.74 (7)

5. By knowing the density of free electrons in aluminium, we can compute the number of free
electrons per atom:

ρfree
ρatoms

=
ρfree

Natoms/cell

Vcell

= 2.1× 10−1Å−3 (4.05Å)
3

4
≈ 3.5. (8)

The number of free electrons is an indicator of the degree of oxidation of an atom, which
in turn is often described with the oxidation state. The value obtained here is +3.5 and
it is close to the nominal oxidation state of aluminium, which is 3+.
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Exercise 2

1. We consider a free electron gas in a one-dimensional lattice of total size L and with lattice
parameter a. Since each electron is free (i.e. it does not feel any potential), the one-particle
Schrödinger equation is simply:

− ℏ2

2m

d2

dx2
ψ(x) = Eψ(x). (9)

The solution of this equation is a plane wave of the form ψ(x) = Ceik0x, where C is

a constant. By imposing the normalization condition
∫ L/2
−L/2 |ψ(x)|

2dx = 1, we find that

C = ±1/
√
L (we have chosen a real normalization constant). The electron, in fact, must

be found within the crystal, which we have set to be in the range (−L/2; L/2) (any other
choice is equivalent). Choosing a real and positive phase we have:

ψ(x) =
1√
L
eik0x. (10)

Now if we apply PBC we must have ψ(x + L) = ψ(x) and thus eik0L = 1 and thus
k0L = 2πm with m ∈ Z. So the k0’s are discrete and the spacing between them is 2π

L .

By substituting Eq. (10) in Eq. (9), we find that the energy corresponding to the wave

function ψ(x) is E =
ℏ2k20
2m , with the k0’s above.

2. The hypotheses of Bloch theorem are satisfied since the potential is zero and zero is a
periodic function of a. Thus the eigenvalues found in the previous point must satisfy
Bloch theorem.

3. From the previous point we know k0 = 2πm
L = 2πm

Na , with m ∈ Z. So we can divide

m = n′ + nN where n′ = {−N/2, . . . , N/2− 1}. Thus k0 = 2πm
Na = 2π n′

Na + n2π
a = k +Gn,

since n2π
a its a G reciprocal vector of our lattice and 2πn′

Na is a k vector inside the first
Brillouin zone. Thus:

ψ(x) =
1√
L
eik0x =

1√
L
ei(k+Gn)x = eikx

(
eiGnx

√
L

)
(11)

We can observe that eiGnx
√
L

= un(x) of Bloch theorem since it satisfies: un(x) = un(x+ a)

and that k is inside the first Brillouin zone. We have then concluded our proof. We note
that for this simple problem the un(x) have just one Fourier component equal to one, as
opposed to the general case treated in Homework 9. We also observe that eigenfunctions
for this problem can thus be rewritten as Bloch theorem dictates:

ψn,k(x) =
1√
L
ei(k+Gn)x, (12)

with corresponding energy:

En,k =
ℏ2(k +Gn)

2

2m
, (13)

with k inside the first Brillouin zone. A good trick to plot the energy bands is to draw
different parabolas with a vertex shifted by a G vector Fig. 1 left, and then look at the
resulting plot inside the first Brillouin zone, those are the bands of a material with empty
lattice with a cell of size a (right plot in Fig. 1).
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Figure 1: Left: trick to plot the folded energy dispersion (aka bands) of an empty lattice with
cell size a. Right: the bands of an empty lattice with cell size a.

4. The electrons’ mean velocity is defined as:

vn,k =
1

ℏ
∂En,k

∂k
. (14)

We are interested in the lowest electronic band, which corresponds to n = 0. Since
E0,k = ℏ2k2

2m , we obtain:

v0,k =
ℏk
m
. (15)

The center of the IBZ is at k = 0, while the zone boundaries are located at k = ±π
a (see

right panel in Figure 1). The mean velocity at the zone center v0,0 is thus zero, while at
the zone boundaries the mean velocity is v0,±π/a = ± ℏπ

ma .
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Exercise 3

1. Let’s consider the electronic configurations of Al and Cu, which are 1s22s22p63s23p1 and
1s22s22p63s23p63d104s1 (note: Cu is an exception to the aufbau rules), respectively. The
valence bands are formed from the hybridization of the external orbitals of the atoms.
Therefore, in the case of Al we expect the valence bands to be created mainly from the 3s
and 3p states, while in Cu we expect the valence bands to be created mainly from the 3d
and 4s states.

We know that electrons of the s- and p- character give rise to more dispersive bands due
to the larger overlap between orbitals of neighboring atoms, which makes these electrons
very delocalized. In contrast, electrons of d-character are more localized, and the overlap
between orbitals of neighboring atoms is smaller. The higher localization of d-electrons
gives rise to bands that are much less dispersive (more ‘flat’).

In the left panel of Figure 2(a) of the homework we observe a group of rather flat bands be-
tween −1 eV and −5 eV. The flatness of these bands suggests that they are of d-character.
As we said above, we expect to have electrons of d character in the valence bands of Cu.
Therefore, we can conclude that the left panel of Fig. 2a corresponds to the electronic
band structure of Cu. In the right panel, all valence bands are characterized by a strong
dispersion, which is typical for electrons of s- and p- type. This band structure thus cor-
responds to Al. Also note how the lowest bands in the right panel of Fig. 2(a) remind us
of the parabolic dispersion that is characteristic of free electrons. This means that Al has
a free-electron-like electronic band structure.

For what concerns the DOS plots, we can easily assign them to the corresponding electronic
band structures. In the right panel of Figure 2(b) there are very sharp peaks between
−1 eV and −5 eV, which correspond to flat d-bands. Thus, this DOS plot corresponds
to the electronic band structure of Cu. Conversely, the left panel of Figure 2(b) shows a
free-electron-like DOS (it resembles a

√
E trend), which means that it corresponds to the

electronic band structure of Al.

2. Si and Ge are indirect band gap semiconductors, while GaAs is a direct band gap semi-
conductor. In Si, the top of the valence band is at the Γ point, and the bottom of the
conduction band is close to the X point (in the direction from Γ to X). In Ge, the top
of the valence band is again at the Γ point, and the bottom of the conduction band is
exactly at the L point. In GaAs, both the top of the valence band and the bottom of the
conduction band are at the Γ point.

From Figure 3 of the homework we can determine the band gap energies (they correspond
to the height of the shaded area). In particular, we have EGe ≈ 0.7 eV, ESi ≈ 1.1 eV, and
EGaAs ≈ 1.4 eV. The energy of a photon with wavelength λ is given by:

E = h
c

λ
. (16)

Therefore, by knowing the band gap energies, we can easily determine the corresponding
photon wavelengths:

λGe =
hc

EGe
=

4.136 · 10−15 (eV · s) · 2.998 · 108 (m/s)
0.7 (eV)

≈ 1771 nm . (17)

λSi =
hc

ESi
=

4.136 · 10−15 (eV · s) · 2.998 · 108 (m/s)
1.1 (eV)

≈ 1127 nm . (18)
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λGaAs =
hc

ESi
=

4.136 · 10−15 (eV · s) · 2.998 · 108 (m/s)
1.4 (eV)

≈ 885 nm . (19)

From the obtained wavelengths we can compute the corresponding photon momenta using
the de Broglie equation:

pph =
h

λ
, (20)

and compare these to the momenta that correspond to electrons with wavevectors equal
to the size of the Brillouin zones:

pel = ℏ|k| = ℏ
2π

a
=
h

a
. (21)

Therefore, we obtain:

pGe
ph = 3.74× 10−28 kg m s−1 ≪ pGe

el =
h

aGe
= 1.17× 10−24 kg m s−1 (22)

Therefore, we obtain:

pGe
ph = 3.74× 10−28 kg m s−1 ≪ pGe

el =
h

aGe
= 1.17× 10−24 kg m s−1 (23)

pSiph = 5.88× 10−28 kg m s−1 ≪ pSiel =
h

aSi
= 1.22× 10−24 kg m s−1 (24)

pGaAs
ph = 7.49× 10−28 kg m s−1 ≪ pGaAs

el =
h

aGaAs
= 1.17× 10−24 kg m s−1 (25)

In all three cases the momentum of the photon is negligible when compared to the mo-
mentum of the electron. Therefore, due to the requirement of momentum conservation,
only excitations with ∆k ≈ 0 can take place (i.e. excitations where the momentum of
the electron does not change). The excitation of an electron by absorption of a photon
with energy equal to the energy of the band gap can thus occur only in GaAs. In this
material, in fact, the electron is excited from the top of the valence band to the bottom
of the conduction band at the same k-point (Γ). In Ge and Si, in order to excite electrons
from the top of the valence band to the bottom of the conduction band, the electrons need
to gain energy, but also momentum, which can be provided by “phonons” (i.e. lattice
vibrations).
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