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A theory of the liquid state

Very important for materials science: medium for synthesis, processing in
the molten phase, models for glasses
Liquids pose a huge challenge to modeling and theoretical description

atoms are disordered, so no way to invoke a harmonic approximation
atoms are strongly interacting, so cannot invoke independent particles
approximations
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Classical statistical mechanics

Atoms are treated as classical particles following the Hamiltonian

H = K (p) + U (r) =
∑
i

p2
i

2mi
+ U ({ri})

with positions r = {ri} and momenta p = {pi}
The potential is a complicated, non-linear function of all coordinates

The partition function factors in a free-particle part (consider the classical
limit of the quantum counterpart) and one that depends on U

Q = QpQr =
1
N!

[
h√

2πmkBT

]3N ∫
dN {ri} e−βU({ri})

The probability of observing a given configuration of the atoms is just

P (r1, . . . , rN) =
1
Qr

e−βU({ri})
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Reduced distribution functions

We can always marginalize P with respect to some of the atoms. Take for
instance single-particle marginal

Since all atoms are statistically equivalent, it is more convenient to define
a generic distribution function, summed over all particle indices

P(1) (r1) =

∫
dN−1 (r2, . . .)P (r1, . . . , rN)

ρ(1) (r) =
∑
i

P(1) (ri) = NP(1) (r1 = r) =
if no external potential

N · 1
V

= ρ

Two-particle case

P(2) (r1, r2) =

∫
dN−2 (r3, . . .)P (r1, . . . , rN) ,

ρ(2) (r, r′) =
∑
i 6=j

P(2)
(
ri , rj

)
= N (N − 1)P(2) (r1 = r, r2 = r′)

for an ideal gas, ρ(2) = N(N−1)
V 2 =

(
1 − N−1

)
ρ2
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The pair correlation function

In an isotropic medium, ρ(2) (r, r′) depends only on r = |r− r′|
We can define a normalized version of ρ(2), that indicates the probability
of finding a particle at distance r from the origin, conditional on having
one particle at 0. This is called the pair correlation function g (r).

g (r) = ρ(2) (0, r) /ρ2
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Scattering from a liquid/1

Consider the scattering of X-rays (or, similarly, neutrons) from the atoms.
Scattering is nearly elastic, so kin = kout . Define k = kout − kin.
The amplitude of the waves scattered by an atom at position ri relative to
the center of the sample Rc reads

Ai ∝ eikin(Rc+ri )eikout(Rd−(Rc+ri )) = ei(kin−kout)RceikoutRdei(kin−kout)ri = φe−ikri

The amplitude (collected at Rd ) also includes a k dependent atomic form
factor f (k), which we ignore here
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Scattering from a liquid/2

The intensity collected at the detector is the square modulus of the total
amplitude (structure factor S (k))

I ∝

〈∣∣∣∣∣∑
i

Ai

∣∣∣∣∣
2〉
∝ |φ|2

〈∑
ij

eik(ri−rj)
〉
∝ N +

∑
i 6=j

〈
eik(ri−rj)

〉
=

= N + N (N − 1)
〈
eik(r1−r2)

〉
= NS (k)

The average can be computed as an integral over the generic pair
correlation function. δ-like contribution for k = 0 can be removed by
defining h (r) = g (r)− 1

S (k) = 1 +
V
N

∫
drρ(2) (0, r) eikr = 1 + ρ

∫
drg (r) eikr

S (k) = 1+2πρ
∫

drr2g (r)dθ sin θeikr cos θ = 1+2πρ
∫

drr2g (r)
e−ikr − eikr

−ikr
=

= 1 + 4πρ
∫

drg (r)
r
k

sin kr ∼ 1 + ρV δ (k) +
4πρ
k

∫
drh (r) r sin kr
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Scattering from a liquid/3

Silica Water

10.1023/A:1026216101073 10.1063/1.481541
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Reversible work theorem

Howmuch work should be made to bring two atoms in the fluid, initially
far from each other, at a distance r?

w (R) = −
∫
path
〈f〉 · dr = −

∫ R

∞
〈f〉 · ûdr = −

∫ R

∞
·
〈
−∂U (0, r, . . .)

∂r

〉
|r|=r

dr

〈
−∂U (0, r, . . .)

∂r

〉
|r|=r

=

∫
dr3 . . .drN − ∂U(0,r,...)

∂r e−βU(0,r)∫
dr3 . . .drNe−βU(0,r,...)

=

4 6 8 10 12

r [Å]

-1

0

1

2

3

4

5

6

w
(r
)/

k
B
T

w (r) = −kBT ln g (r)
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β

∂

∂r
ln

∫
dr3 . . .drNe−βU(0,r,...)

4 6 8 10 12

r [Å]

-1

0

1

2

3

4

5

6

w
(r
)/

k
B
T

w (r) = −kBT ln g (r)
9 MSE 421 - Ceriotti Liquids



Reversible work theorem

Howmuch work should be made to bring two atoms in the fluid, initially
far from each other, at a distance r?

w (R) = −
∫
path
〈f〉 · dr = −

∫ R

∞
〈f〉 · ûdr = −
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. . . since we can add any constant in the log (∂K/∂r = 0)

=
1
β

∂

∂r1
ln

N (N − 1)

Qρ2

∫
dr3 . . .drNe−βU(0,r,...) =

1
β

∂

∂r
ln
ρ(2) (0, r)

ρ2
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Pair potentials & thermodynamic properties

Consider the case in which U ({ri}) = 1
2

∑
i 6=j u

(∣∣ri − rj
∣∣) (a pair potential)

We can compute explicitly the thermal average of the internal energy 〈U〉
based on the pair correlation function

〈U〉 =

∫
d {ri}

∑
i 6=j

u
(∣∣ri − rj

∣∣) e−βU
2Q

= N (N − 1)

∫
d {ri} u (|r1 − r2|)

e−βU

2Q

=
1
2

∫
dr′dr u (|r|) ρ(2) (0, r) =

1
2
Nρ
∫

dr 4πr2g (r) u (r)

This combines with the ideal gas term 〈K 〉 = 3NkBT/2 to give 〈E〉

1 1.5 2 2.5

r [Å]

-1

0

1

2

3

u
(r
)/
ϵ
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Dilute limit and virial coefficients

Now writew (r) = u (r) + ∆w . We consider ∆w to be small in the dilute
limit, so we can write

〈U〉
N
∼ ρ

2

∫
dr 4πr2u (r) e−βu(r) (1 +O (ρ)) =

〈E〉 −
〈
Eideal gas

〉
N

=
∆E
N

We can obtain the free energy by integrating over β [remember:
〈E〉 = −∂ lnQ/∂β and lnQ = −βA]

∂β∆A/N
∂β

=
ρ

2

∫
dr u (r) e−βu(r) +O

(
ρ2
)

We can compute the equation of state [remember: p = −∂A/∂V = ρ2∂ (A/N) /∂ρ,

and for an ideal gas βp = ρ]

βp = ρ+ ρ2
∂β∆A/N

∂ρ
= ρ+ ρ2

∫
dr 4πr2

[
1− e−βu(r)

]
︸ ︷︷ ︸

second virial coefficient

+O
(
ρ3
)
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