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Goal for today: What do these weird expressions mean?

1 Position representation ψ(x1, x2, . . . , xn) = ⟨x1, x2, . . . , xn|ψ⟩
2 Matrix elements of operator Aν,ν′ = ⟨ν|A|ν ′⟩
3 Trace of operator TrA =

∑
ν⟨ν|A|ν⟩

4 Exponential of operator eA.
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Outline:

1 The flow of ideas: From Planck to Schrödinger

2 The mathematics of quantum mechanics

3 Notation + techniques used in lecture
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Why was quantum mechanics discovered 100 years ago?
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Old quantum theory (1900− 1925) vs Classical mechanics

Kevin K. H.-D. (EPFL, Switzerland) Quantum Mechanics Intro April 3, 2023 5



Max Planck (1900):
Black body spectrum and Ultraviolet Catastrophe
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Replacing Sums by Integrals: Basel Problem

1 +
1

4
+

1

9
+

1

16
+ · · · =

∞∑
n=1

1

n2
=
π2

6
≈ 1.64 (1)

≈
∫ ∞

1

1

x2
dx = 1 (2)
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A. Einstein’s interpretation of Planck’s calculation:
Continuous version

Discrete Sum:
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A. Einstein (1907): Einstein Model of Solids
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A. Einstein (1907): Einstein Model of Solids
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N. Bohr: (1913): Bohr model of atom
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Different systems have different “pixellation” (quantization):
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Guess the pixellation rule!
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Sommerfeld (1916): Bohr-Sommerfeld Quantization!∮
pdq = nh (3)

. . . with Maslov correction∮
pdq =

(
n +

1

2

)
h (4)
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But what is the deeper reason behind this quantization?
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W. Heisenberg (1925): Matrix mechanics Application: Hamiltonian
(diagonalized)

H =


E1

E2

E3

. . .

 (5)
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x̂ =


0 0 0 . . .
1 0 0 . . .
0 1 0
...

. . . . . .

 p̂ = −iℏ


0 1 0 0 . . .
0 0 2 0 . . .
0 0 0 3
...

...
. . . . . .

 (6)

Uncertainty principle: x̂ p̂ ̸= p̂x̂ ⇒ ∆x∆p = ℏ
2
.
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E. Schrödinger (1926): Wave mechanics
Standing wave of strings:

∂2f

∂x2
= −k2f (7)
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E. Schrödinger (1926): Wave mechanics
Standing wave of strings:

∂2f

∂x2
= −k2f (8)
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E. Schrödinger (1926): Wave mechanics
Boundary conditions for string:

sin(kL) = 0 ⇔ kL = nπ ⇔ k =
π

L
n (9)

Schrödinger equation:

∂2ψ

∂x2
+ Vψ = Eψ (10)
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Mathematics for Quantum Mechanics: Functional Analysis
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Functional Analysis ≈ infinite dimensional linear algebra

Concept Rn Functions
Vector v f
Basis v =

∑n
j=1 αjbj f =

∑∞
j=1 αjbj

Linear Map Matrix Av Operator Af
Eigenvalues Av = λv Af = λf

Inner products ⟨v ,w⟩ ⟨f , g⟩
Norm (length) ∥v∥ ∥f ∥
Orthogonality v ⊥ w f ⊥ g
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What is a vector?

Familiar concept: Vectors are elements of V = Rn (or Cn).

Proposition
Let v ,w ∈ V and α ∈ R. Then:

v + w ∈ V (sums of vectors are still in V )

αv ∈ V (if you scale a vector, it is still in V )
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Let us generalize!

Definition (Vector Space: Simplified)

A set V is a vector space over the real numbers, if for any two
elements v ,w ∈ V and real number α ∈ R,

v + w ∈ V

α · v ∈ V

In other words, you can add and scale objects, and still stay in the
same set.

Counterexample: The set of numbers in the interval [0, 1]
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Definition (Vector Space)

A vector space over the real numbers R (often just called real vector
space) is a set V together with two maps + and ·, called addition (A)
and multiplication (M), such that for any u, v ,w ∈ V and α, β ∈ R:

v + w = w + v

(u + v) + w = u + (v + w)

0 + v = v

∃v ′ ∈ V s.t. v + v ′ = 0

α(βv) = (αβ)v

1v = v

(α + β)v = αv + βv

α(v + w) = αv + αw
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More interesting examples:

The set of continuous functions
C ([a, b]) = {f : [a, b] → R : f cont.}
The set of absolutely integrable functions L1 ([a, b]) consisting of
f : [a, b] → R such that∫ b

a

|f (x)|dx <∞. (11)

The set of square integrable functions L2 ([a, b]) consisting of
f : [a, b] → R such that∫ b

a

|f (x)|2dx <∞. (12)
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Important examples you already knew:

The set of wave functions in quantum mechanics is a vector
space (over the complex numbers, rather than real numbers).

More generally: systems satisfying a superposition principle,
e.g. acoustic, electromagnetic or elastic deformation waves
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Familiar concept: Basis of vectors in R2.
Example: Standard basis vs second basis B′ = {(1, 1), (−1, 1)}

v =

(
3
1

)
= 3

(
1
0

)
+ 1

(
0
1

)
= 3b1 + 1b2 (13)

=

(
2
−1

)
B′

= 2

(
1
1

)
+ (−1)

(
−1
1

)
= 2b′1 + (−1)b′2 (14)
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Definition (Basis)

A set (b1, b2, . . . , bn) of vectors in V is called a basis, if any vector
v ∈ V can uniquely be written as

v = α1b1 + α2b2 + · · ·+ αnbn =
n∑

ν=1

ανbν . (15)

For more general vector spaces: also allow n → ∞:

v =
∞∑
ν=1

ανbν (16)
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Example for functions: Many functions can be completely
characterized by the coefficients α0, α1, α2, . . . of a power series
representation

f (x) = α0 + α1x + α2x
2 + α3x

3 + · · · =
∑
ν

ανx
ν (17)

We can interpret

f (x) =
∑
ν

ανx
ν =

∑
ν

ανbν(x), (18)

with basis functions b0(x) = 1, b1(x) = x , b2(x) = x2, . . . .
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Concrete examples:

exp x = 1 + x +
1

2
x2 +

1

6
x3 + · · · =


1
1
1
2
1
6
...

 (19)

sin x = 0 + x + 0 · x2 − 1

6
x3 + · · · =


0
1
0
−1

6
...

 (20)
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Second famous basis for function spaces:

Theorem (Fourier Series)

Let f : R → R be a continuous and periodic function with period 2π.
Then there exist coefficients αi such that

f (x) =α0 + α1 sin(x) + α2 cos(x) + α3 sin(2x) (21)

+ α4 cos(2x) + α5 sin(3x) + α6 cos(3x) + . . . (22)

Trigonometric functions thus form a basis for the space of periodic
functions.
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Linear maps, Matrices and Operators

Familiar concept: Matrix multiplication

A =

(
2 3
3 7

)
, v =

(
3
−1

)
⇒ Av =

(
3
2

)
(23)

Proposition
Matrix multiplication satisfies
(i) A(v + w) = Av + Aw
(ii) A(αv) = αAv
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Let’s generalize!

Definition
A linear map on a vector space V is a map A : V → V such that
(i) A(v + w) = A(v) + A(w)
(ii) A(αv) = αA(v)

If V is a function space, we often call A a (linear) operator.
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Examples of operators with f = x3 and g = ex (we only check
addition here):

1 Derivative and Momentum operators ∂x and p̂ = −iℏ∂x :

(x3 + ex)′ = 3x2 + ex , (24)

(f + g)′ = f ′ + g ′ (25)

2 Position operator x̂ and functions V (x̂):

V (x)(x3 + ex) = V (x)x3 + V (x)ex (26)

V (f + g) = Vf + Vg (27)

3 Energy / Hamilton operator Ĥ = 1
2m

p̂2 + V (x̂)
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Operators as ∞×∞-matrices:

f = α0 + α1x + α2x
2 + · · · =


α0

α1

α2
...

 (28)

x · f = 0 + α0x + α1x
2 + · · · =


0
α0

α1
...

 (29)
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Thus:

x̂ =


0 0 0 . . .
1 0 0 . . .
0 1 0
...

. . . . . .

 (30)

satisfies:

x̂ f =


0 0 0 . . .
1 0 0 . . .
0 1 0
...

. . . . . .

 ·


α0

α1

α2
...

 =


0
α0

α1
...

 (31)
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Similarly:

f = α0 + α1x + α2x
2 + . . . (32)

f ′ = α1 + 2α2x + 3α3x
2 + . . . (33)

yields:

p̂ = −iℏ∂x = −iℏ


0 1 0 0 . . .
0 0 2 0 . . .
0 0 0 3
...

...
. . . . . .

 (34)
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Eigenvalues, Eigenvectors and Eigenfunctions

Familiar concept for matrices. Generalization is straight forward!

Definition
Let A be a linear map on V . Then, an element v such that

Av = λv (35)

is called an eigenvector of A and λ the corresponding eigenvalue.
If V is a function space, we also call the vector v an eigenfunction.

Kevin K. H.-D. (EPFL, Switzerland) Quantum Mechanics Intro April 3, 2023 40



Equivalence of Schrödinger and Heisenberg’s approaches:
The Schrödinger equation (a partial differential equation)

− ℏ2

2m
ψ” + Vψ = Eψ (36)[

− ℏ2

2m
∂2x + V

]
ψ = Eψ (37)

Ĥψ = Eψ (38)

is in fact an eigenvalue problem! We need to find the eigenfunctions
(eigenvectors) ψ(x) of the “matrix” (operator) Ĥ with corresponding
eigenvalues E , representing the energy.
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Old quantum theory (1900− 1925) vs Classical mechanics
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Inner Products and Geometry

Familiar concept: Inner product of two vectors v ,w ∈ V = Rn:

⟨v |w⟩ = v · w =
n∑

ν=1

vνwν (39)

Many names:

inner product

scalar product

dot product

Many notations:

⟨v |w⟩
⟨v ,w⟩
(v ,w)

v · w
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Proposition (Geometric Properties of Vectors)

the lenth/size/norm of a vector ∥v∥ =
√

v 2
1 + v 2

2 + · · ·+ v 2
n

can be obtained from the inner product using ∥v∥ =
√

⟨v |v⟩.
the distance between the “points” v ,w can be obtained from
d(v ,w) = ∥v − w∥
v ,w ̸= 0 are orthogonal if: ⟨v |w⟩ = 0.
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Proposition

The (standard) inner product satisfies the following three properties:

1 symmetry ⟨v |w⟩ = ⟨w |v⟩
2 bilinearity = “distributive law” = linearity in both variables

⟨u + v |w⟩ = ⟨u|w⟩+ ⟨v |w⟩, ⟨αv |w⟩ = α⟨v |w⟩ (40)

⟨u|v + w⟩ = ⟨u|v⟩+ ⟨u|w⟩, ⟨v |αw⟩ = α⟨v |w⟩ (41)

3 positive definiteness ⟨v |v⟩ = ∥v∥2 >= 0, where equality only
occurs for the zero vector v = 0 ∈ Rn
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Time for generalization!

Definition (Inner Product)

Let V be a vector space. Any “binary operation” ⟨.|.⟩ : V × V → R
that satisfies conditions (1)-(3) (symmetry, bilinearity and positive
definiteness) is called an inner product.

Definition (Hilbert Space)

A vector space with an inner product is called an inner product
space. If it satisfies one more technical condition (“completeness”),
it is called a Hilbert Space.
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Let (V , ⟨.|.⟩) be a Hilbert space. Then:

Definition (Geometric Properties: Generalized)

The lenth/size/norm of a vector is defined as ∥v∥ =
√

⟨v |v⟩.
In particular, v is normalized/a unit vector iff ∥v∥ = 1, i.e.
⟨v , v⟩ = 1.

The distance between v ,w is defined as d(v ,w) = ∥v − w∥
In particular, v ,w ̸= 0 are called orthogonal, iff ⟨v |w⟩ = 0.

Remark: “iff” means “if and only if”
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Theorem
Let V be the function space L2([a, b]) (it also works for C ([a, b])
etc.) and f , g ∈ V two functions. Then the integral

⟨f |g⟩ =
∫ b

a

f (x) · g(x)dx (42)

defines an inner product ⟨f |g⟩ on V .

Note: If we work with complex numbers, we have to take the
complex conjugate of the first function, i.e.

∫ b

a
f̄ (x) · g(x)dx
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Using this inner product and the function space V = L2([a, b]), we
get the geometric quantities:

∥f ∥ =
√

⟨f , f , ⟩ =
√∫ b

a
f 2(x)dx

d(f , g) = ∥f − g∥ =
√∫ b

a
(f (x)− g(x))2dx

Two functions are orthogonal with respect to this inner product,
if ⟨f , g⟩ =

∫ b

a
f (x)g(x)dx = 0.
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Summary of our mathematical journey

Concept Rn Functions
Vector v f
Basis v =

∑n
j=1 αjbj f =

∑∞
j=1 αjbj

Linear Map Matrix Av Operator Af
Eigenvalues Av = λv Af = λf

Inner products ⟨v ,w⟩ ⟨f , g⟩
Norm (length) ∥v∥ ∥f ∥
Orthogonality v ⊥ w f ⊥ g
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Fast overview of notation and techniques used in next week’s lecture
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Notation: State of a system
For functions, we can write f (x) or just f .
Three equivalent notations for the state of a particle:

1 write ψ(x) explicitly

2 just write ψ

3 write |ψ⟩ and call it a “ket”

Why this name? It comes from inner products (brackets ≈
“BRA-KET”s)

⟨ψ|ϕ⟩ (43)

⟨ψ| is called the “bra”.
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Some people write

ψ(x) = ⟨x |ψ⟩ (44)

and call it “position representation”.
In higher dimensions:

ψ(x , y , z) = ⟨xyz |ψ⟩ (45)

ψ(r) = ⟨r |ψ⟩ (46)

ψ(r 1, r 2) = ⟨r 1, r 2|ψ⟩ (47)
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Notation: Basis and Matrix Elements
Consider a set of basis vectors b1, b2, . . . . We could write them as

|b1⟩, |b2⟩, . . . , |bν⟩, . . . (48)

Often, we just write

|1⟩, |2⟩, . . . , |ν⟩, . . . (49)

Matrix elements in familiar notation:
Aνν′ = element in ν-th row, ν ′-th column of matrix A.
Alternative notation: Aνν′ = ⟨ν|A|ν ′⟩ (shorthand for ⟨bν |A|bν′⟩)
Example: ⟨2|A|5⟩ = A25.
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Exponential of Operator

Example: for all x ∈ R

ex = exp x =
∞∑
ν=0

xν

ν!
= 1 + x +

1

2
x2 +

1

6
x3 + . . . (50)

exp

((
2 3
3 7

))
=

(
1

1

)
+

(
2 3
3 7

)
+

1

2

(
2 3
3 7

)2

+ . . . (51)

More generally, for any linear map (operator) A:

eA = expA =
∞∑
ν=0

Aν

ν!
= 1 + A+

1

2
A2 +

1

6
A3 + . . . (52)

Kevin K. H.-D. (EPFL, Switzerland) Quantum Mechanics Intro April 3, 2023 55



Special case: Diagonal matrix

D =


D1

D2

D3

. . .

 ⇒ Dν =


Dν

1

Dν
2

Dν
3

. . .

 (53)

Thus:

eD = 1 + D +
1

2
D2 + · · · =


eD1

eD2

eD3

. . .

 (54)
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Application: Hamiltonian (diagonalized)

H =


E1

E2

E3

. . .

 (55)

Canonical Density matrix (“Boltzmann factor operator”)

ρ = e−βH =


e−βE1

e−βE2

e−βE3

. . .

 (56)
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From the density matrix (“Boltzmann factor operator”)

ρ = e−βH =


e−βE1

e−βE2

e−βE3

. . .

 (57)

Quantum mechanical partition function

Q = Tre−βH =
∞∑
ν=1

⟨ν|A|ν⟩ =
∞∑
ν=1

e−βEν (58)
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