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Averages in the canonical ensemble

The canonical ensemble describes a system in contact with a thermal
reservoir at temperature T = 1/kBβ

Averages of observables can be computed as integrals over the canonical
Boltzmann distribution

〈A〉 =

∫
dqdpP (p,q)A (p,q) 〈A〉 =

∑
ν

AνPν

The goal of a simulation is to perform these averages/integrals by
sampling the states that have a non-negligible probability
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Atoms and molecules

Classical dynamics of a system of atoms with positions q and momenta p,
described by the Hamiltonian

H (p,q) = K (p) + V (q) =
∑
i

p2
i

2mi
+ V (q)

We assume V is given (force fields, electronic structure calculation)
In all cases, strictly Born-Oppenheimer
Nuclei are treated as classical, distinguishable particles

The configuration and momentum parts of P (p,q) factor out, and the
momentum part P (p) is trivial

P (p,q) = e−βH(p,q) = P (p) · P (q) =
e−β

∑
i

p2
i

2mi∫
d3Npe−β

∑
i

p2
i

2mi

· e−βV (q)∫
d3Nqe−βV (q)
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Potentials, potentials, potentials!

Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off
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Potentials, potentials, potentials!

Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off

Empirical forcefields try to represent interactions with ‘‘simple’’
functional forms. Time-consuming and error-prone fitting procedure, but
then easy to use and inexpensive. A must for large systems

V (q) ∼
∑
ij

zizj∣∣qi − qj

∣∣︸ ︷︷ ︸
electrostatics

+
∑
bonds

ki (qi − q′i)
2

︸ ︷︷ ︸
bonded terms

−
∑
ij

Aij∣∣qi − qj

∣∣6︸ ︷︷ ︸
dispersion

+ . . .
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Potentials, potentials, potentials!

Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off

Ab initio calculations offer transferability and predictive power by solving
on-the-fly the electronic structure problem: expensive! Typically limited
to few 100’s atoms

Ĥ (q) Ψelectrons = EΨelectrons → V (q) ≡ E
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Potentials, potentials, potentials!

Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off

Recent developments try to ‘‘machine-learn’’ ab initio energies, trying to
get nearly as accurate with much less effort

4 MSE 421 - Ceriotti Stat-mech on a computer: Simulating and sampling



The curse of dimensionality

Statistical averaging is basically just integration. Should be easy do do
numerically....

Performing the integral by quadrature is impractical, because the number
of grid points grows exponentiallywith dimensionality
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Sampling by enumeration

Now think about computing averages for a spin lattice with N sites.
Enumeration of all possible spin states also grows exponentially: 2N

possible configurations must be traversed to cover all possibilities!

What saves us is (1) that often just a small fraction of microstates have
Pν � 0 and (2) that we don’t need to sample all states, only a
representative fraction
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Monte Carlo integration

To compute integrals without a grid, we could just generate uniformly
distributed random values, and compute the value of the function there
For instance, one can use this to compute the area of a circle relative to
an enclosing square by tossing random values on a square, and counting
how many have x2 + y2 < 1 [the fraction converges to π/4]

Points : 4040 π = 3.13564
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Integration by importance sampling

We can compute
∫
f (x)dx as area×

∑
i f (xi) /N

One could think of using the same trick: randomly-distributed points qi ,
and computing 〈A〉 ≈

∑
i P (qi)A (qi) /

∑
i P (qi). But P (q) is often very

irregular and most points do not contribute to the integral
Ideally, one would want to generate qi ’s distributed as P (q), and
compute 〈A〉 ≈ 1

M

∑
i A (qi). This is importance sampling.
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Ergodicity of sampling

Underlying assumption behind all of this is ergodicity:

lim
M→∞

1
M

∑
i

A (qi) =

∫
dqP (q)A (q)

This is an additional condition, that is very hard to prove in practice.
We always have a finiteM, so the question is: how much ergodic is the
trajectory? How can we ‘‘measure’’ ergodicity?
As we saw, this is closely related to the statistical error on 〈A〉

The key tool to assess the ergodicity of a trajectory for computing 〈A〉 is
the autocorrelation function

cAA (t) = 〈A (0)A (t)〉
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Using Monte Carlo for importance sampling

How to generate a sequence of points distributed as P (q)?
Monte Carlo moves q→ q′ that generate a new point given a previous point
consistent with P .
The move (typically) contains some randomness: probability p (q→ q′)

Necessary (& ‘‘sufficient’’) condition: P invariant under the move∫
dqP (q) p (q→ q′) = P (q′)

Sufficient condition: detailed balance

P (q) p (q→ q′) = P (q′) p (q′ → q)
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‘‘Equilibration’’

Detailed balance guarantees that the target distribution P (q) is
conserved. What if we start from the wrong distribution? Example:
two-state problem, with equilibrium distribution P1 = 0.1, P2 = 0.9.

1 Take p (1→ 2) = 0.45, p (2→ 1) = 0.05, p (1→ 1) = 0.55, p (2→ 2) = 0.95
2 Say we are in state 1 with prob. x1 and in 2 with prob. x2. Let pij = p (j → i).

One MC step is equivalent to a matrix-vector product x′ ← px
3 Repeat application of p corresponds to pN , that we can characterize in terms

of the N-th powers of its eigenvalues. Let’s see what are the eigenvalues and
eigenvectors of p
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‘‘Equilibration’’

Detailed balance guarantees that the target distribution P (q) is
conserved. What if we start from the wrong distribution? Example:
two-state problem, with equilibrium distribution P1 = 0.1, P2 = 0.9.

1 Take p (1→ 2) = 0.45, p (2→ 1) = 0.05, p (1→ 1) = 0.55, p (2→ 2) = 0.95
2 Say we are in state 1 with prob. x1 and in 2 with prob. x2. Let pij = p (j → i).

One MC step is equivalent to a matrix-vector product x′ ← px
3 Repeat application of p corresponds to pN , that we can characterize in terms

of the N-th powers of its eigenvalues. Let’s see what are the eigenvalues and
eigenvectors of p

p =

 0.8 0.3 0.5
0.1 0.3 0.1
0.1 0.4 0.4


One can build a transition matrix that violates detailed balance, still it has
a well-defined stationary distribution!
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Accept/reject: Metropolis moves

A simple way to generate moves consistent with detailed balance. Split
the move in two steps: generation/acceptance
p (q→ q′) = g (q→ q′) a (q→ q′)

Generate a new configuration with a criterion that is symmetric:
g (q→ q′) = g (q′ → q)
Accept the new configuration with probability

a (q→ q′) = min [1,P (q′) /P (q)] = min
[
1, e−β[V(q′)−V (q)]

]
.

In case of reject add again q to the list of samples!
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Problems with Monte Carlo

Must find a balance between having high acceptance, and making things
happen!

Fundamental problem: size-extensive changes in energy upon ‘‘global’’
moves reduce dramatically the acceptance

One should develop ‘‘smart’’ moves, hard to generalize to arbitrary
problems
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Sampling by molecular dynamics

An alternative: use Hamilton’s equations to generate a trajectory

ṗ = −∂V /∂q, q̇ = p/m

Does not obey detailed balance (but a generalization of it).

Does fulfill the necessary, ‘‘global’’ condition: could prove cleanly with a
Liouville operator formalism. The ingredients are:

Conservation of probability density

dP
dt
∝ e−βH dH

dt
,

dH
dt

=
∂H
∂p
· ṗ+

∂H
∂q
· q̇ = −∂H

∂p
· ∂H

∂q
+

∂H
∂q
· ∂H

∂p
= 0

Conservation of phase-space volume
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Integrating the equations of motion

MD requires discrete time step dt integration of Hamilton’s equations

Many integrators exist. My favourite: symmetric-split velocity Verlet

Time-reversible, symplectic, simple implementation, easy to extend
Monitor total energy fluctuations and drift to get a grip of the integration
error

p← p− ∂V
∂q

dt
2

q← q +
p
m
dt

p← p− ∂V
∂q

dt
2

Integration error leads to (small) departure from the (micro)canonical
ensemble, but no problem with system size: MD assumes the error is split
evenly across the system
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Conserved energy in Hamiltonian MD

The probability distribution is conserved globally, i.e. if we started many
trajectories from the canonical ensemble, we would sample the whole of
it

However, individual trajectories conserve the total energy H (p,q), and so
only sample partially the canonical distribution

We have an ergodicity problem with MD
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Constant-temperature molecular dynamics

Plain, Hamiltonian MD conserves energy and is not ergodic

Must modify the dynamics to model the interaction with a heat bath
(thermostats)
Andersen thermostat: randomize atomic velocities every now and then

Exploits factorization of the canonical partition function
Simple, physically sound and effective
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Local and global thermostats

‘‘Global’’ thermostats enforce the correct distribution of the total kinetic
energy (Berendsen, Nosé-Hoover, Bussi)

Gentle on the dynamics, but rely on the intrinsic Hamiltonian dynamics to
relax internal degrees of freedom

‘‘Local’’ thermostats enforce the correct distribution of each component
of the momentum (Andersen, Langevin, massive NHC)

More aggressive, slower collective dynamics, but also effective for poorly
ergodic systems (e.g. crystals)
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Deterministic and stochastic thermostats

Nosé-Hoover thermostat: extended-Lagrangian approach, deterministic
equations of motion

q̇ =
p
m
, ṗ = −∂V

∂q
− p

ps
Q
, ṗs =

p2

m
− 1
β
, ṡ =

ps
Q

Not ergodic, must introduce chains to make the dynamics chaotic
The local version is not rotationally invariant
Integration is not straightforward, must use multiple time step

Langevin-style thermostats: intrinsically stochastic dynamic

q̇ =
p
m
, ṗ = −∂V

∂q
− γp +

√
2mγ/βξ, 〈ξ (t) ξ (0)〉 = δ (t)

Ergodic, very natural model for coupling to a heat bath
Linear equations, very stable and easy to integrate
Require some care with the random number generator (parallelism!)
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Other ensembles

It is possible to modify the equations that underlie MD (or MC!) to sample
several different ensembles

1 Plain Hamilton’s equations sample the microcanonical ensemble
2 A thermostat allows for energy fluctuations and enables canonical

sampling
3 It is also possible to introduce a barostat, equations that allow for volume

fluctuations to sample an isobaric/isothermal ensemble
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