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Averages in the canonical ensemble

e The canonical ensemble describes a system in contact with a thermal
reservoir at temperature T = 1/kgf

o Averages of observables can be computed as integrals over the canonical
Boltzmann distribution

/dqdpqu) (P.q) ZAP

o The goal of a simulation is to perform these averages/integrals by
sampling the states that have a non-negligible probability

2 MSE 421 - Ceriotti Stat-mech on a computer: Simulating and sampling



Atoms and molecules

o Classical dynamics of a system of atoms with positions q and momenta p,
described by the Hamiltonian

H(p.q) = Z T

o We assume V is given (force fields, electronic structure calculation)
o Inall cases, strictly Born-Oppenheimer
o Nuclei are treated as classical, distinguishable particles

o The configuration and momentum parts of P (p, q) factor out, and the
momentum part P (p) is trivial
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Potentials, potentials, potentials!

o Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off

A ‘machine learning”
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ab initio
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forcefields

cost
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Potentials, potentials, potentials!

o Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off

o Empirical forcefields try to represent interactions with “simple”
functional forms. Time-consuming and error-prone fitting procedure, but
then easy to use and inexpensive. A must for large systems
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Potentials, potentials, potentials!

o Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off

e Abinitio calculations offer transferability and predictive power by solving
on-the-fly the electronic structure problem: expensive! Typically limited
to few 100’s atoms

I:I (q> \I'electrons = E\Delectrons - 4 (Q) =E
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Potentials, potentials, potentials!

o Actually, constructing a good model for V (q) is the most crucial step!
Accuracy/cost trade-off

o Recent developments try to “machine-learn” ab initio energies, trying to
get nearly as accurate with much less effort
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5

The curse of dimensionality

o Statistical averaging is basically just integration. Should be easy do do
numerically....

o Performing the integral by quadrature is impractical, because the number
of grid points grows exponentially with dimensionality
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Sampling by enumeration

o Now think about computing averages for a spin lattice with N sites.
Enumeration of all possible spin states also grows exponentially: 2V
possible configurations must be traversed to cover all possibilities!

o What saves us is (1) that often just a small fraction of microstates have
P, > 0 and (2) that we don’t need to sample allstates, only a
representative fraction

GPOOOODODO pB

o000
ESAS S ASATa"a
ASaS S AT a~acs
ASAS S ES A=A s
ESASASES ATAS S
SSASASES A=a=2
ASASASACacacs
ASASASES S aS
ASES AS ACacacs
ESASSSES A2

6 MSE 421 - Ceriotti Stat-mech on a computer: Simulating and sampling



Monte Carlo integration

e To compute integrals without a grid, we could just generate uniformly
distributed random values, and compute the value of the function there
e Forinstance, one can use this to compute the area of a circle relative to
an enclosing square by tossing random values on a square, and counting
how many have x? + y? < 1 [the fraction converges to /4]
Points : 40 Tt =31
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Monte Carlo integration

e To compute integrals without a grid, we could just generate uniformly
distributed random values, and compute the value of the function there

e Forinstance, one can use this to compute the area of a circle relative to
an enclosing square by tossing random values on a square, and counting
how many have x? +y2 <1 [the fraction converges to /4]

Points : 4040 st =3.13564

n,
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Integration by importance sampling

o We can compute [ f(x)dxasareax > ;f(x) /N
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Integration by importance sampling

o We can compute [ f(x)dxasareax > ;f(x) /N
e One could think of using the same trick: randomly-distributed points q;,

and computing (A) =~ >~ P(q;) A(q;) />, P(q,). But P(q) is often very
irregular and most points do not contribute to the integral

°.:..'..:.:. .'.

MSE 421 - Ceriotti Stat-mech on a computer: Simulating and sampling



Integration by importance sampling

o We can compute [ f(x)dxasareax > ;f(x) /N

e One could think of using the same trick: randomly-distributed points q;,
and computing (A) =~ >~ P(q;) A(q;) />, P(q,). But P(q) is often very
irregular and most points do not contribute to the integral

o Ideally, one would want to generate q;'s distributed as P(q), and
compute (A) ~ 1+ >°; A(q;). This is importance sampling.
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Ergodicity of sampling

e Underlying assumption behind all of this is ergodicity:
. 1
Jm 2> Ad@) = /qu(q)A(q>
1

o This is an additional condition, that is very hard to prove in practice.

o We always have a finite M, so the question is: how much ergodic is the
trajectory? How can we “measure” ergodicity?

o As we saw, this is closely related to the statistical error on (A)

o The key tool to assess the ergodicity of a trajectory for computing (A) is
the autocorrelation function

Can (£) = (A(0) A (L))
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Using Monte Carlo for importance sampling

o How to generate a sequence of points distributed as P (q)?
o Monte Carlo moves q — q’ that generate a new point given a previous point
consistent with P.
o The move (typically) contains some randomness: probability p(q — q')

o Necessary (& “sufficient”) condition: P invariant under the move
/qu(q>p<q —q)=P(q)
o Sufficient condition: detailed balance

P(@p@—a)=P(d)p(a —aq)
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Using Monte Carlo for importance sampling

o How to generate a sequence of points distributed as P (q)?
o Monte Carlo moves q — q’ that generate a new point given a previous point
consistent with P.
o The move (typically) contains some randomness: probability p(q — q')

o Necessary (& “sufficient”) condition: P invariant under the move
/qu(q>p<q —q)=P(q)
o Sufficient condition: detailed balance
p(@a—q)/pa@ —q)=P(q)/P(q) = e V(¥)-V@)]
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“Equilibration”

o Detailed balance guarantees that the target distribution P (q) is
conserved. What if we start from the wrong distribution? Example:
two-state problem, with equilibrium distribution P; = 0.1, P, = 0.9.

© Take p(1 —2)=0.45p(2 — 1) =0.05p(1 = 1) =0.55p(2 — 2) = 0.95
@ Say we are in state 1 with prob. x; and in 2 with prob. x.. Let p; = p (j — /).
One MC step is equivalent to a matrix-vector product X’ < px

P11 D22

P11 P22

@)
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“Equilibration”

o Detailed balance guarantees that the target distribution P (q) is
conserved. What if we start from the wrong distribution? Example:
two-state problem, with equilibrium distribution P; = 0.1, P, = 0.9.

O Takep(1—2)=0.45p(2—1)=0.05p(1—1)=0.55p(2 —2)=0.95

@ Say we are in state 1 with prob. x; and in 2 with prob. x.. Let p; = p (j — /).
One MC step is equivalent to a matrix-vector product X’ < px

O Repeat application of p corresponds to p", that we can characterize in terms

of the N-th powers of its eigenvalues. Let’s see what are the eigenvalues and
eigenvectors of p

0.55 0.05 05 0.1
P= ( 0.45 0.95 ) = Aa =05 U0 = ( 05 ) Ap =15 Uy = ( 0.9 )
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“Equilibration”

o Detailed balance guarantees that the target distribution P (q) is
conserved. What if we start from the wrong distribution? Example:
two-state problem, with equilibrium distribution P; = 0.1, P, = 0.9.

O Takep(1—2)=0.45p(2—1)=0.05p(1—1)=0.55p(2 —2)=0.95

@ Say we are in state 1 with prob. x; and in 2 with prob. x.. Let p; = p (j — /).
One MC step is equivalent to a matrix-vector product X’ < px

O Repeat application of p corresponds to p", that we can characterize in terms

of the N-th powers of its eigenvalues. Let’s see what are the eigenvalues and
eigenvectors of p

0.55 0.05 05 0.1
P= ( 0.45 0.95 ) = Aa =05 U0 = ( 05 ) Ap =15 Up = ( 0.9 )

o Repeated application of p will progressively kill off the component ug,
and let only u -- the stationary distribution
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“Equilibration”

o Detailed balance guarantees that the target distribution P (q) is
conserved. What if we start from the wrong distribution? Example:
two-state problem, with equilibrium distribution P; = 0.1, P, = 0.9.

O Takep(1—2)=0.45p(2—1)=0.05p(1—1)=0.55p(2 —2)=0.95

@ Say we are in state 1 with prob. x; and in 2 with prob. x.. Let p; = p (j — /).
One MC step is equivalent to a matrix-vector product X’ < px

O Repeat application of p corresponds to p", that we can characterize in terms

of the N-th powers of its eigenvalues. Let’s see what are the eigenvalues and
eigenvectors of p

0.8 03 0.5
p=| 01 03 0.1
0.1 0.4 04

e One can build a transition matrix that violates detailed balance, still it has
a well-defined stationary distribution!
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Accept/reject: Metropolis moves

o Asimple way to generate moves consistent with detailed balance. Split
the move in two steps: generation/acceptance
p@—qa)=g(q@—q)a(q—q)

o Generate a new configuration with a criterion that is symmetric:
g@—q)=g(@ —aq)
o Accept the new configuration with probability
a(q -+ q') = min[1,P(q) /P (@)] = min [1,e~ 1) V@],
o In case of rejec/t add again q to the list of samples!
9(a—d) ¢
~q Yes! -

P(q') /P (q) > mgl0,1) 7

No! ’

q

Metropolis et al., J. Chem. Phys 1953
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Problems with Monte Carlo

o Must find a balance between having high acceptance, and making things
happen!

o Fundamental problem: size-extensive changes in energy upon “global”
moves reduce dramatically the acceptance

e One should develop “smart” moves, hard to generalize to arbitrary
problems
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Sampling by molecular dynamics

e An alternative: use Hamilton’s equations to generate a trajectory

p=-9V/da, aq=p/m

e Does not obey detailed balance (but a generalization of it).

o Does fulfill the necessary, “global” condition: could prove cleanly with a
Liouville operator formalism. The ingredients are:

o Conservation of probability density

dP ondH M _OH o OH . OH OH O OH _
dt dt’ dt — op P oq 9= op 0q 0q Op

o Conservation of phase-space volume
dq(t)
a(0) alt)
dq(0)
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Integrating the equations of motion

e MD requires discrete time step dt integration of Hamilton’s equations
e Many integrators exist. My favourite: symmetric-split velocity Verlet
o Time-reversible, symplectic, simple implementation, easy to extend

ov

P oq 2
P

QFq+Eﬂ

v

P aq 2
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Integrating the equations of motion

e MD requires discrete time step dt integration of Hamilton’s equations
e Many integrators exist. My favourite: symmetric-split velocity Verlet

o Time-reversible, symplectic, simple implementation, easy to extend
o Monitor total energy Fluctuations and drift to get a grip of the integration

error
Drift of the conserved quantity in MD
0.15 T T — T T
L p ova W
P<P aq 2 - o.1t dt=15 fs ~ 1
P dt E: 0.05} W
a—q+ : dt=10 fsx\
VvV dt dt=0.5 fs \
P—P— 9a 2 € A Pubiid
q 0 5 10 15

T [ps]
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Integrating the equations of motion

e MD requires discrete time step dt integration of Hamilton’s equations
e Many integrators exist. My favourite: symmetric-split velocity Verlet

o Time-reversible, symplectic, simple implementation, easy to extend
o Monitor total energy Fluctuations and drift to get a grip of the integration

error
Drift of the conserved quantity in MD
0.15 T T — T T
Cp v |
P<P aq 2 N o.1r dt=15 fs ~ 1
P dt % 0 05. W
a—q+ : r dt=10 fs\
VvV dt dt=0.5 fs \
P—P— 9a 2 € A Pubiid
q 0 5 10 15

T [ps]

o Integration error leads to (small) departure from the (micro)canonical
ensemble, but no problem with system size: MD assumes the error is split
evenly across the system
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Conserved energy in Hamiltonian MD

e The probability distribution is conserved globally, i.e. if we started many
trajectories from the canonical ensemble, we would sample the whole of
it

e However, individual trajectories conserve the total energy H (p, q), and so
only sample partially the canonical distribution

o We have an ergodicity problem with MD

P

~_—

dP/dt =0 dH/dt =0
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Constant-temperature molecular dynamics

e Plain, Hamiltonian MD conserves energy and is not ergodic

o Must modify the dynamics to model the interaction with a heat bath
(thermostats)

T
dH/dt = 0

Andersen, J. Chem. Phys. 1980
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Constant-temperature molecular dynamics

e Plain, Hamiltonian MD conserves energy and is not ergodic

o Must modify the dynamics to model the interaction with a heat bath
(thermostats)

o Andersen thermostat: randomize atomic velocities every now and then

o Exploits factorization of the canonical partition function
o Simple, physically sound and effective

Andersen, J. Chem. Phys. 1980
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Constant-temperature molecular dynamics

e Plain, Hamiltonian MD conserves energy and is not ergodic

o Must modify the dynamics to model the interaction with a heat bath
(thermostats)

o Andersen thermostat: randomize atomic velocities every now and then

o Exploits factorization of the canonical partition function
o Simple, physically sound and effective

\
]

b - —

Andersen, J. Chem. Phys. 1980
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Local and global thermostats

o “Global” thermostats enforce the correct distribution of the totalkinetic
energy (Berendsen, Nosé-Hoover, Bussi)
o Gentle on the dynamics, but rely on the intrinsic Hamiltonian dynamics to
relax internal degrees of freedom
e "Local” thermostats enforce the correct distribution of each component
of the momentum (Andersen, Langevin, massive NHC)
o More aggressive, slower collective dynamics, but also effective for poorly
ergodic systems (e.g. crystals)

P oTed e

.-:..
630 o df
local therm. J
P(K) oxx K3N/2=1¢=BK P(p) x e~°/2m
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Deterministic and stochastic thermostats

o Nosé-Hoover thermostat: extended-Lagrangian approach, deterministic
equations of motion

. p . ov. ps . p> 1 . ps
= — = —_-— — —_— = — — — S = —
q mv p 8q p Q ) pS m 6, Q
o Not ergodic, must introduce chains to make the dynamics chaotic

o The local version is not rotationally invariant
o Integration is not straightforward, must use multiple time step

o Langevin-style thermostats: intrinsically stochastic dynamic

a=P p= —%‘; N 2mBE (E(E(0) =5 (b)

m

o Ergodic, very natural model for coupling to a heat bath
o Linear equations, very stable and easy to integrate
o Require some care with the random number generator (parallelism!)

Nosé, J. Chem. Phys. 1984; Hoover, Phys. Rev. A 1985; Schneider & Stoll, Phys. Rev. B 1978
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Other ensembles

o Itis possible to modify the equations that underlie MD (or MC!) to sample
several different ensembles

@ Plain Hamilton’s equations sample the microcanonical ensemble

Pxd(E—E)(V V)
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Other ensembles

o Itis possible to modify the equations that underlie MD (or MC!) to sample
several different ensembles

@ Plain Hamilton’s equations sample the microcanonical ensemble
@ Athermostat allows for energy fluctuations and enables canonical
sampling
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Other ensembles

o Itis possible to modify the equations that underlie MD (or MC!) to sample
several different ensembles

@ Plain Hamilton’s equations sample the microcanonical ensemble

@ Athermostat allows for energy fluctuations and enables canonical
sampling

@ ltis also possible to introduce a barostat, equations that allow for volume
fluctuations to sample an isobaric/isothermal ensemble
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