THEORY OF TRACK EFFECTS IN RADIOLYSIS OF WATER

instead, only water molecules with different amounts of
excitation energy. These may follow any of three paths:

(a) The excitation energy is lost without dissociation
into radicals (by collision, or possibly radiation, as in
aromatic hydrocarbons).

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage.

(c) The molecules dissociate and escape from the
cage. In this case we would not expect them to move
more than a few molecular diameters through the dense
medium before being thermalized.

In accordance with the notation introduced by
Burton, Magee, and Samuel,” the molecules following

2 Burton, Magee, and Samuel, J. Chem. Phys. 20, 760 (1952).
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paths (a) and (b) can be designated HyO* and those
following path (c) can be designated H;Of. It seems
reasonable to assume for the purpose of these calcula-
tions that the ionized H;O molecules will become the
H,0t molecules, but this is not likely to be a complete
correspondence.

In conclusion we would like to emphasize that the
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters
used. However, this treatment is classical, and a correct
treatment must be wave mechanical; therefore the
result of this section cannot be taken as an a priors
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the
occurrence of electron capture as described by this
crude calculation. Further work is clearly needed.
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

1. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California.

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number & may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define d45, the minimum distance between particles 4
and B, as the shortest distance between 4 and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances 4B which
can make a substantial contribution; hence we need
consider only the minimum distance ds.

1 We will use the: two-dimensional nomenclature here since it
is easier to visualize, The extension to three dimensions is obvious.
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Our method in this respect is similar to the cell
method except that our cells contain several hundred
particles instead of one. One would think that such a
sample would be quite adequate for describing any one-
phase system. We do find, however, that in two-phase
systems the surface between the phases makes quite a
perturbation. Also, statistical fluctuations may be
sizable.

If we know the positions of the N particles in the
square, we can easily calculate, for example, the poten-
tial energy of the system,

E=} 5 T V(). M

(Here V is the potential between molecules, and d;; is
the minimum distance between particles ¢ and j as
defined above.)

In order to calculate the properties of our system we
use the canonical ensemble. So, to calculate the equi-
librium value of any quantity of interest F,

F’=[fF exp(—E/kT)dZNszN‘I]/

[ ] exp(—E/kT)dwdeq], @

where (@?"pd?"q) is a volume element in the 4V-dimen-
sional phase space. Moreover, since forces between
particles are velocity-independent, the momentum in-
tegrals may be separated off, and we need perform only
the integration over the 2¥V-dimensional configuration
space. It is evidently impractical to carry out a several
hundred-dimensional integral by the usual numerical
methods, so we resort to the Monte Carlo method.}
The Monte Carlo method for many-dimensional in-
tegrals consists simply of integrating over a random
sampling of points instead of over a regular array of
points,

Thus the most naive method of carrying out the
integration would be to put each of the & particles at a
random position in the square (this defines a random
point in the 2N-dimensional configuration space), then
calculate the energy of the system according to Eq. (1),
and give this configuration a weight exp(—E/kT).
This method, however, is not practical for close-packed
configurations, since with high probability we choose a
configuration where exp(— E/kT) is very small; hence
a configuration of very low weight. So the method we
employ is actually a modified Monte Carlo scheme,
where, instead of choosing configurations randomly,
then weighting them with exp(—E/kT), we choose

1 This method has been proposed independently by J. E. Mayer
and by S. Ulam. Mayer suggested the method as a tool to deal
with the problem of the liquid state, while Ulam proposed it as a

procedure of general usefulness. B. Alder, J. Kirkwood, S. Frankel,
and V. Lewinson discussed an application very similar to ours.
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configurations with a probability exp(—E/kT) and
weight them evenly.

This we do as follows: We place the ¥ particles in any
configuration, for example, in a regular lattice. Then
we move each of the particles in succession according
to the following prescription :

X—X+ab

Y—Y+ afy, (3)

where o is the maximum allowed displacement, which
for the sake of this argument is arbitrary, and £, and &, -
are random numbers§ between (—1) and 1. Then, after
we move a particle, it is equally likely to be anywhere
within a square of side 2a centered about its original
position. (In accord with the periodicity assumption,
if the indicated move would put the particle outside the
square, this only means that it re-enters the square from
the opposite side.)

We then calculate the change in energy of the system
AE, which is caused by the move. If AE<QO, i.e, if
the move would bring the system to a state of lower
energy, we allow the move and put the particle in its
new position. If AE>O0, we allow the move with
probability exp(—AE/kT); ie., we take a random
number £; between 0 and 1, and if ¢ <exp(—AE/kT),
we move the particle to its new position. If £
>exp(—AE/kT), we return it to its old position.
Then, whether the move has been allowed or not, i.e.,
whether we are in a different configuration or in the
original configuration, we consider that we are in a new
configuration for the purpose of taking our averages. So

F=(1/M) § v, @)

where F; is the value of the property F of the system
after the jth move is carried out according to the com-
plete prescription above. Having attempted to move a
particle we proceed similarly with the next one.

We now prove that the method outlined above does
choose configurations with a probability exp(— E/kT).
Since a particle is allowed to move to any point within
a square of side 2« with a finite probability, it is clear
that a large enough number of moves will enable it to
reach any point in the complete square.|| Since this is
true of all particles, we may reach any point in con-
figuration space. Hence, the method is ergodic.

Next consider a very large ensemble of systems. Sup-
pose for simplicity that there are only a finite number of
statesY of the system, and that v, is the number of

§ It might be mentioned that the random numbers that we
used were generated by the middle square process. That is, if &*
is an m digit random number, then a new random number £,
is given as the middle m digits of the complete 2 digit square of £,.

| In practice it is, of course, not necessary to make enough
moves to allow a particle to diffuse evenly throughout the system
since configuration space is symmetric with respect to interchange
of particles.

9 A state here means a given point in configuration space.

Downloaded 12 Jan 2010 to 129.132.128.136. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



CALCULATION OF STATE BY FAST MACHINES

systems of the ensemble in state . What we must
prove is that after many moves the ensemble tends to a
distribution

vex exp(—E,/kT).

Now let us make a move in all the systems of our
ensemble. Let the a priori probability that the move
will carry a system in state r to state s be P,,. [ By the
a priori probability we mean the probability before
discriminating on exp(—AE/kT).] First, it is clear that
P,,=P,,, since according to the way our game is played
a particle is equally likely to be moved anywhere within
a square of side 2« centered about its original position.
Thus, if states » and s differ from each other only by the
position of the particle moved and if these positions
are within each other’s squares, the transition prob-
abilities are equal; otherwise they are zero. Assume
E,> E,. Then the number of systems moving from state
7 to state s will be simply »,P,,, since all moves to a
state of lower energy are allowed. The number moving
from s to r will be »,P,, exp(— (E.,— E,)/kT), since
here we must weigh by the exponential factor. Thus the
net number of systems moving from s to r is

P, (v, exp(— (E.—E,)/kT)—v,).
So we see that between any two states r and s, if

(v/v:)>[exp(—E,/kT)/exp(—E/kT)],  (6)

on the average more systems move from state r to
state s. We have seen already that the method is ergodic;
i.e.,, that any state can be reached from any other,
albeit in several moves. These two facts mean that our
ensemble must approach the canonical distribution. It
is, incidentally, clear from the above derivation that
after a forbidden move we must count again the initial
configuration. Not to do this would correspond in the
above case to removing from the ensemble those sys-
tems which tried to move from s to r and were forbidden.
This would unjustifiably reduce the number in state s
relative to 7.

The above argument does not, of course, specify how
rapidly the canonical distribution is approached. It may
be mentioned in this connection that the maximum dis-
placement o must be chosen with some care; if too large,
most moves will be forbidden, and if too small; the con-
figuration will not change enough. In either case it will
then take longer to come to equilibrium.

For the rigid-sphere case, the game of chance on
exp(—AE/ET) is, of course, not necessary since AE is
either zero or infinity. The particles are moved, one at
a time, according to Eq. (3). If a sphere, after such a
move, happens to overlap another sphere, we return it
to its original position.

III. SPECIALIZATION TO RIGID SPHERES
IN TWO DIMENSIONS

A. The Equation of State

The virial theorem of Clausius can be used to give
an equation of state in terms of 7, the average den-

)
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Fi1c. 1. Collisions of rigid spheres.

sity of other particles at the surface of a particle.
Let X and X,{n® represent the total and the internal
force, respectively, acting on particle 4, at a position
1;. Then the virial theorem can be written

<Z X, @0 rdp= 2PA+<Z X009 pdy=2Exin. (7)

Here P is the pressure, 4 the area, and Ey;, the total
kinetic energy,

Ekin= Nmz')Z/Z

of the system of ¥ particles.

Consider the collisions of the spheres for convenience
as represented by those of a particle of radius dy, twice
the radius of the actual spheres, surrounded by 7 poeint
particles per unit area. Those surrounding particles in
an area of 2wde cospAi, traveling with velocity v at
an angle ¢ with the radius vector, collide with the cen-
tral particle provided |¢| <w/2. (See Fig. 1.) Assuming
elastic recoil, they each exert an average force during
the time At on the central particle of

2my cosp/Al.

One can see that all ¢’s are equally probable, since for
any velocity-independent potential between particles
the velocity distribution will just be Maxwellian,
hence isotropic. The total force acting on the central
particle, averaged over ¢, over time, and over velocity, is
F = mszrdoﬁ. (8)

The sum :

& Xm0 r
i
is
—3 242 riiFu),
i
]

with F,; the magnitude of the force between two par-
ticles and 7;; the distance between them. We see that
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F1G. 2. Initial trigonal lattice.

rij=do and 3 ;F;; is given by Eq. (8), so we have
(X X9 -1 )p = — (Nm?/2)wd 0. (9)

Substitution of (9) into (7) and replacement of
(N/2)mi? by Eyin gives finally

PA=FEyn(147da/2)=NkT 1+ndei/2). (10)

This equation shows that a determination of the one
quantity 7, according to Eq. (4) as a function of 4,
the area, is sufficient to determine the equation of
state for the rigid spheres.

B. The Actual Calculation of 7

We set up the calculation on a system composed of
N =224 particles (4=0, 1- - -223) placed inside a square
of unit side and unit area. The particles were arranged
initially in a trigonal lattice of fourteen particles per
row by sixteen particles per column, alternate rows
being displaced relative to each other as shown in Fig. 2.
This arrangement gives each particle six nearest neigh-
bors at approximately equal distances of d=1/14
from it. .

Instead of performing the calculation for various
areas A and for a fixed distance dy, we shall solve the
equivalent problem of leaving 4 =1 fixed and changing
do. We denote by A, the area the particles occupy in
close-packed arrangement (see Fig. 3). For numerical
convenience we defined an auxiliary parameter v, which
we varied from zero to seven, and in terms of which the
ratio (4/4,) and the forbidden distance d, are defined
as follows:

do=d(1—2%), d=(1/14), (11a)
(A/A0)=1/ (342N /2)=1/0.98974329 (1~ 25)2. (11b)
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Fic. 3. The close-packed arrangement for determining 4.

The unit cell is a parallelogram with interior angle 60°,
side do, and altitude 3*dy/2 in the close-packed system.

Every configuration reached by proceeding according
to the method of the preceding section was analyzed in
terms of a radial distribution function N (+*). We chose
a K>1 for each » and divided the area between wd¢?
and K?rd¢® into sixty-four zones of equal area AA42

Ad2= (K*—1)xd2/64.

We then had the machine calculate for each configura-
tion the number of pairs of particles ¥, (=1, 2, - - -64)
separated by distances  which satisfy

(m— 1)AA+rd? <ar* < mAA-wd . (12)
The N.,. were averaged over successive configurations
according to Eq. (4), and after every sixteen cycles (a
cycle consists of moving every particle once) were extra-
polated back to r’=d’ to obtain Ny. This N; differs
from 7 in Eq. (10) by a constant factor depending on
N and K.

The quantity K was chosen for each » to give reason-
able statistics for the ¥,,. It would, of course, have been
possible by choosing fairly large K’s, with perhaps a
larger number of zones, to obtain N (#?) at large dis-
tances. The oscillatory behavior of N (r?) at large dis-
tances is of some interest. However, the time per cycle
goes up fairly rapidly with X and with the number of
zones in the distance analysis. For this reason only the
behavior of N (z?) in the neighborhood of d¢* was in-
vestigated.

The maximum displacement a of Eq. (3) was set to
{(d—do). About half the moves in a cycle were forbidden
by this choice, and the initial approach to equilibrium
from the regular lattice was fairly rapid.
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Fi1c. 4. A plot of (PA/NkT)—1 versus (A/As)—1. Curve A
(solid line) gives the results of this paper. Curves B and C (dashed
and dot-dashed lines) give the results of the free volume theory
and of the first four virial coefficients, respectively.

IV. NUMERICAL RESULTS FOR RIGID SPHERES
IN TWO DIMENSIONS

We first ran for something less than sixteen cycles in
order to get rid of the effects of the initial regular con-
figuration on the averages. Then about forty-eight to
sixty-four cycles were run at

»=2,4,5,55,6,6.25, 6.5, and 7.

Also, a smaller amount of data was obtained at v=0, 1,
and 3. The time per cycle on the Los Alamos MANTAC
is approximately three minutes, and a given point on the
pressure curve was obtained in four to five hours of
running. Figure 4 shows (PA/NkT)—1versus (A/4,)—1
on a log-log scale from our results (curve 4), compared
to the free volume equation of Wood! (curve B) and to
the curve given by the first four virial coefficients
(curve C). The last two virial coefficients were obtained
by straightforward Monte Carlo integration on the
MANIAC (see Sec. V). It is seen that the agreement
between curves 4 and B at small areas and between
curves A and C at large areas is good. Deviation from
the free volume theory begins with a fairly sudden break
at v=6(4/4>1.8).

A sample plot of the radial distribution function for
v=2_§ is given in Fig. 5. The various types of points repre-
sent values after sixteen, thirty-two, and forty-eight
cycles. For »=35, least-square fits with a straight line
to the first sixteen N,, values were made, giving extra-
polated values of N;0=6367, N3;®=6160, and N;®
=6377. The average of these three was used in con-
structing PA/NET. In general, least-square fits of the
first sixteen to twenty ,’s by means of a parabola, or,
where it seemed suitable, a straight line, were made.

! William W. Woed, J. Chem. Phys. 20, 1334 (1952).
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Fic. 5. The radial distribution function N., for »=5, (4/4¢)
=1.31966, K=1.5. The average of the extrapolated values of
Ny_in Ny=6301. The resultant value of (PA/NET)—1 is
64N, /N?(K2—1) or 6.43. Values after 16 cycles, ®; after 32, X;
and after 48, O.

The etrors indicated in Fig. 4 are the root-mean-square
deviations for the three or four N; values. Our average
error seemed to be about 3 percent.

Table I gives the results of our calculations in numeri-
cal form. The columns are », 4/ Ao, (PA/NkT)—1, and,
for comparison purposes, (PA/NkT—1) for the free
volume theory and for the first four coefficients in the
virial coefficient expansion, in that order, and finally
PAo/NET from our results.

V. THE VIRIAL COEFFICIENT EXPANSION
One can show? that
(PA/NET)~1=C1(A0/A)+C2(4o/A)?
+Cs(A0/A)Y+Co(A0/A)H-0(4/A4)%,
Ci=7/3%, Co=4m24;4/9,
C3=7F3(6A4,5—3A4,4—A4, ﬁ)/3¥,
C4= (81!'3/135) . [12A 55— 60A 5, 6,"' 10A 5, s”

+ 3045746045 7"+1045 7" —30454
— 15455+ 1045 9— A5,10].  (13)
TaBLE I. Results of this calculation for (PA/NkT)—1=X,

compared to the free volume theory (X5) and the four-term virial
expansion (Xs). Also (PAo/NkT) from our calculations.

4 (A/40) X1 X: X3 (PAo/NkT)

2 1.04269 49.17 47.35 9.77 48.11

4 1.14957 13.95 13.85 7.55 13.01

5 1.31966 6.43 6.72 5.35 5.63
‘5.5 1.4909 4.41 4.53 4.02 3.63

6 1.7962 2.929 2.939 2.680 2.187
6.25 2.04616 2.186 2.323 2.065 1.557
6.5 241751 1.486 1.802 1.514 1.028

7 4.04145 0.6766 0.990 0.667 0.4149

2J. E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley and Sons, Inc., New York, 1940), pp. 277-291.
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F1G. 6. Schematic diagrams for the various area integrals.

The coefficients 4, ; are cluster integrals over configura-
tion space of ¢ particles, with & bonds between them.
In our problem a bond is established if the two particles
overlap. The cluster integral is the volume of configura-
tion space for which the appropriate bonds are estab-
lished. If % bonds can be distributed over the 7 particles
in two or more different ways without destroying the
irreducibility of the integrals, the separate cases are
distinguished by primes. For example, 43, is given

schematically by the diagram

and mathematically as follows: if we define f(r;;) by
flri)=1
f(rii)=0

A3,3°

if 7’,'j<d,
if 7’,'j> d,
then

1
A3.3=—f‘ . ‘fdxldx2dxady1dyzdy3(fmfzsfm).
w2dt

The schematics for the remaining integrals are indicated
in Fig. 6.

The coefficients A3 3, A4, and Ay were calculated
algebraically, the remainder numerically by Monte
Carlo integration. That is, for 4, 5 for example, particle
1 was placed at the origin, and particles 2, 3, 4, and 5
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were put down at random, subject to fio=fa3=fa
= fi5=1. The number of trials for which f4=1, divided
by the total number of trials, is just A4g,s.

The data on A, ¢ is quite reliable. We obtained

A4, G/A4,4= 0752 (:EOOOZ)

However, because of the relatively large positive and
negative terms in Cy of Eq. (13), the coefficient Cy,
being a small difference, is less accurate. We obtained

C=87%(0.585)/135 (£~5 percent).
Our final formula is

(PA/NET)—1=1.813799(4/A4)
+2.57269(Ao/A)*+3.179(Ao/A)?
+3.38(40/A)+0(4o/4)5. (14)

This formula is plotted in curve C of Fig. 4 and tabu-
lated for some values of (4/4,) in column 5 of Table I.
It is seen in Fig. 4 that the curves agrees very well with
our calculated equation of state for (4/4¢)>2.5. In
this region both the possible error in our last virial
coefficients and the contribution of succeeding terms in
the expansion are quite small (less than our probable
statistical error) so that the virial expansion should be
accurate.

VI. CONCLUSION

The method of Monte Carlo integrations over con-
figuration space seems to be a feasible approach to
statistical mechanical problems which are as yet not
analytically soluble. At least for a single-phase system
a sample of several hundred particles seems sufficient.
In the case of two-dimensional rigid spheres, runs made
with 56 particles and with 224 particles agreed within
statistical error. For a computing time of a few hours
with presently available electronic computers, it seems
possible to obtain the pressure for a given volume and
temperature to an accuracy of a few percent.

In the case of two-dimensional rigid spheres our re-
sults are in agreement with the free volume approxima-
tion for 4/4,<1.8 and with a five-term virial expansion
for A/A¢>2.5. There is no indication of a phase
transition.

Work is now in progress for a system of particles with
Lennard-Jones type interactions and for three-dimen-
sional rigid spheres.
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