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Outline

This class summarize Chapter 1 and 2 of Yeomans “Statistical Mechanics of
Phase Transitions” Oxford Science Publications

The chapters, as well as all other chapters of the book will be uploaded online,
the book is excellent and you should consider having it for your own reference

Note that the content in Chapter 1 are just a general introduction to the whole
book, read it with ease, we will come back to each single one of them.

In general this and next class cover the first half of Chapter 5 of your book, the
rest will be covered after the Lab on Ising Model

Scope of this first class is to bridge what you know on classical mechanics with
what you have learned on Statistical Mechanics




Where are we with the course?
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What is the main link between the
two thermodynamics treatment?
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The importance of Helmoltz free energy

Table 2.1. The relation of the thermodynamic variables pertinent to
a magnetic system to the partition function

Thermodynamic variables for a magnet

“ First law: dU = TdS — MdH ' l

Partition function
(? C— zr H)=%,cFE

|

A [N Free energy

F=—kThhZ
Internal energy Entropy Magnetization
a — 8F _ aF
Uz_}f;:?z S_—(B_T)H M__(g_;;q‘
=(U-F)/T
Specific heat Specific heat Isothermal susceptibility 5

(constant H)  (constant X = H, M)
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The importance of Helmoltz free energy

Table 2.2. The relation of the thermodynamic variables pertinent to
a fluid system to the partition function

Thermodynamic variables for a fluid

First law: dU = TdS — PdV (\

Partition function

Z(T,V)=Y, e PE:

|

Free energy
F=~-kThhZ
Internal energy Entropy Pressure
U=-23% S=—(5r)v P=-(5);
=U-F)/T
Specific heat Specific heat Isothermal compressibility 6
(constant V) (constant X =V, P)

Cv=(gr)y  Ox=T(3)x w7 =3 (5p)r
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Why are we here?
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A
What is a phase transition?

A Phase Transition is a thermodynamic transformation that
occurs in a system when a transformation is induced
across two states via a path that at least in the reversible limits passes

through a singularity in the free energy (Helmoltz or Gibbs) or in one of
its derivatives




In a graphical form this means:




How many types of phase transitions
are there?
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What happens during a first order
phase transition?
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A
What changes during a phase transition?
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Order Parameter in Phase Transitions
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Table 1.1. Examples of the diversity of phase transitions found in

nature
Transition Example Order parameter
ferromagnetic” Fe magnetization
antiferromagnetic®  MnO sublattice magnetization
ferrimagnetic® Fe; Oy sublattice magnetization
structural® SrTi0; atomic displacements
ferroelectric’ BaTi0; electric polarization
order-disorder CuZn sublattice atomic concentration

phase separationd CCly+C7F1s  concentration difference
superfluid® liquid *He condensate wavefunction
superconductingf AL NbsSn  ground state wavefunction

liquid crystalline?  rod molecules ~ various
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Phase Diagrams
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Phase Diagram of Water

1012 :

Pressure (Pa)
)
(o) ]

10°]

0 100 200 300 400 500 600 700 800 16

Temperature (K)




Phase Diagram of Water
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Solubility-Gap Phase Diagram
Au-Ni
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Temperature

Composition

Phase diagram of a binary mixture with a

solubility gap
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Free energy curve for a liguid-gas
phase transition




Free energy curve for solubility-gap
phase diagram
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Magnetism in Materials diamenfe I«
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A
Idealized Magnetic Materials

n/!"" -‘me[(

b

/
H

/M WAQ/kq+5{1+.vu ' 0.+°“«

N
(/1)=/,{(J;)/A "‘4 ahu/ 23

!’4 P'“w ¢




-
Ferroelectric Phase Diagram
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Free energy curve for a ferroelectric
phase diagram
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Fig. 4.2. Variation of the Landau free energy with magnetization for
decreasing values of az. (a) a2 > 0, (b) a2 =0, (c) a2 20, (d) ap <0. 25




Critical Points in Phase Diagrams
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Consequences of Critical Points
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Fig. 2.1. (a) Phase diagram of a simple ferromagnet. There is a line 3

of first-order transitions along H = 0 which ends at a critical point
at T = T.. (b) Field dependence of the free energy. (¢) Field depen-
dence of the magnetization. (d) Field dependence of the susceptibility.
(e) Temperature dependence of the magnetization. (f) Temperature

dependence of the susceptibility.
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Consequences of Critical Points
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Fig. 1.3. Specific heat at constant volume of argon measured on the
critical isochore, p = pe. After Fisher, M.E. (1964). Physical Rewex,

136A, 1599.
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Correlation Functions

C(r,0) = (sy(R,t) -sa(R+1,t)) — (s1(R,t))(s2( R+ 1,1))
For the spin-spin correlation function (time invariant)
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Correlation Length
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Critical Points Exponents
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Table 25, Definitions of t.hE most commonly used critical exponents
for a magnetic svstem

Zero-field specific heal v Oy o~ L]
Zero-field magnetization M ~ (—t)8

Zero-field isothermal susceptibility  yg ~|t |7

Critical isotherm (t = 0) H ~| M |? sgn( M)
Correlation length E~|t|™"
Pair correlation function at T, G ) o ]I."I""j tn
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Table 2.4. Definitions of the most commonly used critical exponents

for a fluid system

Specific heat at constant volume V.
Ligquid-gas density difference
Isothermal compressibility

Critical isotherm (t = 0)

Correlation length

Pair correlation function at T,
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The concept of Universality
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Fig. 2.2. The cocxistence curve of eight different fiuids plotted in re-
duced variables. The fit assumes an exponent 3 = 1/3. After Guggen-
heim, E. A, (1945). Journal of Chemacal Physics, 13, 253, 11
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Exponent Inequalities
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Exponent Inequalities
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What is special in the Ising Model
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The Hamiltonian in the Ising Model
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Equivalent Models: Order Disorder
Transitions in Binary Alloys (Cu- tn)
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The 1D Ising Model

In general we can write:

(bQ (B,N,H) = Z Gias ZZ exp BﬂHi s; + B]Z 5iS;
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111 44 Tt

In 1D for H=0 this reduces to:
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The 1D Ising Model

Q(B,N,0) = [2cosh(BDI"
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The 2D Ising Model
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Other Models
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The mean field approach

(O e o

24

4/19/2016

24



= @ B
The result for 2D Ising Model

B microscopic model
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