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Ferromagnetic materials

Recall that for a paramagnetic material, there is no magnetization in the
absence of an external field
How can we explain ferromagnetic behavior, where there is a residual
magnetization at zero field?
How can we explain hysteresis?
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Spins on a lattice

The microscopic model is similar to that of a paramagnet. Each atom
carries a magnetic moment, that can orient itself relative to a magnetic
field

Crucially, spins interact with each other→ Q 6= qN !!

E/site : 0.1875

μ/site : -0.03125

E/site : -2.000

μ/site : 1.000

E/site : -1.375

μ/site : 0.3438
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The Heisenberg Hamiltonian

Simplest possible model of spin interactions (AKA Ising model). Each site
associated with sj = ±1, first-neighbor interactions

H = −µBB
∑
i

si −
1
2
J
∑
i

∑
j∈Ni

sisj

The behavior depends dramatically on the dimensionality of the lattice
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Ising model in 1D

Consider the case without a magnetic field. We can make the change of
variables sisi+1 → s′i

Q =
∑
{s}

∏
i

eβJsi si+1 =
∑
{s′}

∏
i

eβJs
′
i =

∏
i

(
eβJ + e−βJ

)
= [2 coshβJ ]N

Average energy

−∂ lnQ
∂β

= −NJ e
J/kBT − e−J/kBT

eJ/kBT + e−J/kBT
= −NJ tanhβJ
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Spin correlations

〈sisi+N〉measures the probability that two spins separated by N sites have
the same orientation

How quickly do spin fluctuations decay? Substitution sisi+1 → s′i

〈sisi+N〉 =
∑
{s}N

s1sN
∏

i e
βJsi si+1∑

{s}N

∏
i e
βJsi si+1

=

∑
{s′}N

∏
i s
′
i e
βJs′

i∑
{s′}N

∏
i e
βJs′

i
= [tanhβJ ]N

Exponential decay of correlations. No phase transition except at T = 0
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2D and above: mean field model

The 2D case is much harder. A (nobel-prize-worthy) solution exists due to
Lars Onsager. How do we proceed?
Consider the substitution si → 〈s〉+ δsi . Neglect the quadratic term δsiδsj
→ partition function can be factorized, probability depends on mean spin
〈s〉 and the number of neighbors z

−H =
∑
i

µBB (〈s〉+ δsi) +
1
2
J
∑
j∈Ni

(〈s〉+ δsi)
(
〈s〉+ δsj

)
Self-consistent equation for 〈s〉

〈s〉 =
∑
±1

siP (si) = tanh [βµBB + zJβ 〈s〉]
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Phase transitions in the Ising model

For B = 0, 〈s〉 = tanh [βµBB + zJβ 〈s〉] has two solutions for kBT/zJ < 1

For kBT/zJ > 1, only one solution 〈s〉 = 0

The system has a phase transition at Tc = zJ/kB
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Phase transitions in the Ising model

For B = 0, 〈s〉 = tanh [βµBB + zJβ 〈s〉] has two solutions for kBT/zJ < 1

For kBT/zJ > 1, only one solution 〈s〉 = 0

The system has a phase transition at Tc = zJ/kB

Magnetization vs T for a SmHoFe garnet magnet [Mat. Res. 6, 569 (2003)]

8 MSE 421 - Ceriotti Ferromagnets and the Ising Model



Magnetization

Start by considering the partition function

Q = qN =

[
2e−

βzJ〈s〉2
2 cosh (βµBB + βzJ 〈s〉)

]N
What is the mean magnetization?

〈M〉 = µBN 〈s〉 =
1
β

∂ lnQ
∂B

= NµB tanh [βµBB + βzJ 〈s〉]

At high temperature 〈s〉 ≈ 0,O (B) expansion→ paramagnet!

〈m〉 = 〈M〉 /N = µB 〈s〉 =
µ2
BB

kBT

Close to the critical point, and for B = 0, we can take a series expansion
for tanh x ≈ x − 1

3x
3. Define reduced temperature t = T−Tc

Tc

〈s〉 =

[
Tc
T
〈s〉 − 1

3

(
Tc
T

)3

〈s〉3
]

The order parameter grows as t1/2 close to Tc . This is an example of a
critical exponent, describing the behavior close to a phase transition
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Susceptibility

The response to a magnetic field is given by the susceptibility
χ = ∂ 〈m〉 /∂B. Take first order expansion in B

〈m〉 = βµ2
BB +

Tc
T
〈m〉 − 1

3µ2
B

(
Tc
T

)3

〈m〉3

For T & Tc , 〈m〉 ≈ 0

χ ≈ βµ2
B

1− Tc
T

≈ βµ2
B

t

For T . Tc ,we also retain theO
(
〈s〉2

)
term

χ ≈ βµ2
B

1− Tc
T + 3

(
T
Tc

)3 ( Tc
T − 1

) ( Tc
T

)3 =
βµ2

B

1− Tc
T + 3

( Tc
T − 1

) ≈ −βµ2
B

2t

Critical exponent is 1
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Limitations of the mean-field model

Predicts a finite-temperature phase transition for the 1D Ising model.
Overestimation of the transition temperature in higher dimensions
Finite extent of susceptibility and heat capacity at non-zero field
No trace of hysteresis, or barriers to the formation of disorder
Several better (but much more complex) approximations available.
Alternative: explicit simulations of the Ising model (see lab!)
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Universality of critical exponents

Observation: very different systems shows remarkably similar asymptotic
behavior in the vicinity of a critical point - universality

Can we explain (handwavingly) the phenomenon based on what we know?
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Mapping on the Ising model

Example: a lattice gas (e.g. adsorbates on a surface, vacancies, ...) - more
in the exercises!
Hamiltonian describes small cells that have either 0 or 1 molecules.
Chemical potential is µB , bond energy is ε

H = −µB

∑
i

ni −
ε

2

∑
i,j∈Ni

ninj

Can be mapped on a Ising model with the substitution ni = (si + 1) /2

H = C − µBB
∑
i

si −
J
2

∑
i,j∈Ni

sisj , µBB =
µB

2
+ z

ε

4
, J =

ε

4
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