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Vibrations in solids

Consider a solid with its atoms in their equilibrium positions x(0)i . The
energy for small displacements can be written as

V (x) = V
({

x(0)i

})
+
���������∑

i

(
xi − x(0)i

)
· ∂V∂xi +

1
2

∑N
ij=1

(
xi − x(0)i

)
∂2V
∂xi∂xj

(
xj − x(0)j

)
This is a quadratic form in 3N dimensions, with the different coordinates
coupled by Hij = ∂2V/∂xi∂xj

We can diagonalize H and re-write the potential in the basis of its
eigenvectors, with the normal-mode coordinates uk [when particles with different

masses are present, work in mass-scaled coordinates and define the dynamical matrix]

V (u) = V0 +
1
2

∑
k mω

2
ku

2
k

Each normal mode is a separate system, the thermodynamics of the solid can
be seen as a combination of independent harmonic oscillators
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A classical oscillator

Let’s compute the canonical partition function of a harmonic oscillator of
frequency ω

Q =

∫
dqdpe

−β
(

1
2mω

2q2+ p2

2m

)
=

2π√
mω2β

√
β/m

=
2π
βω

The free energy is A = −kBT lnQ = const.+ kBT lnβω
The mean energy is 〈E〉 = −∂ lnQ/∂β = 1/β
The heat capacity is ∂ 〈E〉 /∂T = kB
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A quantum oscillator

A quantum oscillator has energy levels ~ω
(
1
2 + k

)
Q =

∑
k

e−β~ω(
1
2+k) = e−β~ω/2

∑
k

e−β~ωk =
e−β~ω/2

1− e−β~ω
=

[
sinh

β~ω
2

]−1
The free energy is A = −kBT lnQ = ~ω

2 + kBT ln 1− e−β~ω

The mean energy is 〈E〉 = ~ω
2 + ~ω e−β~ω

1−e−β~ω = ~ω
2 coth β~ω

2

The heat capacity is ∂〈E〉
∂T = kB

[
2
β~ω sinh β~ω

2

]−2
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Energy levels or phonons?

An alternative view on the problem is to consider each excitation as one
quasiparticle, occupying the energy level ~ω, and subtracting the
zero-point energy ~ω/2
In this sense, each vibrational modes contributes to the overall partition
function a term

lnQ = ln
(
1− e−β~ω

)
that is equivalent to the partition function for bosons, with the chemical
potential set to zero - so-called phonons

5 MSE 421 - Ceriotti Vibrations and Electronic Excitations in Solids



Heat capacity of an Einstein solid

Heat capacity of diamond. Classical value (Dulong-Petit) 3kB
3N quantum oscillators at frequency ωE (Einstein solid). Looks good...

... but wrong behavior at low T
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Vibrations in a real solid

How do vibrations look like in a solid? We can investigate with inelastic
neutron scattering, or with various spectroscopies.

Phonon dispersion curves in Nickel
PRB 83, 134118 (2011); Phys. Rev. 136 A1359 (1964), Phys. Rev. B 59, 3393

(1999)
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The Debye solid

One should consider the contribution from different phonon frequencies!

cV (T ) =
∫ ωD

0
g (ω) cQHOV (ω,T )dω Debye solid

Consider the low-frequency elastic vibrations.
Linear phonon dispersion ω (k) ∝ k [slope depends on elastic constants!]
Density of states in 3D: g (k) ∝ k2, g (ω) ∝ ω2

Just from a dimensional analysis, we can do the change of variables
~ω/kBT → x ; dω → kBT/~dx

cV (T ) ∝
∫ ωD

0
ω2

[
kBT
~ω

sinh
~ω

2kBT

]−2
dω

=

∫ ~ωD/kBT

0
(kBT/~)

3 x2
[
1
x2

sinh x/2

]−2
dx

so for T → 0 cV (T ) ∝ T 3
∫∞
0 x4 sinh−2 x/2dx
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Thermal properties of graphene/1

Graphene has very unusual thermal properties that can be understood
based on its phonon dispersion curves. It contains two modes with
ω (k) ∝ k, and one (out-of-plane, ZA) branch corresponding ω (k) ∝ k2
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Pop, Varshney, Roy, MRS Bulletin (2012)



Thermal properties of graphene/2

Ignoring for a second the ZA modes, we have (2D, linear dispersion)
g (k) ∝ k, g (ω) ∝ ω

c2DV (T ) ∝
∫ ωD

0
ω

[
kBT
~ω

sinh
~ω

2kBT

]−2
dω ∝

T 2
∫ ~ωD/kBT

0
x3 sinh−2 x/2dx

How about the ZA branch? 2D, quadratic dispersion ω (k) ∼ k2 so
dω = kdk, g (k)dk ∝ kdk, g (ω) ∝ 1

c2D,ZAV (T ) ∝
∫ ωD

0

[
kBT
~ω

sinh
~ω

2kBT

]−2
dω ∝

T
∫ ~ωD/kBT

0
x2 sinh−2 x/2dx
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The free electron gas/1

Free electrons are characterized by pure kinetic energy, with eigenstates
labelled by a wavevector k (plus spin), and energy ~2k2/2me

If we consider a cubic volume V = L3 with periodic boundary conditions,
accessible states are quantized and characterized by k = (nx , ny , nz) 2π

L
For large L, sums over energy levels can be approximated as integrals∑

nσ

· = 2︷︸︸︷
spin

V
8π3

∫
·dk =

V
4π3

∫
·4πk2dk

11 MSE 421 - Ceriotti Vibrations and Electronic Excitations in Solids



The free electron gas/2

The total number of electrons is set by

〈N〉 = V
π2

∫
1

eβ(~2k2/2m−εF ) + 1
k2dk

At T → 0, the Fermi function becomes a step function switching from 1 to
0 for ~2k2

F = 2mεF , so

〈N〉
V

= ρ =
1
π2

1
3
k3
F → kF = 3

√
3π2ρ

We can write the energy density as a function of ρ!

〈E〉 = V
π2

∫ kF

0

~2k2

2m
k2dk =

V
π2

~2

2m
k5
F

5
,

〈E〉
V

=
3~2 3
√
9π4

10m
ρ5/3

The energy of the FEG is a function of the density. This expression constitutes
the basis for the Thomas-Fermi version of density functional theory
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Sommerfeld expansion

Let’s derive in general a way to express integrals of the Fermi function
(Sommerfeld expansion)

I =
∫ ∞
−∞

H (ε)

1+ eβ(ε−εF )
dε =

x=β(ε−εF )

1
β

∫ ∞
−∞

H (x/β + εF )

1+ ex
dx

=
1
β

[∫ 0

−∞

H (x/β + εF )

1+ ex
dx +

∫ ∞
0

H (x/β + εF )

1+ ex
dx

]
but 1

1+ e−x
=

ex

ex + 1
=

ex + 1− 1
ex + 1

= 1− 1
1+ ex

, so

I =
1
β

∫ ∞
0

H (−x/β + εF )dx +
1
β

∫ ∞
0

H (x/β + εF )− H (−x/β + εF )

1+ ex
=

=

∫ εF

−∞
H (ε)dε+

1
β

∫ ∞
0

2H ′ (εF ) x/β
1+ ex

dx =

=

∫ εF

−∞
H (ε)dε+

2H ′ (εF )
β2

∫ ∞
0

x
1+ ex

dx = const+
π2

6
H ′ (εF ) (kBT )

2
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The free electron gas/3

Now, let’s assume a general density of states g (ε), and finite T

〈E〉
V

=

∫
εg (ε)

1+ eβ(ε−εF )
dε

Applying the Sommerfeld expansion we get

〈E〉
V

= const+
π2

6
εFH

′ (εF ) (kBT )
2
,

that is: the heat capacity in a metal at low temperature is∝ T
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