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Vibrations in solids

o Consider a solid with its atoms in their equilibrium positions xfo). The
energy for small displacements can be written as
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o This is a quadratic form in 3N dimensions, with the different coordinates
coupled by Hj; = 9>V /Ox;0x;

o We can diagonalize H and re-write the potential in the basis of its
eigenvectors, with the normal-mode coordinates uy [when particles with different
masses are present, work in mass-scaled coordinates and define the dynamical matrix]

V() =W+ 1>, moiu;

o Each normal mode is a separate system, the thermodynamics of the solid can
be seen as a combination of independent harmonic oscillators
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A classical oscillator

o Let's compute the canonical partition function of a harmonic oscillator of
frequency w
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o The free energyis A= —kgT1In Q = const. + kg T In Sw
o The mean energyis (E) = —0In Q/98 =1/p
o The heat capacity is 0 (E) /OT = kg

V(@)
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A quantum oscillator

e A quantum oscillator has energy levels fiw (% + k)
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o The freeenergyis A= —kgTIn Q=% + kgTIn1 — e #™
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o The mean energy is (E) = % + hwf—— = ™ coth 252
2

o The heat capacity is %2 = kB [ 525 sinh 23]
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Energy levels or phonons?

e An alternative view on the problem is to consider each excitation as one
quasiparticle, occupying the energy level fiw, and subtracting the
zero-point energy hw /2

o In this sense, each vibrational modes contributes to the overall partition
function a term
InQ=1In(1-e ")

that is equivalent to the partition function for bosons, with the chemical
potential set to zero - so-called phonons
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Heat capacity of an Einstein solid

e Heat capacity of diamond. Classical value (Dulong-Petit) 3kg
e 3N quantum oscillators at frequency we (Einstein solid). Looks good...
e ...but wrong behavior at low T

\ . . . .
0 200 400 600 800 1000
TIK

6 MSE 421 - Ceriotti Vibrations and Electronic Excitations in Solids



Vibrations in a real solid

e How do vibrations look like in a solid? We can investigate with inelastic
neutron scattering, or with various spectroscopies.
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The Debye solid

e One should consider the contribution from different phonon frequencies!
/ g(w) " (w, T)dw  Debye solid

e Consider the low-frequency elastic vibrations.
o Linear phonon dispersion w (k) o k [slope depends on elastic constants!]

o Density of states in 3D: g (k) o k2, g (w) oc w?
e Just from a dimensional analysis, we can do the change of variables
hw/kBT%X; dw%kBT/ﬁdX

wo . [kgT hw 177
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CV(T)0</0 w [hw sinh szT} dw

th/kET 1 -2
- / (ksT/h)* x2 L(z sinh x/Z} dx
0

sofor T — 0cy (T) o T2 [;° x*sinh ™% x/2dx
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Thermal properties of graphene/1

e Graphene has very unusual thermal properties that can be understood
based on its phonon dispersion curves. It contains two modes with
w (k) o< k, and one (out-of-plane, ZA) branch corresponding w (k) oc k?
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Pop, Varshney, Roy, MRS Bulletin (2012)
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Thermal properties of graphene/2

e Ignoring for a second the ZA modes, we have (2D, linear dispersion)
g (k) o k, g (w) xw

o How about the ZA branch? 2D, quadratic dispersion w (k) ~ k% so
dw = kdk, g (k) dk o kdk, g (w) o< 1
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The free electron gas/1

o Free electrons are characterized by pure kinetic energy, with eigenstates
labelled by a wavevector k (plus spin), and energy #2k?/2m,

o If we consider a cubic volume V = [3 with periodic boundary conditions,
accessible states are quantized and characterized by k = (ny, ny, n;) ZT”

e For large L, sums over energy levels can be approximated as integrals
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The free electron gas/2

o The total number of electrons is set by

74 1 2
(N) = ﬁ/ eB(h2k? /[2m—cr) 4 1 kdk

o At T — 0, the Fermi function becomes a step function switching from 1 to
0 for h2k2 = 2meg, SO
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o The energy of the FEG is a function of the density. This expression constitutes
the basis for the Thomas-Fermi version of density functional theory
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Sommerfeld expansion

e Let's derive in general a way to express integrals of the Fermi function
(Sommerfeld expansion)
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The free electron gas/3

o Now, let’s assume a general density of states g (¢), and finite T

(E) :/ €g (¢)

v 1+ ebleen ¢

o Applying the Sommerfeld expansion we get

2
@ = const + %GFH’ (EF) (kBT)Z s

that is: the heat capacity in a metal at low temperatureis oc T
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Lien, Phillips, PRA (1964)
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