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Entropy and the ensembles

o How to define entropy when there is no equiprobability between
microstates? Let’s try this ansatz and see where we get [note that this is

compatible with the microcanonical entropy we defined before]

S = —kg Z P,InP, Gibbs' Entropy Formula

o Consider the canonical ensemble. Given the relation between Q and (E),

OlnQ e b B
~To8 a E 0 =() — dnQ=-(E)dB
@ Gibbs entropy formula reads (P, = e*BEv/Q)
S e BE o= BE e~ BE
/TB:_XV: o "o =XV: o 1BE +1nQ = Q+5(E)
ds
- =dInQ+(E)dB + 5d (E) = pd (E)
B N——
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Entropy and the ensembles

o How to define entropy when there is no equiprobability between
microstates? Let’s try this ansatz and see where we get [note that this is
compatible with the microcanonical entropy we defined before]

S = —kg Z P,InP, Gibbs' Entropy Formula

o Consider the canonical ensemble. Given the relation between Q and (E),
OlnQ e PEv
-5 = e
@ Gibbs entropy formula reads (P, = e~ #t/Q)
e PE o PE e PE

S
FB:_Z o "o =Y o [BE +InQ=lnQ+B(E)

v v

== =dInQ+ (E)dB + Bd (E) = Bd (E)
N—

=0

= (E) — dlnQ=-(E)dg

@ Consistent with the classical thermodynamic definition of entropy for a
system: for a reversible constant-(T,V) transformation

B~ ko)
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Information entropy

o Gibb’'s entropy has a deep connection with information theory. Given an
event A, that occurs with probability P (A), let's define the information
content | (A) of that event. We require

@ /(A) > 0 [the information content is positive]
@ /(92) = 0 [an event that always occurs does not convey information]
© If Aand Bare independent events, / (A, B) = I (A) + 1 (B)

o The only function of P (A) that satisfy these conditions is
I(A) = Clog, 1/P (A)

e Given a set of disjoint events A;, the average information that we can
obtain equals the information of all events weighed with their probability

Z P(A)InP (A Shannon’s information entropy

3 MSE 421 - Ceriotti Gibbs Entropy and more Ensembles



Information entropy
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content | (A) of that event. We require

@ /(A) > 0 [the information content is positive]
@ /(92) = 0 [an event that always occurs does not convey information]
© If Aand Bare independent events, / (A, B) = I (A) + 1 (B)

o The only function of P (A) that satisfy these conditions is
I(A) = Clog, 1/P (A)

e Given a set of disjoint events A;, the average information that we can
obtain equals the information of all events weighed with their probability

Z P(A)InP (A) Shannon’s information entropy

Character frequencies in English. S-S0: -0.364

abcdefghijkImnopgrstuvwxyz
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Gibb's Entropy as a principle

e Given the information-theoretical basis, let's take Gibbs formula for
granted and see what are the implications

o Consider two non-interacting subsystems Aand B
SA/kB = — Z PA (VA) In PA (Z/A) SB/kB = — Z PB (I/B) In PB (1/3)

va v

o If we consider them as a single system, possible states will include all
possible pairs (va, vs), occurring with probabilities P (va, vg) = Pa (va) Ps (vB)
o Consider the overall Gibbs entropy [probabilities are normalized to 1!]

~S/ke=>_ P(va,ve)mP(va,ve) = Y Pa(va)Ps(vs)[InPa(va) + In Pg (vs)]

(va,vB) (va>vB)
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Gibb's Entropy as a principle

e Given the information-theoretical basis, let's take Gibbs formula for
granted and see what are the implications

o Consider two non-interacting subsystems Aand B

SA/kB = — Z PA (VA) 111 PA (Z/A) SB/kB = — Z PB (I/B) 111 PB (1/3)

va v

o If we consider them as a single system, possible states will include all
possible pairs (va, vs), occurring with probabilities P (va, vg) = Pa (va) Ps (vB)
o Consider the overall Gibbs entropy [probabilities are normalized to 1!]

~S/ke=>_ P(va,ve)mP(va,ve) = Y Pa(va)Ps(vs)[InPa(va) + In Pg (vs)]

(va,vB) (va>vB)

= Z PA (I/A) PB (Z/B) In PA (VA) +Z PA (Z/A) PB (Z/B) In PB (1/5) = — SA/kB — SB/kB
(va;va) (vasve) Z P =1

"At least it's additive”
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Ensembles from a “maxent” criterion

o The trick is inferring an expression for P, by imposing the equilibrium
condition §S = 0, imposing the conservation conditions characteristic of
the ensemble subject to normalization of P,, 1 =" P,:

=> EP, (N)=> NP,

o Let's start with microcanonical ensemble, where E, = E, N, = N and the
states are strictly restricted to those fulfilling these conditions.
o We can use a Lagrange multiplier + to enforce normalized probability

5<5+WZV:PV> =0

0= Z[ dp, +7dP] Z[—kg(‘l—klnPy)—&—’y]dPu

v

o The only way the differential form can be zero for any choice of dP, is if the
coefficient is zero, i.e.

lnP,,_k——1 — P, =const. =4 (E— E,) /Q(E)
B
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Ensembles from a “maxent” criterion

Note the rationale here: maximizing entropy means choosing the probability
distribution of microstates that encodes the least amount of information.
However, we must do so consistently with the thermodynamic constraints
imposed by the ensemble

S

ensemble
. constraints
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Ensembles from a “maxent” criterion

Note the rationale here: maximizing entropy means choosing the probability
distribution of microstates that encodes the least amount of information.
However, we must do so consistently with the thermodynamic constraints
imposed by the ensemble

S
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Canonical ensemble, revisited/1

e Now consider the constant-T case. Here we also want to enforce a proper
value of the mean energy (E) — another Lagrange multiplier!

5<5+72Pu+aZEyPy> =0

o This leads immediately to

0= Z[ dp, +~dp, +aEdP] > ke (1+WnP,) +7+aE]dP,

v

~+ aE, — Kg
ks

o One of the two multipliers is set by the normalization. For the other we need

a constraint, e.g. the condition 5 = 7 (%), .- Exploiting the fixed

normalization that ensures ) dP, =0,

1 1 a
FBdS =-> (1+mP,)dP, = % > (v+ak)dP, = _kTsd (E)

v

[-ke(1 +InP,) +~v+aE] =0, InP, =

os - -
” a:_<8E> = ke — P, = Mrer/le

7 MSE 421 - Ceriotti Gibbs Entropy and more Ensembles



Canonical ensemble, revisited/2

e The connection between the Lagrange multiplier o and the inverse
temperature § elucidates the relation between the statistical mechanical
formulation and several thermodynamic variables.

o The (Gibbs') entropy reads [kzIn P, = v + aF, — ks, = —kgB = —1/T]

1

S:—kBZPVlnPV:Z[kB_’Y“FkBﬂEu]PV:kBB<E>+kB_’Y

(E) = TS =~T — keT = (A)

o Then, the probability distribution reads

P, — o BEv gf(YT—ksT) _ o= B(E,—(A)

o Consideringthat Q=" e #®, andthat1=3Y P, =€’ e F&,

e’ =1/Q, (A) = —kgT In Q
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Particles in an external potential

o Now consider a system in which the energy of individual particles
depends on position. For instance, for a gas in a uniform gravitational
field E (h) = mgh

e For each particle, there is a uniform density of states along A, and the
probability of finding a particle at an altitude hreads

1 , e fmah
Phy=—ePmoh -
Q pgm
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Particles in an external potential

o Now consider a system in which the energy of individual particles
depends on position. For instance, for a gas in a uniform gravitational
field E (h) = mgh

e For each particle, there is a uniform density of states along A, and the
probability of finding a particle at an altitude hreads

1 efﬁmgh
P(h)= —ePmh -~
Q pfgm
o The density as a function of altitude is then proportional to P (h) .
Concentrations of gases vary with altitude

p(h) = poeiﬁmgh X; (h) — pgefﬁm;gh/zp{)efﬁmjgh
j

r T —T—T —T
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Grand-canonical (constant-;;) ensemble/1

o Now consider a case in which we leave the number of particles N (as well
as E) free to fluctuate. We need three Lagrange multipliers

5<8+VZPV+QZEVPV+WZNVPV> =0

o Writing the differential form explicitly gives an expression for P,

de —ks(1+InP)) 4~ +aE +1qN,] =0 — InP, = 1= k”;‘E + iy
B

o Now we can use this to work out an expression for dS

dS=-> ks(1+mmP,)dP, == (ak, +nN,)dP, = —ad (E) — nd (N)

v

o Macroscopic thermodynamic relations fix the values of o and 5

oSy _ 1 98\ _
(ﬁ),v_ o a=-—g=—kb, (6N)E_ n—n =7 =kefp
Recallthat (85) =~ (8%), ./ (%§),, =~
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Grand-canonical ensemble/2

o Armed with these expressions we can spell out the probability
distribution. The missing multiplier v could be determined from
normalization

InP, =~/kg—1— BE, + SuN,
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Grand-canonical ensemble/2

o Armed with these expressions we can spell out the probability
distribution. The missing multiplier v could be determined from
normalization

InP, =~/kg—1— BE, + SuN,

o We can however relate ~ to macroscopic thermodynamics: first, write out the
entropy

E
S:—kBZPl,lnPV:kB—'y+<—7_>—%(N>
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Grand-canonical ensemble/2

o Armed with these expressions we can spell out the probability
distribution. The missing multiplier v could be determined from
normalization

InP, =~/kg—1— BE, + SuN,

o We can however relate ~ to macroscopic thermodynamics: first, write out the
entropy

E
S:—kBZPl,lnPV:kB—'y+<—7_>—%<N>

o We can then write out an expression for (v — kg), based on Gibbs free energy
[recall: (G) = p (N) = (E) — TS+ pV]

T(v—ks) = (E) = TS = p(N) = (E) = TS — ((E) = TS + pV) = —pV
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Grand-canonical ensemble/2

o Armed with these expressions we can spell out the probability
distribution. The missing multiplier v could be determined from
normalization

InP, =~/kg—1— BE, + SuN,

o We can however relate ~ to macroscopic thermodynamics: first, write out the
entropy

E
S:—kBZPl,lnPV:kB—'y+<—7_>—%<N>

o We can then write out an expression for (v — kg), based on Gibbs free energy
[recall: (G) = p (N) = (E) — TS+ pV]

T(v—ks) = (E) = TS = p(N) = (E) = TS — ((E) = TS + pV) = —pV

o So the normalized P, reads
P, = €Xp _ﬂ (El/ — uN, + PV)
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Grand-canonical ensemble/2

o Armed with these expressions we can spell out the probability
distribution. The missing multiplier v could be determined from
normalization

InP, =~/kg—1— BE, + SuN,

We can however relate v to macroscopic thermodynamics: first, write out the
entropy

E
S:—kBZPl,lnPV:kB—'y+<—7_>—%<N>

o We can then write out an expression for (v — kg), based on Gibbs free energy
[recall: (G) = p (N) = (E) — TS+ pV]

T(v—ks) = (E) = TS = p(N) = (E) = TS — ((E) = TS + pV) = —pV

So the normalized P, reads
P, = €Xp _ﬂ (El/ — uN, + PV)

o And we can introduce the grand-canonical partition function

2= exp-f(E —pN,) =€ - (pV)=
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Isothermal-isobaric ensemble

o Let's finish with an ensemble where V and E can fluctuate by coupling to

a bath
5<S+WZPV+QZEVPU+7TZ V,,PV> =0

_ y—ksg+aE, +7V,

— InP, = ks
e As usual we write the differential of S
]
dS == (aE, +7V,)dP, = —ad (E) —d (V) » a=——, = —§
SO we can write
P,=A""e BEXPV) G = _kzTInA
Recall that (%)E = (%)S/ (%)v =2
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Particle-number fluctuations

o Let's consider the case of two components, with particle numbers N4 and
NB. [as usual, set 5 (S+aX, P tad Bl +0* > NP+ 02> NEP,) = 0]

vy —kg+aE, + NS +nBNE

—InP, = ks

SO
P, == "exp—f (E, — i"NA — uBNE)

e The fluctuations in number of particles and compositions vanish in the
thermodynamic limit

2 = A —
0 In= = 8<N > :ZNA P, :Z[NA}ZP,,—NAP éiaH = var N4

o (8?9 (Buh) v oppA Y Y TEA (B
8<NA ApnB A 1 ) A B
NANBP, — NAP, — N
opub =2 YU EO(BuB) < )

v
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Uncorrelated fluctuations/1

o Let's consider a large reservoir, filled with a gas of mean density p.
Partition it in disjoint cells of volume v, and consider the number of
particles that is observed within a region containing M of such cells.

N=D_m, (N)=} (m)=M(n)=Mvp

i

L B
/]

n;
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Uncorrelated fluctuations/2

o Now consider the variance of N, var N = <(N - <N>)2>

var N = < lz (nj — (n;))

i

> = " {mnj) — M? (n)?

7

o Central assumptions: uncorrelated fluctuations - (n;n;) Z (nj) {n;)

Z nin;) Z(n, +Z n;in;) Y+ M(M—1)(n)
if

i#j

— relative fluctuations are scale-independent

var N varn

(N (n)

varN =M [<n2> — (n)z]
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Uncorrelated fluctuations/3

o Now, we assume that the volume v of the cells is small enough that the
probability of having more than one particle is negligible [alternatively, you can
say that different particles are independent, consider the probability of having k particles as (ﬁv)k, and
consider the limit for v — 0]

var n

(M =1-pv+0 (), (i) =12 +0() == =1

o These considerations will hold as long as Fluctuations are uncorrelated on
the scale on which we can consider the probability of having more than
one particle per cell to be negligible — dilute limit!
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Ideal gas law

o Now let's combine this result with the grand canonical relation and
var N/ (N) = var nf{n) =1

[O(N) /0 (Bw)]g,y =varN — var N = (N)

o We get the relation for the chemical potential in a dilute system

2 (Bu)} 1
=— — = In (N) + const.
which one can also write, dividing (N) by V as

[‘W] =1 Bu=1np+ const.
op s P

o Now, consider

9(Bp) _ 9(N) opp

__y98u _ _\,08udp _ 9Bu _
o o Vav. Va,av P

so (considering that pressure should vanish at zero density)

‘/Bp =p pV =ksT(N) ‘ ideal gas law

NB: Maxwell relation (%)ﬁ = - (%)B,obtained from (g—,f,)f v —% and (%)E N

Gibbs Entropy and more Ensembles

MSE 421 - Ceriotti

~ro



Langmuir adsorption isotherm/1

o Number of ways of arranging M molecules on N surface sites. Energy for
M adsorbed molecules is eM

adsorption site

@ / adsorbate
D
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Langmuir adsorption isotherm/2

e Grand-canonical partition function (including density of states!)
i N!e—B(e=p)M)
M (N — M)!

(1]

P (M) = ~ 51~ B((e=H)M)+N1In N—MIn M—(N—M) In(N—M)

o The chemical potential is set to equal that in the gas phase (ideal gas
limit)
pu_ P _ P
e = pS P
o We look for the maximum inIn P [# = M/N is the coverage!]
_OlnP p

1 p° 5 p
—_ = — € 1 0:7
o= p° T - p+ poe’s

19 MSE 421 - Ceriotti Gibbs Entropy and more Ensembles



