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Entropy and the ensembles

How to define entropy when there is no equiprobability between
microstates? Let’s try this ansatz and see where we get [note that this is

compatible with themicrocanonical entropy we defined before]

S = −kB
∑
ν

Pν lnPν Gibbs’ Entropy Formula

Consider the canonical ensemble. Given the relation between Q and 〈E〉,

−∂ lnQ
∂β

=
∑
ν

Eν
e−βEν

Q
= 〈E〉 → d lnQ = −〈E〉dβ

1 Gibbs entropy formula reads (Pν = e−βEν/Q)

S
kB

= −
∑
ν

e−βEν

Q
ln

e−βEν

Q
=
∑
ν

e−βEν

Q
[βEν + lnQ] = lnQ + β 〈E〉

dS
kB

= d lnQ + 〈E〉dβ︸ ︷︷ ︸
=0

+ βd 〈E〉 = βd 〈E〉

2 Consistent with the classical thermodynamic definition of entropy for a
system: for a reversible constant-(T ,V ) transformation

dS =
d 〈E〉
T

= kBβd 〈E〉
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Information entropy

Gibb’s entropy has a deep connection with information theory. Given an
event A, that occurs with probability P (A), let’s define the information
content I (A) of that event. We require

1 I (A) ≥ 0 [the information content is positive]
2 I (Ω) = 0 [an event that always occurs does not convey information]
3 If A and B are independent events, I (A,B) = I (A) + I (B)

The only function of P (A) that satisfy these conditions is
I (A) = C logb 1/P (A)
Given a set of disjoint events Ai , the average information that we can
obtain equals the information of all events weighed with their probability

I = −
∑
i

P (Ai) lnP (Ai) Shannon’s information entropy
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Gibb’s Entropy as a principle

Given the information-theoretical basis, let’s take Gibbs formula for
granted and see what are the implications

Consider two non-interacting subsystems A and B

SA/kB = −
∑
νA

PA (νA) lnPA (νA) SB/kB = −
∑
νB

PB (νB) lnPB (νB)

If we consider them as a single system, possible states will include all
possible pairs (νA, νB), occurring with probabilities P (νA, νB) = PA (νA)PB (νB)
Consider the overall Gibbs entropy [probabilities are normalized to 1!]

−S/kB =
∑

(νA,νB)

P (νA, νB) lnP (νA, νB) =
∑

(νA,νB)

PA (νA)PB (νB) [lnPA (νA) + lnPB (νB)]

=
∑

(νA,νB)

PA (νA)PB (νB) lnPA (νA) +
∑

(νA,νB)

PA (νA)PB (νB) lnPB (νB) =︸︷︷︸∑
ν
Pν=1

− SA/kB − SB/kB

’’At least it’s additive’’
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Ensembles from a ‘‘maxent’’ criterion

The trick is inferring an expression for Pν by imposing the equilibrium
condition δS = 0, imposing the conservation conditions characteristic of
the ensemble subject to normalization of Pν , 1 =

∑
ν Pν :

〈E〉 =
∑
ν

EνPν , 〈N〉 =
∑
ν

NνPν .

Let’s start with microcanonical ensemble, where Eν = E , Nν = N and the
states are strictly restricted to those fulfilling these conditions.
We can use a Lagrange multiplier γ to enforce normalized probability

δ

(
S + γ

∑
ν

Pν

)
= 0

0 =
∑
ν

[
∂S
∂Pν

dPν + γdPν

]
=
∑
ν

[−kB (1 + lnPν) + γ]dPν

The only way the differential form can be zero for any choice of dPν is if the
coefficient is zero, i.e.

lnPν =
γ

kB
− 1 → Pν = const. = δ (E − Eν) /Ω (E)
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Ensembles from a ‘‘maxent’’ criterion

Note the rationale here: maximizing entropy means choosing the probability
distribution of microstates that encodes the least amount of information.
However, we must do so consistently with the thermodynamic constraints
imposed by the ensemble
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Canonical ensemble, revisited/1

Now consider the constant-T case. Here we also want to enforce a proper
value of themean energy 〈E〉 → another Lagrange multiplier!

δ

(
S + γ

∑
ν

Pν + α
∑
ν

EνPν

)
= 0

This leads immediately to

0 =
∑
ν

[
∂S
∂Pν

dPν + γdPν + αEνdPν

]
=
∑
ν

[−kB (1 + lnPν) + γ + αEν ]dPν

[−kB (1 + lnPν) + γ + αEν ] = 0, lnPν =
γ + αEν − kB

kB

One of the two multipliers is set by the normalization. For the other we need
a constraint, e.g. the condition β = 1

kB

(
∂S
∂E

)
V ,N

. Exploiting the fixed

normalization that ensures
∑

ν
dPν = 0,

1
kB

dS = −
∑
ν

(1 + lnPν)dPν = − 1
kB

∑
ν

(γ + αEν)dPν = − α

kB
d 〈E〉

→ α = −
(
∂S
∂E

)
V ,N

= −kBβ → Pν = e−βEνeγ/kB−1
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Canonical ensemble, revisited/2

The connection between the Lagrange multiplier α and the inverse
temperature β elucidates the relation between the statistical mechanical
formulation and several thermodynamic variables.

The (Gibbs’) entropy reads [kB ln Pν = γ + αEν − kB , α = −kBβ = −1/T ]

S = −kB
∑

i

Pν lnPν =
∑

i

[kB − γ + kBβEν ]Pν = kBβ 〈E〉+ kB − γ

〈E〉 − TS = γT − kBT = 〈A〉

Then, the probability distribution reads

Pν = e−βEνeβ(γT−kBT) = e−β(Eν−〈A〉)

Considering that Q =
∑

ν
e−βEν , and that 1 =

∑
ν
Pν = eβ〈A〉

∑
ν
e−βEν ,

eβ〈A〉 = 1/Q, 〈A〉 = −kBT lnQ
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Particles in an external potential

Now consider a system in which the energy of individual particles
depends on position. For instance, for a gas in a uniform gravitational
field E (h) = mgh
For each particle, there is a uniform density of states along h, and the
probability of finding a particle at an altitude h reads

P (h) =
1
Q
e−βmgh =

e−βmgh

βgm

The density as a function of altitude is then proportional to P (h) .
Concentrations of gases vary with altitude

ρ (h) = ρ0e
−βmgh xi (h) = ρi0e

−βmigh/
∑

j

ρj0e
−βmjgh
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Grand-canonical (constant-µ) ensemble/1

Now consider a case in which we leave the number of particles N (as well
as E ) free to fluctuate. We need three Lagrange multipliers

δ

(
S + γ

∑
ν

Pν + α
∑
ν

EνPν + η
∑
ν

NνPν

)
= 0

Writing the differential form explicitly gives an expression for Pν∑
ν

dPν [−kB (1 + lnPν) + γ + αEν + ηNν ] = 0 → lnPν =
γ − kB + αEν + ηNν

kB

Now we can use this to work out an expression for dS

dS = −
∑
ν

kB (1 + lnPν)dPν = −
∑
ν

(αEν + ηNν)dPν = −αd 〈E〉 − ηd 〈N〉

Macroscopic thermodynamic relations fix the values of α and η(
∂S
∂E

)
N

= −α→ α = − 1
T

= −kBβ,
(
∂S
∂N

)
E

= −η → η =
µ

T
= kBβµ
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Recall that
(
∂S
∂N

)
E,V

= −
(
∂E
∂N

)
V ,S

/
(
∂E
∂S

)
V ,N

= −µT



Grand-canonical ensemble/2

Armed with these expressions we can spell out the probability
distribution. The missing multiplier γ could be determined from
normalization

lnPν = γ/kB − 1− βEν + βµNν

We can however relate γ to macroscopic thermodynamics: first, write out the
entropy

S = −kB
∑
ν

Pν lnPν = kB − γ +
〈E〉
T
− µ

T
〈N〉

We can then write out an expression for (γ − kB), based on Gibbs free energy
[recall: 〈G〉 = µ 〈N〉 = 〈E〉 − TS + pV ]

T (γ − kB) = 〈E〉 − TS − µ 〈N〉 = 〈E〉 − TS − (〈E〉 − TS + pV ) = −pV

So the normalized Pν reads

Pν = exp−β (Eν − µNν + pV )

And we can introduce the grand-canonical partition function

Ξ =
∑
ν

exp−β (Eν − µNν) = eβpV → 〈pV 〉 =
1
β

ln Ξ
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Isothermal-isobaric ensemble

Let’s finish with an ensemble where V and E can fluctuate by coupling to
a bath

δ

(
S + γ

∑
ν

Pν + α
∑
ν

EνPν + π
∑
ν

VνPν

)
= 0

→ lnPν =
γ − kB + αEν + πVν

kB

As usual we write the differential of S

dS = −
∑
ν

(αEν + πVν)dPν = −αd 〈E〉 − πd 〈V 〉 → α = − 1
T
, π = − p

T

so we can write

Pν = ∆−1e−β(E+pV ), G = −kBT ln ∆
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Recall that
(
∂S
∂V

)
E

= −
(
∂E
∂V

)
S
/
(
∂E
∂S

)
V

= p
T



Particle-number fluctuations

Let’s consider the case of two components, with particle numbers NA
ν and

NB
ν . [As usual, set δ

(
S + γ

∑
ν
Pν + α

∑
ν
EνPν + ηA

∑
ν
NA
νPν + ηB

∑
ν
NB
νPν
)

= 0]

→ lnPν =
γ − kB + αEν + ηANA

ν + ηBNB
ν

kB
so

Pν = Ξ−1 exp−β
(
Eν − µANA

ν − µBNB
ν

)
The fluctuations in number of particles and compositions vanish in the
thermodynamic limit 〈

NA
〉

=
∑
ν

NA
νPν =

∂ ln Ξ

∂ (βµA)

∂2 ln Ξ

∂ (βµA)
2

=
∂
〈
NA
〉

∂ (βµA)
=
∑
ν

NA
ν

∂Pν
∂βµA

=
∑
ν

[
NA
ν

]2
Pν − NA

νPν
1
Ξ

∂Ξ

∂ (βµA)
= varNA

∂
〈
NA
〉

∂βµB
=
∑
ν

NA
νN

B
ν Pν − NA

νPν
1
Ξ

∂Ξ

∂ (βµB)
=
〈
NA,NB

〉
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Uncorrelated fluctuations/1

Let’s consider a large reservoir, filled with a gas of mean density ρ̄.
Partition it in disjoint cells of volume v , and consider the number of
particles that is observed within a region containingM of such cells.

N =
∑
i

ni , 〈N〉 =
∑
i

〈ni〉 = M 〈n〉 = Mv ρ̄
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Uncorrelated fluctuations/2

Now consider the variance of N , varN =
〈

(N − 〈N〉)2
〉

varN =

〈[∑
i

(ni − 〈ni〉)

]2〉
=
∑
ij

〈
ninj

〉
−M2 〈n〉2

Central assumptions: uncorrelated fluctuations - 〈ninj〉 =
i 6=j
〈ni〉 〈nj〉∑

ij

〈ninj〉 =
∑

i

〈
n2
i

〉
+
∑
i 6=j

〈ninj〉 = M
〈
n2
〉

+ M (M − 1) 〈n〉2

→ relative fluctuations are scale-independent

varN = M
[〈
n2
〉
− 〈n〉2

]
→ varN

〈N〉 =
var n
〈n〉
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Uncorrelated fluctuations/3

Now, we assume that the volume v of the cells is small enough that the
probability of having more than one particle is negligible [alternatively, you can

say that different particles are independent, consider the probability of having k particles as (ρ̄v)k , and

consider the limit for v → 0]

〈n〉 = 1 · ρ̄v +O
(
v2
)
,
〈
n2
〉

= 12ρ̄v +O
(
v2
)
→ var n
〈n〉

=
v→0

1

These considerations will hold as long as fluctuations are uncorrelated on
the scale on which we can consider the probability of having more than
one particle per cell to be negligible→ dilute limit!
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Ideal gas law

Now let’s combine this result with the grand canonical relation and
varN/ 〈N〉 = var n/〈n〉 = 1

[∂ 〈N〉 /∂ (βµ)]β,V = varN → varN = 〈N〉

We get the relation for the chemical potential in a dilute system[
∂ (βµ)

∂ 〈N〉

]
β,V

=
1
〈N〉 → βµ = ln 〈N〉+ const.

which one can also write, dividing 〈N〉 by V as[
∂ (βµ)

∂ρ

]
β

=
1
ρ
→ βµ = ln ρ+ const.

Now, consider

∂ (βp)

∂ρ
=
∂ 〈N〉
∂ρ

∂βp
∂ 〈N〉 = −V ∂βµ

∂V
= −V ∂βµ

∂ρ

∂ρ

∂V
= ρ

∂βµ

∂ρ
= 1

so (considering that pressure should vanish at zero density)

βp = ρ pV = kBT 〈N〉 ideal gas law
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NB: Maxwell relation
(
∂(pβ)
∂N

)
β

= −
(
∂βµ
∂V

)
β
, obtained from

(
∂S
∂N

)
E,V

= −µT and
(
∂S
∂V

)
E,N

= p
T



Langmuir adsorption isotherm/1

Number of ways of arrangingM molecules on N surface sites. Energy for
M adsorbed molecules is εM

Ω =
N!

M! (N −M)!
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Langmuir adsorption isotherm/2

Grand-canonical partition function (including density of states!)

P (M) = Ξ−1
N!e−β((ε−µ)M)

M! (N −M)!
≈ Ξ−1e−β((ε−µ)M)+N lnN−M lnM−(N−M) ln(N−M)

The chemical potential is set to equal that in the gas phase (ideal gas
limit)

eβµ =
ρ

ρ	
=

p
p	

We look for the maximum in lnP [θ = M/N is the coverage!]

0 =
∂ lnP
∂M

= −βε+ ln
p
p	
− lnM + ln (N −M)

1
θ

=
p	

p
eβε + 1 → θ =

p
p + p	eβε
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