
A Statistical Definition of Entropy

MSE 421 - Ceriotti



Revisiting macrostates

Remember: it is practically impossible to characterize fully the state of a
macroscopic system
Equilibrium systems can be comprehended by a small number of
macroscopic observables, e.g. volume V , temperature T , pressure p,
molar amounts of components ni

2 MSE 421 - Ceriotti A Statistical Definition of Entropy



Defining microstates

A microstate is a complete characterization of the state of all microscopic
components of a system

Classically, this involves assigning both positions qi and momenta pi for all
the particles at a given time
Quantummechanically it involves determining quantum numbers |ν〉
associated with a complete set of commuting observables
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Observables and averages

Imagine we could identify the microstate of the system, and measure it at
different times. We could compute the mean of any observable O by
summing over the values it takes for the different microstates

〈O〉 =
1
N

∑
t

Oν(t), QM:
1
N

∑
t

〈ν (t)| Ô |ν (t)〉 , CL:
1
N

∑
t

O (q (t) ,p (t))

The assumption here is ergodicity, i.e. that within the time of an
observation (or given the large size of the observed sample) all
representative states will be visited.
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Ensemble averages

We can rewrite the averages looking at how often each state appears,
and defining a probability distribution

QM:
∑

ν

P (ν) 〈ν| Ô |ν〉 , CL:
∫

dpdqP (q,p)O (q,p)

The probability defines an ensemble, i.e. a set of configurations that are
consistent with the thermodynamic equilibrium conditions.
The statistical mechanics approach is to obtain these probability
distributions, and to circumvent the need of measuring individual
microstates by predicting the average properties of a macroscopic system
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Equiprobability axiom
We need a principle to determine the probability of a state. For a closed,
isolated system, with constant N, V , E, all the microstates that are
consistent with these macroscopic observables have the same probability.
[An ensemble with constant NVE is calledmicrocanonical]

Define a counter Ω for the number of states that takes into account the
possible degeneracy of energy levels [for large enough quantum systems it is convenient

to consider a smooth limit of the discrete Ω, and use a density of states as in the classical case]

QM:ΩE (N,V ) , CL:Ω (N,V ,E)dE

PE,ν = 1/ΩE (N,V )
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Density of states and dimensionality

The equiprobability axiom actually involves deep assumptions on the
nature of a microstate - namely what is a complete determination of one.
Think of a system with only kinetic energy, E = p2/2m

1D: P (p) ∝ 1 so Ω (E) ∝
∫
δ
(
E − p2/2m

)
dp =

√
m/2E

2D: P (px , py) ∝ 1 so Ω (E) ∝
∫
δ
(
E − p2/2m

)
d2p = 2πm
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The (3D) Particle in a Box

Consider a particle in a 3D box of size L. Each state is characterized by 3
quantum numbers |nxnynz〉, and has a energy E ∝ ~2k2/2m with
kx,y,z = nx,y,zπ/L
3D: P (k) ∝ 1 Ω (E) ∝

∫
δ
(
E − ~2k2/2m

)
dk

−→ dk = 4πk2dk, dE = ~2km−1dk, k =
√

2Em/~2

−→ Ω (E) ∝
∫
δ
(
Ē − E

)√
2Em/~2dE =

√
2Em/~2
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A statistical definition of entropy

S (E ,V ,N) = kB ln Ω (E ,V ,N)

This definitions makes entropy additive [given two non-interacting systems with number

of states Ω1 and Ω2, the combined number of states is Ω = Ω1Ω2]

S = kB ln Ω1Ω2 = kB ln Ω1 + kB ln Ω2 = S1 + S2

S is consistent with a maximum-entropy principle

B (E ,V ,N; const.) ⊆ B (E ,V ,N)→ Ω (E ,V ,N; const.) ≤ Ω (E ,V ,N)

→ S (E ,V ,N; const.) ≤ S (E ,V ,N)

The condition (∂S/∂E)X = 1/T > 0 requires [β is often used in lieu of the temperature

in a statistical mechanics context]

β =
1

kBT
=

(
∂ ln Ω

∂E

)
X

> 0
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Atoms on a surface/1

Consider N adsorbed atoms on a surface withM equivalent sites. All the
sites are equivalent, and the atoms do not interact with each other, so the
energy does not depend on the distribution of the atoms.

Ω (0,M,N) =
M!

N! (M − N)!

For N,M � 1, we can use Stirling’s approximation to get an estimate of S

S
kB
≈ M lnM − N lnN − (M − N) ln (M − N)
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Atoms on a surface/2

Now partition the surface in half (2×M/2 sites), and fix N1 atoms to be in
region 1, and N2 in region 2 [we take N1 + N2 = N]

Ω1 (0,M/2,N1) =
(M/2)!

N1! (M/2− N1)!
, Ω2 (0,M/2,N2) =

(M/2)!

N2! (M/2− N2)!
Now, the overall entropy is (with Stirling)

S1
kB

+
S2
kB
≈ M

2
ln

M
2
− N1 lnN1 −

(
M
2
− N1

)
ln

(
M
2
− N1

)
+
M
2

ln
M
2
− (N − N1) ln (N − N1)−

(
M
2
− (N − N1)

)
ln

(
M
2
− (N − N1)

)
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Atoms on a surface/3

Let’s look for the maximum of entropy

0 =
1
kB

∂S (cnstr)
∂N1

= −1− lnN1 + 1 + ln

(
M
2
− N1

)
+

+1 + ln (N − N1)− 1− ln

(
M
2
− (N − N1)

)
(
M
2
− N1

)
(N − N1) = N1

(
M
2
− (N − N1)

)
N1 =

N
2

Equilibrium corresponds to equal partitioning of atoms! Now what is the
associated entropy?

2S (M/2,N/2) = 2×
(
M
2

ln
M
2
− N

2
ln

N
2
−
(
M
2
− N

2

)
ln

(
M
2
− N

2

))
= M [lnM − ln2]− N [lnN − ln2]− (M − N) [ln (M − N)− ln2] = S (M,N)
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Atoms on a surface/4

BUT, wait a sec...OOOPS!

[Ω (0,3,2)]
2

=

[
3!

2!1!

]2
= 9, Ω (0,6,4) =

6!

4!2!
= 15

What’s happening? Atoms can distribute unevenly between the two
subsystems, which is untrue if we set N1 = N2 = N/2!

For nanoscale systems entropy can be non-additive!
This can be seen as a ‘‘border’’ effect: a system with twice the size is not the
same two independent systems
Your first encounter with the magic of the ‘‘thermodynamic limit’’!
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Entropy of mixing

Consider a system withM sites occupied by two elements, e.g. Au and Ag.
Assume the molar fraction of Ag is x . Consider again a non-interacting
scenario, so the energy is always zero.

1 Number of states: Ω (0,M,N = Mx) = M!
N!(M−N)!

2 Entropy (w/Stirling): S = kB [M lnM − N lnN − (M − N) ln (M − N)]

3 Write as a function of molar concentration

S = kB [M lnM −Mx (lnM + ln x)− (M −Mx) [lnM + ln (1− x)]]

4 ... Ideal solution model! S/M = kB [xAg ln xAg + xAu ln xAu]

... what is the most stable concentration?
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