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Revisiting macrostates

o Remember: it is practically impossible to characterize fully the state of a
macroscopic system
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Revisiting macrostates

o Remember: itis practically impossible to characterize fully the state of a
macroscopic system

o Equilibrium systems can be comprehended by a small number of
macroscopic observables, e.g. volume V, temperature T, pressure p,
molar amounts of components n;

p, V,T
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Defining microstates

e A microstate is a complete characterization of the state of all microscopic
components of a system

o Classically, this involves assigning both positions q; and momenta p; for all
the particles at a given time

o Quantum mechanically it involves determining quantum numbers |v)
associated with a complete set of commuting observables

X{Qi}a{pi}
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Observables and averages

o Imagine we could identify the microstate of the system, and measure it at
different times. We could compute the mean of any observable O by
summing over the values it takes for the different microstates

o>=lNZo,,(t), QMNZ t)Olv (b)), CL—ZO
t
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Observables and averages

o Imagine we could identify the microstate of the system, and measure it at
different times. We could compute the mean of any observable O by
summing over the values it takes for the different microstates

1 1
0)=5>_0ue, QM Z B0lv (), CLiy > 0(a(b).p(t
t t

e The assumption here is ergodlaty, i.e. that within the time of an
observation (or given the large size of the observed sample) all
representative states will be visited.
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Ensemble averages

o We can rewrite the averages looking at how often each state appears,
and defining a probability distribution

QM: Y P(v) (v Olw), CL: [ dpdaP(a.p)O(a.p)

e The probability defines an ensemble, i.e. a set of configurations that are
consistent with the thermodynamic equilibrium conditions.

e The statistical mechanics approach is to obtain these probability
distributions, and to circumvent the need of measuring individual
microstates by predicting the average properties of a macroscopic system
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Equiprobability axiom

o We need a principle to determine the probability of a state. For a closed,
isolated system, with constant N, V, E, all the microstates that are

consistent with these macroscopic observables have the same probability.
[An ensemble with constant NVE is called microcanonical]

o Define a counter Q For the number of states that takes into account the
possible degeneracy of energy levels [for large enough quantum systems it is convenient
to consider a smooth limit of the discrete 2, and use a density of states as in the classical case]

QM:Q¢ (N, V), CLQ(N,V,E)dE

AE Q=1 ﬁ
=T Ry
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i
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Density of states and dimensionality

e The equiprobability axiom actually involves deep assumptions on the
nature of a microstate - namely what is a complete determination of one.
Think of a system with only kinetic energy, £ = p?/2m

o 1D:P(p) x 150 Q(E) o [ 6 (E—p*/2m)dp = /m/2E

E A EA

p Q(E)
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Density of states and dimensionality

o The equiprobability axiom actually involves deep assumptions on the
nature of a microstate - namely what is a complete determination of one.
Think of a system with only kinetic energy, £ = p?/2m

o 1D: P(p) x 150 Q(E f&(E p’/2m)dp = \/m/2E
o 2D: P (px, py) x 1 soQ x [6(E—p*/2m)d®p =2rm

Dy E  EA

>

Q(E)

7 MSE 421 - Ceriotti A Statistical Definition of Entropy




The (3D) Particle in a Box

e Consider a particle in a 3D box of size L. Each state is characterized by 3
quantum numbers |nxnyn;), and has a energy E « h2k?/2m with
kx,y,z = nx,y,zﬂ'/L

o 3D:P(k) x 1Q(E) o [0 (E — h2k?/2m) dk

— dk = 47k*dk,  dE=hr*km 'dk, k= \/2Em/i?

/5 E) \/2Em/R2dE = \/2Em/h?
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A statistical definition of entropy

\S(E, V,N) = kgInQ (E, V,N)\

o This definitions makes entropy additive [given two non-interacting systems with number
of states Q4 and €2,, the combined number of states is Q = Q4,]

S=kglnQQ; = kgInQy + kglnQy = S + S,
e Sis consistent with a maximum-entropy principle
B(E,V,N;const.) C B(E,V,N) — Q(E,V,N;const.) <Q(E,V,N)
— S(E,V,N;const.) <S(E,V,N)

e The condition (85/8E)X = 1/T >0 requires [B is often used in lieu of the temperature
in a statistical mechanics context]

1 0lnQ
e (),
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Atoms on a surface/1

e Consider N adsorbed atoms on a surface with M equivalent sites. All the
sites are equivalent, and the atoms do not interact with each other, so the
energy does not depend on the distribution of the atoms.

m!
N!' (M — N)!
e For N, M > 1, we can use Stirling's approximation to get an estimate of S

Q (0, M, N) =

kileanNlan(MfN)ln(MfN)
B
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Atoms on a surface/2

o Now partition the surface in half (2 x M/2 sites), and fix N; atoms to be in
region 1, and N, in region 2 [wetake N; + Ny = N]

1 MSE 421 - Ceriotti
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o Now, the overall entropy is (with Stirling)
S M M M M
kB~Zlnz—N11nN1—<2—N1>1n(2—N1
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Atoms on a surface/3

o Let’s look for the maximum of entropy

0_l@&‘(cnstr)

M
= = 1—lnNy+1+In(%5 —N.
ke ON. n Ny + +n<2 1>+

F14+In(N—Ny)—1 1n</‘2/’(NN1)>

</\24—N1>(N—N1):N1 (/;’—(N—M)) N =N

e Equilibrium corresponds to equal partitioning of atoms! Now what is the
associated entropy?

M M N_. N M N M N

=M[ImM—1n2]— N[InN—1n2] — (M= N)[In(M— N) —In2] = S (M, N)
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Atoms on a surface/4

e BUT, wait a sec...
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Atoms on a surface/4
e BUT, wait a sec...0O0OOPS!
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Atoms on a surface/4

13

e BUT, wait

a sec...
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o What's happening? Atoms can distribute unevenly between the two
subsystems, which is untrue if we set Ny = N, = N/2!
o For nanoscale systems entropy can be non-additive!

o This can be seen as a “border” effect: a system with twice the size is not the

same two independent systems

o Your first encounter with the magic of the “thermodynamic limit"!
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Entropy of mixing

o Consider a system with M sites occupied by two elements, e.g. Au and Ag.
Assume the molar fraction of Ag is x. Consider again a non-interacting
scenario, so the energy is always zero.

@ Number of states: Q (0, M, N = Mx) = W
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Entropy of mixing

o Consider a system with M sites occupied by two elements, e.g. Au and Ag.
Assume the molar fraction of Ag is x. Consider again a non-interacting
scenario, so the energy is always zero.

@ Number of states: Q (0, M, N = Mx) = W

@ Entropy (w/stirling): S = kg [MInM — NIn N — (M — N)In (M — N)]
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Entropy of mixing

o Consider a system with M sites occupied by two elements, e.g. Au and Ag.
Assume the molar fraction of Ag is x. Consider again a non-interacting
scenario, so the energy is always zero.

© Number of states: Q (0, M, N = Mx) = W
@ Entropy (w/stirling): S = kg [MInM — NIn N — (M — N)In (M — N)]
© Write as a function of molar concentration

S=kgMInM—Mx(InM+1Inx) — (M—Mx)[InM+1n(1-x)]]
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Entropy of mixing

o Consider a system with M sites occupied by two elements, e.g. Au and Ag.
Assume the molar fraction of Ag is x. Consider again a non-interacting
scenario, so the energy is always zero.

© Number of states: Q (0, M, N = Mx) = W
@ Entropy (w/stirling): S = kg [MInM — NIn N — (M — N)In (M — N)]
© Write as a function of molar concentration

S=kgMInM—Mx(InM+1Inx) — (M—Mx)[InM+1n(1-x)]]
O ...Ideal solution model! S/M = kg [Xag In Xag + Xau In Xau]

Q00000006000
000000000000
O000O0O0D0O6O00O00OO0
O00O0O0OO0O0OOO0OOO
O000O0O0O0O0OOOO
Q000000600000
00000000000

14 MSE 421 - Ceriotti A Statistical Definition of Entropy



Entropy of mixing

o Consider a system with M sites occupied by two elements, e.g. Au and Ag.
Assume the molar fraction of Ag is x. Consider again a non-interacting
scenario, so the energy is always zero.

© Number of states: Q (0, M, N = Mx) = W
@ Entropy (w/stirling): S = kg [MInM — NIn N — (M — N)In (M — N)]
© Write as a function of molar concentration

S=kgMInM—Mx(InM+1Inx) — (M—Mx)[InM+1n(1-x)]]
O ...Ideal solution model! S/M = kg [Xag In Xag + Xau In Xau]

Q00000006000
000000000000
O000O0O0D0O6O00O00OO0
O00O0O0OO0O0OOO0OOO
O000O0O0O0O0OOOO
Q000000600000
00000000000

... what is the most stable concentration?
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