= Everything you Need to Know
about Probability and Measure

MSE 421 - Ceriotti

=PrL



Events and sets of events

o Consider an abstract and general notation to characterize the occurrence

of an event, w. w may be e.g. “the train arrives on time”, or “this molecule undergoes dissociation
within one minute”.

o We can then consider sets of events A, e.g. A = {w1,w; }. The set of events sets £
must be closed under the set union and intersection operations (A1, A; € £ =
Al UA; € E,A N A, € £). € also contains an empty set () and the set of all events Q.

o In a physical setting, events may refer to the value of discrete variables
(that can take on a countable number of values) or continuous variables
(For which events are always to be intended as “being in a small
neighborhood of a prescribed value”).
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Probability Axioms

o A probability is a function P : £ — R™ that satisfies the following axioms:

Q@ VACE P(A) >0
QP(O)=1
© For any countable collection of sets {A;} that are non-overlapping (such that

A,ﬂAj:@)
P(A UA, .. ZP

e From these axioms it follows that
@ If Ais the complement of A(AU A = Q and AN A = () [consider axioms 2 and 3]
P(A) =1-P(A)

@ The empty set has probability zero, P () = 0 [consider axiom 3 and see that
P(A) =P(AUD) = P(A) + P(D)]
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What does this mean?

o “Intuitive” understanding of probability tends to be ill-defined: if we
observe an event N independent times, the outcome w will belong to the
set Aa number NP (A) times, provided N is “large enough”
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What does this mean?

o “Intuitive” understanding of probability tends to be ill-defined: if we
observe an event N independent times, the outcome w will belong to the
set Aa number NP (A) times, provided N is “large enough”

o Individual events are mutually exclusive (cannot happen together).

o For discrete events (toss of a coin, sum of two dice, . . . ) one can assign
probabilities to individual events.
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What does this mean?

o “Intuitive” understanding of probability tends to be ill-defined: if we
observe an event N independent times, the outcome w will belong to the
set Aa number NP (A) times, provided N is “large enough”

o Individual events are mutually exclusive (cannot happen together).

o For discrete events (toss of a coin, sum of two dice, . . . ) one can assign
probabilities to individual events.

o For phenomena that can take a continuous value, we can only define the
probability of w falling within a range of values

. P(w)dw
P(A) = [, P(w)dw

S|
£
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Joint, marginal and conditional probabilities

o Consider two event sets A € £, B € £'. We can define the joint probability
P (A, B) as the probability that two events compatible with the sets A and
B both occur. Formally, one can think this in terms of more complex events living in the product
space £ x £’, but we can ignore the subtlety.

P(AB)=P(weAandw' € B)

e Given a joint probability we can recover the probability of individual
events by considering marginal probability, e.g.

P(A Q) =P(A), P(Q,B)=P(B)

e We can define conditional probabilities as the probability of an event set
A conditional on knowledge that event set B occurs

P(A|B) = P (w € Aknowing that w’ € B)
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Marginalization of a joint probability

o Say you could decompose 2 into a (countable) set of disjoint components
Aq, ... i.e.UjA = Q, Ain A; = (0. We can use axiom 3 to obtain marginals
by summing over all possible events

P(B)=P(Q,B) =) P(A;,B)

I
e Generalizing, we can reduce a complex joint probability by
marginalization:

P(B,C,D)=> P(A;,B,C,D)

/
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Marginalization of a joint probability

o Say you could decompose 2 into a (countable) set of disjoint components
Aq, ..., 1le.UiA = Q, Ain A; = . We can use axiom 3 to obtain marginals
by summing over all possible events

=Y Plonws) P = /P(x,w dx

o Generalizing, we can reduce a complex joint probability by
marginalization:

P (wy,w3) ZP Wi, W2, w3) Py, 2) :/P(X,y,z)dx

P(AB) P 2 3 4 5 P(A)

1

2

6 MSE 421 - Ceriotti Probability and Measure



Marginalization of a joint probability

o Say you could decompose 2 into a (countable) set of disjoint components
Aq, ..., 1le.UiA = Q, Ain A; = . We can use axiom 3 to obtain marginals
by summing over all possible events

Plor) = Y Plunen)  PY)= /P(x,w dx

o Generalizing, we can reduce a complex joint probability by
marginalization:

P (wz,w3) = ZP(wi,wz,w3) P(y,z)= /P(x,y7z) dx
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Conditional probability and Bayes’ formula

e The conditional probability can be related to the joint probability
|P(AIB)=P(A,B)/P(B)|  Bayes formula

o Basically this amounts at renormalizing the joint probability based on the
knowledge we have of the outcome of one of the events

o If the events are independent, knowledge of the outcome B does not give us
information, so P (A|B) = P (A). We can then “define” independent events as
those for which

P(A,B)=P(A)P(B)

P(AB) P(A) P(AIB)

1 2 3 4 5

1
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Bayes' formula in action

Why is it hard to develop tests for rare diseases?
@ Linus developed a test that gives no false negatives but has a 1/1’000

probability of false pOSitiVGS [If you have the disease, the test will certainly catch it. If you
don't have the disease, there is one probability in 1000 that the test is wrong and says you have it]

@ The disease has an incidence in the general population of 1/1/000'000 [if
you pick a random human being, only one in a million actually has the disease]

© Bill takes the test. Ouch, he's positive! Shall Bill freak out about his test?
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Bayes' formula in action

Why is it hard to develop tests for rare diseases?

@ Linus developed a test that gives no false negatives but has a 1/1’000

probability of false pOSitiVGS [If you have the disease, the test will certainly catch it. If you
don't have the disease, there is one probability in 1000 that the test is wrong and says you have it]

@ The disease has an incidence in the general population of 1/1/000'000 [if

you pick a random human being, only one in a million actually has the disease]

© Bill takes the test. Ouch, he's positive! Shall Bill freak out about his test?

o A:the subject is affected by the disease; B: the test is positive
e P(A|B) probability that a person that comes out positive has the disease
o P(A)=1/1'000'000, P (B|A) = 1
o P(B|A) =999/1'000, P (B|A) = 1/1'000,
o P(B)=P(AB)+P(AB)=P(BAP(A +P(BA)P(A) =
10°°+1072(1-10°) =103
o P(AB)=P(AB)/P(B)=P(BJA)P(A) /P(B)=10"°/10"3 =103
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Random variables and their functions

o An event can often be associated with the value of one or more
quantities, X; (w).

o When these values completely determine the event, we can as well label
it with the value of these, and write P (w) = P (X).

e For continuousvariables, we have to define probability densities, that only
make sense when written in an integral form, e.g. P (X) dX

e We can also of course compute functions of random variables, e.g. f (X)

o Function of random variables are in turns random variables, characterized by
their own distribution [if £ (X) is monotonic, P (f) df = P (x*1 (f)) F'(X)dX]
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Averages, moments, cumulants

e We can characterize a random variable by a series of averages performed
over the probability distribution

(X" =3 "X"P(X), / X"P(X)dXx
X

o Moments of high order contain information on lower moments, because
<X2n> > <Xn>2

o We can define combinations of moments that (to an extent) eliminate this
dependence, called cumulants. These can be complex, but the first is equal to
the average, and the second to the variance

var (X) = (X = (X)) = (X%) — (x)?

o When there are multiple variables, it is useful to define a covariance, that
gives information on how correlated are the two variables

(X3 X5) = (X = (X)) (% = (X)) = (Xi%;) = (Xi) (%))

o If the variables are independent in pairs, (X;, X;) = var (X;) d; [the opposite is not
true, two variables can be correlated and have zero covariance, think cos # and sin 6]
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Means, correlations & c

e Let’s say we have N evaluations (independent or not) of a random
variable X (I) [we label for simplicity successive realizations of the event w with an integer index /]

o The mean of the set of events is itself a random variable, Xy = % >, X (/)

o Its average equals the average of X:
- 1 .
() = 7 2 X (@) = x)
!
o Its variance depends on the correlation between different occurrences

var (Xn) = (X Xu) = 2 (X (1), X (7)

ij

o If we assume uncorrelated samples (X (i) , X (j)) = var (X) d;

var (XN) _ var (X) 25/] _ var (X)
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Autocorrelation function

o Often samples come from a time series, and different samples are
correlated so cxx (j) = (X (i), X (i +j)) / var (X) will be a decaying
autocorrelation function of j

o With correlated samples, the error in the mean will decay more slowly ~
var (X) (N/v)~", where v = Zj cxx (j) is the autocorrelation time

At
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Autocorrelation function

o Often samples come from a time series, and different samples are

correlated so cxx (j) = (X (i), X (i +j)) / var (X) will be a decaying
autocorrelation function of j

o With correlated samples, the error in the mean will decay more slowly ~
var (X) (N/v)~", where v = Zj cxx (j) is the autocorrelation time

o Physically cxx (j) says how fast fluctuations from the mean are forgotten
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Autocorrelation function

o Often samples come from a time series, and different samples are

correlated so cxx (j) = (X (i), X (i +j)) / var (X) will be a decaying
autocorrelation function of j

o With correlated samples, the error in the mean will decay more slowly ~
var (X) (N/v)~", where v = Zj cxx (j) is the autocorrelation time
o Physically cxx (j) says how Ffast fluctuations from the mean are forgotten
ACF of daily rainfall, Oxford
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Characteristic function

o Given a probability function P (X) we can define the characteristic
function - which is just its Fourier transform

b (s) = (expisX) = / P (X) e**dX

o If Pis normalized, ¢ (0) = 1

o From the properties of the FT, ¢(™ (0) = i” (X") [this is why ¢ (s) is also know as the
moment generating function]

o Consider the characteristic function associated with the joint sum of two
independent variables

P142(8) = / P (X1, X) X+ d X d X, = b1 (5) p2 ()

if indep_endent

e This is very useful to predict the distribution of the combination of
independent variables, such as the mean!

Pxy (5) = H éx@) (5/N) = [ox (s/N)"

13 MSE 421 - Ceriotti Probability and Measure



Central limit theorem

e Consider a distribution with finite moments, assuming for simplicity zero
mean and unit variance. Taylor expand it

dx(s)~1— %52 +0(s%)

o Now consider the characteristic function of the mean

b3, (5) = [ox (s/N))" ~ 1 115% o ((;)3)?/\[3 e i

o Inverting the definition of the characteristic function, one gets
P (Xn) o e~NX\/2 i.e. the mean is Gaussian distributed with a variance 1/N
o Note that the value of the variance depends on correlations between
variables, but the Gaussian nature is guaranteed provided that the
moments of P (X) do not grow too quickly. Regardless of the details of the
distribution of individual samples, the mean of a large number of
independent terms has a Gaussian distribution.

Recall that limy o (1 + %)N — e
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Binomial distribution

o Given a binary event A which has a probability P (t) = g of being true and
P (f) =1 — g of being false, what is the probability that given n
independent instances of the event, m will be true?

o Since the events are assumed independent,

P(A(1),A2),...A(m) =[] PAw)

o We do not specify the order of realizations, so e.g. ttft and fttt are equally
valid realizations of three positive outcomes. So summing over all
possible realizations

-1 n—m+1 n!
—g™(1— n— mn n . 1_ -m
B(n.m)=q"(1-q) m m-— 1 1 =q"(1-q) m! (n— m)!
o Meanvalue: (m) = )" .iB(n,i) = nq, var (m) = nq (1 — q)
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Binomial distribution

o Given a binary event A which has a probability P (t) = g of being true and
P (f) =1 — g of being false, what is the probability that given n
independent instances of the event, m will be true?

o Since the events are assumed independent,

P(A(1),A2),...A(m) =[] PAw)

o We do not specify the order of realizations, so e.g. ttft and fttt are equally
valid realizations of three positive outcomes. So summing over all
possible realizations

_ -1 n—m+1 _
=qg™(1— n-m N N =g"(1=qg)"
B(n,m)=q"(1—q" " - —— 1 q"(1-9q)

o Meanvalue: (m) = )" .iB(n,i) = nq, var (m) = nq (1 — q)

o Verify central limit theorem, taking large n, m limit
mB=ming+ (n—m)ln(1~q) +nlnn—{(n—m)In(n—m)— minm

O0ln B q n—m

am _ln1_q+ln p =0—m=ngqg
o’InB e
om? |,—pg n(1—=q@ ng  ng(1-q)
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Binomial distribution

o Given a binary event A which has a probability P (t) = g of being true and
P (f) =1 — g of being false, what is the probability that given n
independent instances of the event, m will be true?

o Since the events are assumed independent,

P(A(1),A2),...A(m) =[] PAw)

o We do not specify the order of realizations, so e.g. ttft and fttt are equally
valid realizations of three positive outcomes. So summing over all
possible realizations

_ —1 n—m+1 _
=g (1 - n-m N N =ag"(1=qg)™ ™
B(n,m)=q"(1—q" " - —— 1 q"(1-q)

o Meanvalue: (m) = )" .iB(n,i) = nq, var (m) = nq (1 — q)
o Verify central limit theorem, taking large n, m limit
There There

n!
m! (n—m)!

(m— ng)*

—— 7 _ + Gaussian with mean ng and variance ng (1 —
20q(1—q) q q(1-q)

InB~ —
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Correlations (and causation?)

o Consider two events A, B, each with multiple outcomes, A1, A2, . ..
e How to check for significance of the correlations? Null hypothesis: the
two events are independent.
o 2 test measures extent of correlations, and their significance (p-value)
o Measure deviation between observed joint frequencies, and those expected
assuming uncorrelated outcomes
o Compute total deviation and compare with 2 statistics

| swiss italian | swiss italian
punctual | 100 5 punctual | 10 1
late 3 12 late 3 2
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Correlations (and causation?)

o Consider two events A, B, each with multiple outcomes, A1, A2, . ..
e How to check for significance of the correlations? Null hypothesis: the
two events are independent.
o 2 test measures extent of correlations, and their significance (p-value)
o Measure deviation between observed joint frequencies, and those expected
assuming uncorrelated outcomes
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swiss italian
punctual | 100 5 105
late 3 12 15
103 17
Compute marginals
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Correlations (and causation?)

o Consider two events A, B, each with multiple outcomes, A1, A2, . ..
e How to check for significance of the correlations? Null hypothesis: the
two events are independent.
o 2 test measures extent of correlations, and their significance (p-value)
o Measure deviation between observed joint frequencies, and those expected
assuming uncorrelated outcomes
o Compute total deviation and compare with 2 statistics

Swiss italian
punctual | 100 (90.1) 5(14.9) | 105
late 3(12.9) 12(2.1) | 15
103 17 120

Compute expected outputs based on the marginals
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Correlations (and causation?)

o Consider two events A, B, each with multiple outcomes, A1, A2, . ..
e How to check for significance of the correlations? Null hypothesis: the
two events are independent.
o 2 test measures extent of correlations, and their significance (p-value)
o Measure deviation between observed joint frequencies, and those expected
assuming uncorrelated outcomes
o Compute total deviation and compare with 2 statistics

(E;— 0;)* /E; | swiss italian
punctual 1.1 8.0
late 9.2 46.7
n=1 X% =65
Compute x?, Y, (€ — O) /Ei
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Correlations (and causation?)

o Consider two events A, B, each with multiple outcomes, A1, A2, . ..
e How to check for significance of the correlations? Null hypothesis: the
two events are independent.
o 2 test measures extent of correlations, and their significance (p-value)
o Measure deviation between observed joint frequencies, and those expected
assuming uncorrelated outcomes
o Compute total deviation and compare with 2 statistics
1

0.50 -
n=2

2 0.10
0.05 — n=4
— n=8
0.01 o
1 2 5 10 20 50 n=16

2

Compare with the CDF for 2 statistics, in this case p = 10~ 1°
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