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From classical mechanics to statistical mechanics

AN

Ludwig Boltzmann (1844-1906): statistical mechanics: reconcile molecular
picture and macroscopic thermodynamics
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Microstates and Macrostates

o The task of measuring position and velocities of a macroscopic amount of
atoms or molecules is practically impossible

e We can characterize the macroscopic state of equilibrium systems by a
small number of macroscopic observables, e.g. volume V, temperature T,
pressure p, molar amounts of components n;

p, V,T
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Thermodynamic variables

e State variables are macroscopic quantities that only depend on the state
of the system and not on how the system has been prepared (e.q. T, p, E,
v.n,...)

o Infinitesimal changes in state variables are exact differentials (e.g.
fv':z dV = W, — V4, irrespective of the path)

o Extensivevariables (n, V) double when system size is doubled. /ntensive
variables (e.g. T, p) do not depend on system size
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Boundary Conditions

e The boundary of the system can be open or closed relative to the
exchange of mass, and conducting or adiabatic relative to exchange of
heat with its surroundings (closed+adiabatic=isolated)

e The state of the system can also be changed by application of work

Work

conducting adiabatic

74
Mass Heat

5 MSE 421 - Ceriotti Everything you Need to Know about Classical Thermodynamics



The internal energy E

o Theinternal energy is a function of state that expresses the potential the
system has to generate work. Can be defined by assuming it is
© Extensive (E = E; + E)
@ Conserved. Can change by doing work, or by exchanging heat

dE =dW +dQ| First Law

© Note the (arbitrary) convention for the sign of differentials.

Work

The internal energy is also indicated as U in many books. d indicates an exact differential,
d indicates an inexact differential, and depends on the path followed during a transformation.

6 MSE 421 - Ceriotti Everything you Need to Know about Classical Thermodynamics



Measuring the change in internal energy

e Work is associated with change of one of the extensive mechanical
variables X defining the state of the system

e For each variable there is a (generalized) force f that links it with the work
done by changing it (e.g.dW = —pey:dV)
dw = fdX,

e We can measure dE as the work spent doing an adiabatic transformation
between two states Aand B
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The first law as the definition of heat

e We can consider the first law as the definition of heat

@ Do an adiabatic transformation to measure the change in internal energy
Eg — Ea

@ Repeat with open walls, measure the new workdW and obtaindQ as the
difference

dQ=dW,y —dW
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Equilibrium and transformations

o Equilibrium states do not change unless perturbed. If the system returns
to a state after a small perturbation, it is said to be stable.

o An equation of state f (X) = f (E, V,n;,...) = 0, determines which values
of thermodynamic variables are compatible with equilibrium

e Reversible transformations proceed along a series of equilibrium states.
Irreversible transformations traverse values of thermodynamic variables
that violate the EoS.

E.qg. for a perfect gas, pV — nRT =0
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The search for equilibrium states

How do we determine if a system is in equilibrium?
o How do we determine whatis the equilibrium state of a system?

e How do we determine the evolution of a system after we remove some
internal constraints?

We can try to define a single state function to answer all these questions:
entropy!

10 MSE 421 - Ceriotti Everything you Need to Know about Classical Thermodynamics



An axiomatic definition of entropy

o Definethe entropy S (E, X) as

© Extensive function of state
@ Monotonically-increasing function of £

o Definethe temperature as (9E/9S)y = [(65/8E)x] ot >0
© Ifitis possible to obtain state B adiabatically from state A, then S (B) > S (A)

Second Law

Q Ifaprocessis reversible, then one can also reach adiabatically A from B, that
implies S(B) = S (A)

ADIABATICALLY
ACCESSIBLE

S

ADIABATICALLY
& REVERSIBLY
ACCESSIBLE

X
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Entropy and reversible heat

o Consider a system defined by S, E, and mechanical variables X. For a
reversible process one can cast the EOS into S = S(E, X)
o Compare the differentials of Sand E
total differential of S(E, X)

first law
a8 dS
ds = <aE>xdE+Z<ax)5x, dX;, dE=dQrey +dWiey
8S/OE=T"" rev. work
T OE
ds= = dE+ Z( )m dX; dE=dQe+ z/:aTdX

e For an adiabatic, reversible process dS =0anddQ =0

1 0E OE oS
Tax X Z( >EX/°'X;‘<8X>SX/ T(@X)Ex,

° Con5|der|ng a reversible but non- adlabatlc process

[7d5 =0 dETd5+Z< =) ax

Clausius principle

Many classical books define the entropy starting from the reversible heat.
Here we postulateit, and derive Clausius’s principle from the postulated properties of S.
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Internal constraints and equilibrium

o Consider a system to which we applied an internal constraint - e.g. we fix
the partitioning of £ between two subsystems
@ We start in equilibrium, and make an arbitrary transformation that only
changes the partitioning of energy between the two subsystems. This gives a
state with a different entropy S’ but same energy £ = E; + E,: from the First
law,dQ +dW =0
@ We relax back to equilibrium adiabatically. From the axioms: S’ < S
e The equilibrium partitioning is the one that maximizes the entropy:
AS,qj > O results in a general maximum-entropy principle

S(E,X)

S'(E,X,cnstr) E = E1+E2 E’--{—E2
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A variational principle for E

o Under the conservation conditions £ = E; + E;, X = X4 + X5, and given
the maximum entropy principle
S(E,X,cnstr) = S(E1,Xq) + S(E2, X2) < S(E, X)
Recall that 9S/9E > 0. Then, if
S(E',X) = S(E,X, cnstr)
it must be that £/ < E. That is, introducing constraints at constant
entropy necessarily implies an increase of internal energy.
o If we introduce infinitesimal constraints § Y around equilibrium, we can
express this condition as

E
§Esx = E(S5,X,6Y) — E(S,X) ~ (gy) s5Y >0
S,X,6Y=0

S

(dE)S >0 CONSTRAINTS

/ E
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Thermal equilibrium

o What happens if we tried to partition energy between the two
subsystems, at constant total energy?
maxent principle extensive entropy

‘ A 05, oS
0> (SSE,X = 05 +0S, = 6T 0E + aiE SE,
1/ X,6E,=0 2/ X.6E,=0

e Due to the constant-energy condition, 6 £, = —§E4, and considering that
OS/0E=1/T

1 1 1 1
—O0E1+ =0 = =— — — | 0E1 < f Eq, thati i T,=T
T16 1+ Tzd ) (T1 T2>5 1 <0 forall £, that implies T, >

T =1,

%
Z
Z
Z
_
Z
Z
Z
Z
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Convergence to thermal equilibrium

o Now consider an initial state 7; # T,. An adiabatic spontaneous evolution
will have AS; + AS, = AS > 0.

054 oS 1 1
— | AE —_— AE; — — — | AE
(3E1>x 1Jr(3152)x 2> 0 _>(T1 TZ) =0

e The maximum entropy condition implies that energy flows from the hot
to the cold subsystem
1 1

1 1

Ty > 1T,
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Legendre transforms

o Consider a function of N variables f (xq,. .., xy). One can write its
differential
df = Z dx,

e Say we wanted to define a function, related to f, that instead has a
differential form that depends on another set of variables u;.

o Considerg = f — Eix,ui
dg = Z oF dx, Z udx; — Zx,dui

o IfFwesetu; = g—fl_ we can cancel the differentials dx;. This is the Legendre

transform of f
U1 yee e f Z 8X

o Obviously, the transform can be applied to a subset of the x;'s
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Thermodynamic potentials

e The most important term of d£ in terms of mechanical boundary
conditions is —pdV, that can be supplemented by composition variables.
E is a natural function of S, V, n;, so -- introducing the chemical potential

pi = (OE[ONi)s y o

dE = TdS — pdV + > pidn;.
i

o One can Legendre-transform the entropy term, obtaining the Helmoltz free
energy

A=E TS, dA:—SdT—pdV-i—Z,u,-dn,-
i

. or the volume term obtaining the enthalpy

H=E+pV, dH=TdS+Vdp+> wudn
i

. or both obtaining the Gibbs free energy

G=E—TS+pV, dG=_-SdT+ Vdp+zu,~dn,-
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A variational principle for G

o Consider a composite system 1 + 2 enclosed in a temperature/pressure
reservoir R, at TR and pR

adiabaticity+constant-V — d (E' + E2 + ER) = 0,d (V' + V2 + VR) =0

é
é
Z
Z.
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A variational principle for G

o Consider a composite system 1 + 2 enclosed in a temperature/pressure
reservoir R, at TR and p®

adiabaticity+constant-V — d (E' + E2 + Ef) = 0,d (V' + V2 + VR) =0
Equilibrium condition: d (S' + 52 + S®) = 0

ds' +ds?2 = —ds?,  dV'+dv2=—dVR  dE'+dE2 = —dER
e Using differential dE = TdS — PdV
constant-£ — 0 = 7'dS" + 72dS?2 — p'dV' — p2dVv? — pRdVR + TRdSR
0= (T"—TR)dS" + (T2 - TR)dS? — (p' — p®)dV' — (p* — pF)dV?

Equilibriumimplies 7' =72 =TR =T, pl=p?=pfR=p
e Now consider the 1 + 2 subsystem, and remember that
dG =d(E— TS+ pV). With the T and p constraint

0 =dE, +dE + dER = dE; + dE, + TdSR — pdVR =
=d(E1+E)-Td(S1+5) +pd (Vi + V2) = (d (G + G))7
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Maxwell relations

e Considering double derivatives of thermodynamic potentials reveals
relations between macroscopic quantities
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o Similar equations hold for the other potentials
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Constrained derivatives of a function

o Consider a function z = z (x,y)
dz = (82) dx + (82) dy
ox/, oy /,
o If one requires constant z, the relation between the differentials is
().~ @), (&)~ &), (%) &)
x/).  \ox/)y" \ay), ox/)y ay ) \ox/,
o Now consider a derivative along another constraining function
w=w(xy)

0z 0z ay 0z 0z 0z ay
= (5) 0 (@) 30). 0 - (&), (3)(3).(5)
ox), oy ) \ox/,, ox), \ox), \oy/,\ox/,
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Specific heat(s)

© Recall definitions of heat capacity (e.g. (dE),, = TdS = CydT)
0E OE as oS oH oS
o~ (57),-(5), (57), - (&), %= (&7),-7(5),
@ Take S= S (T, V) and move along a constant-p line

.- (39) 07+ (3) w0, () ar+ () (30 o

© This provides a relation between the heat capacities, the isothermal
compressibility and the thermal expansion coefficient
2
(av) 1
oTr ),

G—Cv_ (9S\ (VY _(op\ (v __(op
T \ov/.\oTr), \or),\oT), \oV/;
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Euler's Theorem for homogeneous functions

o A function is said to be homogeneous of degree nif
fOX1, 0%, ... MXm) = AF (X1, %, ... Xm)
o Take the \-derivative of both sides
Zf,-’ (AX1, A\Xa, ... AXm) X = X" f (X1, %2, ... Xm)

o ForA =1 5
Zx,-a—)/; (X1,%, ... Xm) = nf (X1, X2, ... Xm)
!
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Gibbs-Duhem equation

25

e The energy is a homogeneous function of S, V, n; so

OE OE OE
. ] .
! 1

o From the definition of Gibbs free energy, G (T, p, n;)) = E—TS+pV = > pin;
e The total differential of E is

dE = TdS+SdT — pdV — Vdp+ > [widn; + nidy;]

but we know that the differential of E reads

dE = 7dS — pdV + > pidn;
i

SO

SdT7T — vdp + Z nidu; =0 Gibbs-Duhem equation

1
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Multi-phase equilibrium

o Consider an isolated system containing P phases ans M component. Each
phase can be seen as a subsystem, and the interface terms ignored.

0E =S (6E =0 T'6S" — plovi+ S0 ion
o Being anisolated system, several conservation constraints must be

enforced
> ss'=0, Y svi=0, > onj=0
i i i

e The only way to guarantee §E > 0 (minimum energy principle) for any
value of the changes in the ¢-

T'=...=TP=T, pl=..=p°=p, pyl=...=4 =y

.
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Chemical potential and mass transport

o Consider a situation with M} > Mf- The system is out of equilibrium, and
the spontaneous direction of evolution is that such that AE < 0. At
constant 7 and p throughout the system the only non-zero term in the
energy differential will be

1} Anj + pfAnf <0
e Mass balance implies Anj? = fAn}, ie.
(nj —uf) Anj <0

e For M]- > u} this implies An} < 0, i.e. components flow from the phase
with higher chemical potential to that with lower p.
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Conditions for stable equilibrium

e Take a system in equilibrium, for which 6 E = 0. Then, one has to check
whether the second-order variation is positive, 62E > 0

e Considering an isolated system, with two subsystems that can only
exchange heat, one gets

O*E' n2  O%E? 2 [ O*F O*E? "2
oS P (o5 = (2 P ()

o Considering (9*£/0S%) , = (9T/dS), ,= T/Cv,and that Ty = T because of

equilibrium,
T T
—+)>o0
(q+@>

that implies T/Cy > 0 since one could take any arbitrary subsystem

0<

28 MSE 421 - Ceriotti Everything you Need to Know about Classical Thermodynamics



Generalized equilibrium conditions

29

o Consider a thermodynamic potential ® (any of £, H, A, G) that depends on

some extensive variables X and some intensive variables u, z. Take x to be
the variable conjugate to X, i.e. x = 9®/9X. Then the second-order
differential will be e.g.

0?P! 02 P?
2 + 2

9(X")"  0(X?)
The positivity condition has to apply to each term separately, so we don’t

need to consider the terms in the differential containing other extensive
variables.

Taking into account the possibility of arbitrarily subdividing the system -
so the conditions is not specific to subsystem 1 or 2 - one gets conditions
of the form

(6X1)2 + ...

2o _ o
oX2  9X ~
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Molar quantities and molar fractions

o Often one wants to refer to the properties of a system independently of
its absolute size.

e Itis then possible to introduce “molar” quantities, e.g.

o Molarvolume,v=V/n
o Molar fractions x; = n;/n (defining n="73",n))
o Molar thermodynamic potentials, e.g. molar Gibbs free energy g = G/n (NB:
g=ul)
o If derivatives are done at constant system size, there are similar
relationships between extensive and molar quantities, e.g.

(au) 1 (ac> v
LA, — — _— = =V
ap T n 3p T

n
()2 (29), 5
oT , N oT o n
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Gibbs Phase Rule

o Consider a system with M components and P phases, described in terms
of intensive variables - p, T and M molar fractions x; = n}/ >~ n;

o Equilibrium between the different phases implies M (P — 1) equations
connecting the chemical potentials, p} = uj’.', plus P equations connecting

the molar fractions within each phase (3_; x/ = 1)
e This leaves a number of independent degrees of freedom f which is

f=2+MP—-P—-MP—-1)=2+M—P

Phase Diagram for Water
I\ Critical
217.75 Point
(Critical D E
pressure)

Normal

freezing point C

1.00 B Normal
boiling point

Pressure in atm

A

|7 Triple
point

0.0060

0.00 0.01 100.00 373.99
Temperature in °C
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Phase transitions and phase lines

o A phase line separates the stability range of two phases. Determined by

1 (P, T) = K2 (pv T)
o The properties of the system may have a discontinuity (1st-order phase

transition)
v = (O (%
ap ; op ;

At critical points the two surfaces can be tangent, so it is possible not to have
a discontinuity (second-order phase transition)

e We can compute the slope of coexistence line (Clausius-Clapeyron eqn.)

0P ((m (O [ (Om) _(m2) ) _si-s
oT op T op T oT p oT p Vi— W

2

M1 = H2
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Entropy derivatives

o Derivatives of E and S are related due to the fundamental relation S (E, V)
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