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From classical mechanics to statistical mechanics

Isaac Newton (1643-1727): kinematic theory of macroscopic bodies
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From classical mechanics to statistical mechanics

John Dalton (1766 - 1844): atomic theory and kinetic theory of gases
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From classical mechanics to statistical mechanics

Sadi Carnot (1796-1832): phenomenological thermodynamics. Theory of heat,
work, engines
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From classical mechanics to statistical mechanics

Ludwig Boltzmann (1844-1906): statistical mechanics: reconcile molecular
picture and macroscopic thermodynamics
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Microstates and Macrostates

The task of measuring position and velocities of a macroscopic amount of
atoms or molecules is practically impossible
We can characterize the macroscopic state of equilibrium systems by a
small number of macroscopic observables, e.g. volume V , temperature T ,
pressure p, molar amounts of components ni
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Thermodynamic variables

State variables are macroscopic quantities that only depend on the state
of the system and not on how the system has been prepared (e.g. T , p, E ,
V , n, . . . )

Infinitesimal changes in state variables are exact differentials (e.g.∫ V2
V1

dV = V2 − V1, irrespective of the path)

Extensive variables (n, V ) double when system size is doubled. Intensive
variables (e.g. T , p) do not depend on system size
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Boundary Conditions

The boundary of the system can be open or closed relative to the
exchange of mass, and conducting or adiabatic relative to exchange of
heat with its surroundings (closed+adiabatic≡isolated)
The state of the system can also be changed by application of work
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The internal energy E
The internal energy is a function of state that expresses the potential the
system has to generate work. Can be defined by assuming it is

1 Extensive (E = E1 + E2)
2 Conserved. Can change by doingwork, or by exchanging heat

dE = d̄W +d̄Q First Law

3 Note the (arbitrary) convention for the sign of differentials.
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The internal energy is also indicated as U in many books. d indicates an exact differential,
d̄ indicates an inexact differential, and depends on the path followed during a transformation.



Measuring the change in internal energy

Work is associated with change of one of the extensive mechanical
variables X defining the state of the system

For each variable there is a (generalized) force f that links it with the work
done by changing it (e.g.d̄W = −pextdV )

d̄W = f dX ,

We canmeasure dE as the work spent doing an adiabatic transformation
between two states A and B
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The first law as the definition of heat

We can consider the first law as the definition of heat
1 Do an adiabatic transformation to measure the change in internal energy

EB − EA

2 Repeat with open walls, measure the new workd̄W and obtaind̄Q as the
difference

d̄Q = dWad −d̄W
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Equilibrium and transformations

Equilibrium states do not change unless perturbed. If the system returns
to a state after a small perturbation, it is said to be stable.
An equation of state f (X) = f (E ,V , ni , . . .) = 0, determines which values
of thermodynamic variables are compatible with equilibrium
Reversible transformations proceed along a series of equilibrium states.
Irreversible transformations traverse values of thermodynamic variables
that violate the EoS.
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E.g. for a perfect gas, pV − nRT = 0
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The search for equilibrium states

How do we determine if a system is in equilibrium?

How do we determinewhat is the equilibrium state of a system?

How do we determine the evolution of a system after we remove some
internal constraints?

We can try to define a single state function to answer all these questions:
entropy!
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An axiomatic definition of entropy

Define the entropy S (E ,X) as
1 Extensive function of state
2 Monotonically-increasing function of E

Define the temperature as (∂E/∂S)X =
[
(∂S/∂E)X

]−1
= T > 0

3 If it is possible to obtain state B adiabatically from state A, then S (B) ≥ S (A)

∆Sad ≥ 0 Second Law

4 If a process is reversible, then one can also reach adiabatically A from B, that
implies S (B) = S (A)
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Entropy and reversible heat

Consider a system defined by S , E , and mechanical variables X. For a
reversible process one can cast the EOS into S = S(E ,X)
Compare the differentials of S and E

total differential of S(E,X)︷ ︸︸ ︷
dS =

(
∂S
∂E

)
X
dE +

∑
i

(
∂S
∂Xi

)
E,X′

i

dXi

first law︷ ︸︸ ︷
dE = d̄Qrev +d̄Wrev

dS =

∂S/∂E=T−1︷︸︸︷
1
T

dE +
∑
i

(
∂S
∂Xi

)
E,X′

i

dXi dE = d̄Qrev+

rev. work︷ ︸︸ ︷∑
i

∂E
∂Xi

dXi

For an adiabatic, reversible process dS = 0 andd̄Q = 0

0 =
∑
i

1
T
∂E
∂Xi

dXi +
∑
i

(
∂S
∂Xi

)
E,X′

i

dXi ⇒
(
∂E
∂Xi

)
S,X′

i

= −T
(
∂S
∂Xi

)
E,X′

i

Considering a reversible but non-adiabatic process

TdS = d̄Qrev

Clausius principle

, dE = TdS +
∑
i

(
∂E
∂Xi

)
dXi
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Many classical books define the entropy starting from the reversible heat.
Here we postulate it, and derive Clausius’s principle from the postulated properties of S .
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Internal constraints and equilibrium

Consider a system to which we applied an internal constraint - e.g. we fix
the partitioning of E between two subsystems

1 We start in equilibrium, and make an arbitrary transformation that only
changes the partitioning of energy between the two subsystems. This gives a
state with a different entropy S ′ but same energy E = E1 + E2: from the first
law,d̄Q +d̄W = 0

2 We relax back to equilibrium adiabatically. From the axioms: S ′ < S

The equilibrium partitioning is the one that maximizes the entropy:
∆Sadj ≥ 0 results in a generalmaximum-entropy principle
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A variational principle for E
Under the conservation conditions E = E1 + E2, X = X1 + X2, and given
the maximum entropy principle

S (E ,X, cnstr) = S (E1,X1) + S (E2,X2) ≤ S (E ,X)

Recall that ∂S/∂E > 0. Then, if
S (E ′,X) = S (E ,X, cnstr)

it must be that E ′ < E . That is, introducing constraints at constant
entropy necessarily implies an increase of internal energy.
If we introduce infinitesimal constraints δY around equilibrium, we can
express this condition as

δES,X = E (S,X, δY )− E (S,X) ≈
(
∂E
∂Y

)
S,X,δY=0

δY ≥ 0
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Thermal equilibrium

What happens if we tried to partition energy between the two
subsystems, at constant total energy?

maxent principle︷ ︸︸ ︷
0 ≥ δSE,X =

extensive entropy︷ ︸︸ ︷
δS1 + δS2 =

(
∂S1
∂E1

)
X,δE1=0

δE1 +

(
∂S
∂E2

)
X,δE2=0

δE2

Due to the constant-energy condition, δE2 = −δE1, and considering that
∂S/∂E = 1/T
1
T1
δE1 +

1
T2
δE2 =

(
1
T1
− 1

T2

)
δE1 ≤ 0 for all δE1, that implies T1 = T2
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Convergence to thermal equilibrium

Now consider an initial state T1 6= T2. An adiabatic spontaneous evolution
will have ∆S1 + ∆S2 = ∆S > 0.(

∂S1
∂E1

)
X

∆E1 +

(
∂S
∂E2

)
X

∆E2 > 0 →
(

1
T1
− 1

T2

)
∆E1 > 0

The maximum entropy condition implies that energy flows from the hot
to the cold subsystem(

1
T1
− 1

T2

)
∆E1 > 0 T2 > T1 →

1
T2

<
1
T1
→ ∆E1 > 0
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Legendre transforms

Consider a function of N variables f (x1, . . . , xN). One can write its
differential

df =
∑
i

∂f
∂xi

dxi .

Say we wanted to define a function, related to f , that instead has a
differential form that depends on another set of variables ui .

Consider g = f −
∑

i xiui

dg =
∑

i

∂f
∂xi

dxi −
∑

i

uidxi −
∑

i

xidui

If we set ui = ∂f
∂xi

we can cancel the differentials dxi . This is the Legendre

transform of f

g (u1, . . .) = f −
∑

i

xi
∂f
∂xi

Obviously, the transform can be applied to a subset of the xi ’s
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Thermodynamic potentials

The most important term of dE in terms of mechanical boundary
conditions is−pdV , that can be supplemented by composition variables.
E is a natural function of S , V , ni , so -- introducing the chemical potential
µi = (∂E/∂ni)S,V ,n′

i

dE = TdS − pdV +
∑
i

µidni .

One can Legendre-transform the entropy term, obtaining the Helmoltz free
energy

A = E − TS, dA = −SdT − pdV +
∑

i

µidni

. . . or the volume term obtaining the enthalpy

H = E + pV , dH = TdS + Vdp +
∑

i

µidni

. . . or both obtaining the Gibbs free energy

G = E − TS + pV , dG = −SdT + Vdp +
∑

i

µidni
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A variational principle for G

Consider a composite system 1 + 2 enclosed in a temperature/pressure
reservoir R, at T R and pR

adiabaticity+constant-V → d
(
E1 + E2 + ER

)
= 0,d

(
V 1 + V 2 + V R

)
= 0
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(
E1 + E2 + ER

)
= 0,d

(
V 1 + V 2 + V R
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Equilibrium condition: d
(
S1 + S2 + SR

)
= 0

dS1 + dS2 = −dSR , dV 1 + dV 2 = −dV R , dE1 + dE2 = −dER

Using differential dE = TdS − PdV
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Maxwell relations

Considering double derivatives of thermodynamic potentials reveals
relations between macroscopic quantities

∂2E
∂V∂S

=

(
∂T
∂V

)
S

,
∂2E
∂S∂V

= −
(
∂p
∂S

)
V

→
(
∂T
∂V

)
S

= −
(
∂p
∂S

)
V

Similar equations hold for the other potentials

∂2H
∂S∂p

→
(
∂T
∂p

)
S

=

(
∂V
∂S

)
p

∂2A
∂T∂V

→
(
∂S
∂V

)
T

=

(
∂p
∂T

)
V

∂2G
∂T∂p

→ −
(
∂S
∂p

)
T

=

(
∂V
∂T

)
p
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Constrained derivatives of a function

Consider a function z = z (x , y)

dz =

(
∂z
∂x

)
y

dx +

(
∂z
∂y

)
x

dy

If one requires constant z , the relation between the differentials is(
∂y
∂x

)
z

= −
(
∂z
∂x

)
y
/

(
∂z
∂y

)
x

→
(
∂z
∂x

)
y

= −
(
∂z
∂y

)
x

(
∂y
∂x

)
z

Now consider a derivative along another constraining function
w = w (x , y)

dz =

(
∂z
∂x

)
y

dx+

(
∂z
∂y

)
x

(
∂y
∂x

)
w

dx →
(
∂z
∂x

)
w

=

(
∂z
∂x

)
y

+

(
∂z
∂y

)
x

(
∂y
∂x

)
w
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Specific heat(s)
1 Recall definitions of heat capacity (e.g. (dE)V = TdS = CVdT )

CV =

(
∂E
∂T

)
V

=

(
∂E
∂S

)
V

(
∂S
∂T

)
V

= T

(
∂S
∂T

)
V

; Cp =

(
∂H
∂T

)
p

= T

(
∂S
∂T

)
p

2 Take S = S (T ,V ) and move along a constant-p line

(dS)p =

(
∂S
∂T

)
V

dT +

(
∂S
∂V

)
T

(dV )p =

(
∂S
∂T

)
V

dT +

(
∂S
∂V

)
T

(
∂V
∂T

)
p

dT

3 This provides a relation between the heat capacities, the isothermal
compressibility and the thermal expansion coefficient

Cp − CV

T
=

(
∂S
∂V

)
T

(
∂V
∂T

)
p

=

(
∂p
∂T

)
V

(
∂V
∂T

)
p

= −
(
∂p
∂V

)
T

[(
∂V
∂T

)
p

]2
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Euler’s Theorem for homogeneous functions

A function is said to be homogeneous of degree n if

f (λx1, λx2, . . . λxm) = λnf (x1, x2, . . . xm)

Take the λ-derivative of both sides∑
i

f ′i (λx1, λx2, . . . λxm) xi = nλn−1f (x1, x2, . . . xm)

For λ = 1 ∑
i

xi
∂f
∂xi

(x1, x2, . . . xm) = nf (x1, x2, . . . xm)
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Gibbs-Duhem equation

The energy is a homogeneous function of S , V , ni so

E (S,V , ni) =
∂E
∂S

S +
∂E
∂V

V +
∑
i

∂E
∂ni

ni = TS − pV +
∑
i

µini

From the definition of Gibbs free energy, G (T , p, ni) = E −TS +pV =
∑

i µini

The total differential of E is

dE = TdS + SdT − pdV − Vdp +
∑
i

[µidni + nidµi ]

but we know that the differential of E reads

dE = TdS − pdV +
∑
i

µidni

so

SdT − Vdp +
∑
i

nidµi = 0 Gibbs-Duhem equation
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Multi-phase equilibrium

Consider an isolated system containing P phases ansM component. Each
phase can be seen as a subsystem, and the interface terms ignored.

δE =
∑P

i=1δEi =
∑P

i=1T
iδS i − piδV i +

∑M
j=1µ

i
jδn

i
j

Being an isolated system, several conservation constraints must be
enforced ∑

i

δS i = 0,
∑
i

δV i = 0,
∑
i

δnij = 0

The only way to guarantee δE ≥ 0 (minimum energy principle) for any
value of the changes in the δ·

T 1 = . . . = T P = T , p1 = . . . = pP = p, µ1
j = . . . = µP

j = µj
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Chemical potential and mass transport

Consider a situation with µ1
j > µ2

j . The system is out of equilibrium, and
the spontaneous direction of evolution is that such that ∆E < 0. At
constant T and p throughout the system the only non-zero term in the
energy differential will be

µ1
j ∆n1j + µ2

j ∆n2j < 0

Mass balance implies ∆n2j = −∆n1j , i.e.(
µ1
j − µ2

j

)
∆n1j < 0

For µ1
j > µ2

j this implies ∆n1j < 0, i.e. components flow from the phase
with higher chemical potential to that with lower µ.
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Conditions for stable equilibrium

Take a system in equilibrium, for which δE = 0. Then, one has to check
whether the second-order variation is positive, δ2E ≥ 0

Considering an isolated system, with two subsystems that can only
exchange heat, one gets

0 ≤ ∂2E1

∂ (S1)
2

(
δS1
)2

+
∂2E2

∂ (S2)
2

(
δS2
)2

=

(
∂2E1

∂ (S1)
2

+
∂2E2

∂ (S2)
2

)(
δS1
)2

Considering
(
∂2E/∂S2

)
V ,n

= (∂T/∂S)V ,n = T/CV , and that T1 = T2 because of

equilibrium, (
T
C 1
V

+
T
C 2
V

)
≥ 0

that implies T/CV ≥ 0 since one could take any arbitrary subsystem
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Generalized equilibrium conditions

Consider a thermodynamic potential Φ (any of E ,H,A,G) that depends on
some extensive variables X and some intensive variables u, z . Take x to be
the variable conjugate to X , i.e. x = ∂Φ/∂X . Then the second-order
differential will be e.g.

0 ≤

[
∂2Φ1

∂ (X1)
2

+
∂2Φ2

∂ (X2)
2

]
(δX1)

2
+ . . .

The positivity condition has to apply to each term separately, so we don’t
need to consider the terms in the differential containing other extensive
variables.

Taking into account the possibility of arbitrarily subdividing the system -
so the conditions is not specific to subsystem 1 or 2 - one gets conditions
of the form

∂2Φ

∂X2
=
∂x
∂X
≥ 0
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Molar quantities and molar fractions

Often one wants to refer to the properties of a system independently of
its absolute size.

It is then possible to introduce ‘‘molar’’ quantities, e.g.

Molar volume, v = V/n
Molar fractions xi = ni/n (defining n =

∑
i ni )

Molar thermodynamic potentials, e.g. molar Gibbs free energy g = G/n (NB:
g ≡ µ!)

If derivatives are done at constant system size, there are similar
relationships between extensive and molar quantities, e.g.(

∂µ

∂p

)
T

=
1
n

(
∂G
∂p

)
T

=
V
n

= v(
∂µ

∂T

)
p

=
1
n

(
∂G
∂T

)
p

= −S
n

= −s
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Gibbs Phase Rule

Consider a system withM components and P phases, described in terms
of intensive variables - p, T andM molar fractions x ij = nij/

∑
j n

i
j

Equilibrium between the different phases impliesM (P − 1) equations
connecting the chemical potentials, µi

j = µi′
j , plus P equations connecting

the molar fractions within each phase (
∑

j x
i
j = 1)

This leaves a number of independent degrees of freedom f which is

f = 2 + MP − P −M(P − 1) = 2 + M − P
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Phase transitions and phase lines

A phase line separates the stability range of two phases. Determined by
µ1 (p, T ) = µ2 (p, T )

The properties of the systemmay have a discontinuity (1st-order phase
transition)

v1 − v2 =

(
∂µ1

∂p

)
T

−
(
∂µ2

∂p

)
T

At critical points the two surfaces can be tangent, so it is possible not to have
a discontinuity (second-order phase transition)

We can compute the slope of coexistence line (Clausius-Clapeyron eqn.)

∂p
∂T

= −
((

∂µ1

∂p

)
T

−
(
∂µ2

∂p

)
T

)−1((
∂µ1

∂T

)
p

−
(
∂µ2

∂T

)
p

)
=

s1 − s2
v1 − v2
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Entropy derivatives

Derivatives of E and S are related due to the fundamental relation S (E ,V )
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