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Part I

Lectures
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Chapter 1

Principles of Macroscopic

Systems

1.1 Introduction

Let’s start with a simple experiment

scheme 001

We can do this experiment with system totally isolated, i.e. insulated, at

constant energy.

3



What is the driving force?

– It has to do with fluctuations, statistics, and chaos.

Consider an enlargement of the experiment, and for the purpose of keeping

track of things, mark the system with a grid.

scheme 002

Each cell of volume ∆ν; black cells are those containing dye molecules.

∆ν is very little – so small that no more than one dye molecule can fit in it.

With light (through scattering or absorption) we can observe or measure

ρ = concentration of dye molecules in observed region of volume ν

= number of molecules/ν
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scheme 003

scheme 004

Even at equlibrium, fluctuations never stop.

These microscopic fluctuations are a consequence of molecular motions. The

relative size of the fluctuations in ρ depends on the size of the observed

system – the size of ν.

For ν = ∆ν = microscopic volume ≈ size of a molecule, ρ looks like this

when the total system is at equilibrium:
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scheme 005

(ρ axis is schematic, not drawn to scale.)

If observations are made over short periods of time and over short distance

scales, the system will always look chaotic. On the other hand, observations

over long times or over long length scales will be easy to characterize (at

macroscopic equilibrium) – ordinary, self evident, boring.

How long is ”long” – long enough so that in effect, one observation corre-

sponds to many statistically independent measurements.

• Observation over a long time T :

〈ρ〉 =
1

T

∫ T

0

ρ(t) dt ← This is a time average

=
1

K

K∑
n=1

1

τ

∫ nτ

(n−1)τ

ρ(t) dt ; T = Kτ

=
1

K

K∑
n=1

[ρ]nth observation

If T is long enough and if the system is at equlibrium, 〈ρ〉 will be a ”constant”,

i.e., we will get the same value every time we do the experiment.

• Observation over a large region of volume ν.

〈ρ〉 =
1

ν

m∑
j=1

[molecules in cell j]/∆ν ν = m∆ν

=
1

m

m∑
j=1

[ρ]jth cell

If m is large enough and if system is at macroscopic equilibrium, this 〈ρ〉 is

also a constant, and should have the same value as 〈ρ〉 corresponding to a

time average.
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1.2 Range or length of correlations

Correlation: Distance over which a disturbance of fluctuation has an effect.

Usually, this distance is very short (microscopic).

scheme 006

A very big system can be divided into an enormous number of smaller, but

still big systems.

The very big system is an ensemble of subsystems. Observation of whole

system corresponds to an ensemble average.

What does it mean to be correlated?

Example:

P (ρA, ρB) joint probability that subsystem A

has density ρA and that subsystem B

has density ρB. It is a normalized

histogram built up from many measurements.

Clearly,

〈ρAρB〉 =
∑
ρA

∑
ρB

P (ρA, ρB)ρAρB

7



But if subsystems are uncorrelated,

P (ρA, ρB) = P (ρA) · P (ρB)

where P (ρB) is a histogramm from observations of B ignoring A.

Thus,

〈ρAρB〉uncorrelated =
∑
ρA

∑
ρB

P (ρA)P (ρB)ρAρB

=

(∑
ρA

P (ρA)ρA

)(∑
ρB

P (ρB)ρB

)
= 〈ρA〉 〈ρB〉

Therefore,

〈ρAρB〉 − 〈ρA〉 〈ρB〉 = 〈(ρA − 〈ρA〉)(ρB − 〈ρB〉)〉

is a measure of correlations.

When

〈(ρA − 〈ρA〉)(ρB − 〈ρB〉)〉 6= 0

the two subsystems are correlated.

Relaxation time Time for a system to forget a particular fluctuation or

disturbance.

8



scheme 007

Macroscopic systems are at equilibrium, if they have been prepared and

controlled over times long compared to relaxation time.

〈ρ〉 = observed ρ =

either time average of ρ

or ensemble average of ρ

The assumed equivalence of the two averages is called the ergodic assumption

– if you believe it, it means you believe in relaxation (loss of memory and

chaos) and finite correlation lengths; and you are thinking about experiments

performed over long times and/or large spatial scales.

What does it mean to be uncorrelated at different times?

(Time correlations, a sophisticated concept!)

Consider the ”time line” for ρ in an equilibrium system.

scheme 008

For every time ti, look also at ti + τ and calculate ρ(ti)ρ(ti + τ). Average

this quantity over many ti’s. The average gives a function of τ .

C(τ) =
1

K

K∑
i=1

ρ(ti)ρ(ti + τ)

= 〈ρ(0)ρ(τ)〉

9



Zero time refers to the initial time that is averaged over.

If τ is larger than the relaxation time

C(τ) −→ 〈ρ(0)〉〈ρ(τ)〉 = 〈ρ〉〈ρ〉

1.3 Fluctuations, large numbers, extensive and

intensive

Question: How many particles (e.g. dye molecules in a solution, or air

molecules in air) will we find in an observed volume V = M∆ν ?

scheme 009

Let

ni = 1, if a molecules is in cell i

ni = 0, if no molecule is in cell i .

We will be assuming low concentrations and very small ∆ν, so ni > 1 is

”impossible”.

Total number of particles in system at a particular instant is

N =
M∑
i=1

ni

10



Thus,

〈N〉 =
M∑
i=1

〈ni〉 = M〈n〉

The last step makes use of the fact, that at equilibrium, on the average, each

cell is the same.

Here,

〈n〉 = average of ni for any one cell

= probability that one particular cell is occupied

At low concentrations (i.e. 〈N〉
V

∆ν is small)

〈n〉 � 1

Notice that 〈N〉 scales linearly with M , the size of the system. Thus 〈N〉 is

called an extensive property.

On the other hand, 〈n〉 appears to be independent of the system size. As

such, 〈n〉 is called an intensive property.

Examples of intensive properties:

pressure, average concentrations, . . .

Examples of extensive properties:

volume, total average energy, . . .

Question: Is 〈N〉 a meaningful estimate of an instantaniously observed N?

To see, let us estimate the size of typical fluctuations

δN = N − 〈N〉

11



We test for the average of δN2 as 〈δN〉 = 0.

〈(δN)2〉 = 〈(N − 〈N〉)2〉

= 〈N2 − 2N〈N〉+ 〈N〉2〉

= 〈N2〉 − 2〈N〉〈N〉+ 〈N〉2

= 〈N2〉 − 〈N〉2

Now write both 〈N2〉 and 〈N〉2 in term of averages involving the ”occupation”

numbers, the ni’s:

〈(δN)2〉 =

〈
M∑
i=1

M∑
j=1

ninj

〉
−

〈
M∑
i=1

ni

〉〈
M∑
j=1

nj

〉

=
M∑
i=1

M∑
j=1

[〈ninj〉 − 〈ni〉〈nj〉︸ ︷︷ ︸
this is only nonzero,

if ni is correlated to nj

]

At low concentrations, ni’s of different cells are uncorrelated, only the i = j

terms are nonzero. So,

〈(δN)2〉 =
M∑
i=1

[〈n2
i 〉 − 〈ni〉2]

(make use of n2
i = ni !)

〈(δN)2〉 = M [〈n〉 − 〈n〉2] = M〈n〉 (1− 〈n〉)︸ ︷︷ ︸
≈1

≈M〈n〉 = 〈N〉

Thus, particle fluctuations for a gas or solution of uncrorrelated particles

obeys

〈(δN)2〉 = 〈N〉

Things to notice

1. 〈(δN)2〉 is extensive

12



2. Relative size of fluctuations√
〈(δN)2〉
〈N〉

=

√
〈N〉
〈N〉

=
1√
〈N〉

=
1√
M〈n〉

are small for big systems and large for little systems.

Equivalentely, if we observe concentrations or densities, ρ = N/V , then

〈ρ〉 = 〈n〉/∆ν

and

〈(δρ)2〉 =
〈N2〉 − 〈N〉2

V 2
=
〈N〉
V 2

= 〈ρ〉 1

M∆ν

For M large, fluctuations in the intensive property ρ become negligible.

P (ρ) = probability distribution for ρ

scheme 010

The density distribution function for a large system exhibits little dispersion.
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1.4 Principle of equal weight

Statistical characterization of macroscopic equilibrium.

Think about the ink dye experiment. It seems to illustrate that terminal

stationary states are most random or chaotic macroscopic states, i.e. all

possible microscopic states are equally likely.

In other words, all fluctuations consistent with the constraints that define

the system occur with the same probability.

As we will see shortly, the Second Law of thermodynamics follows from this

principle.

For example, consider an isolated system of fixed size

scheme 011

System is totally insulated from its surroundings. No particlescan come in

or get out, no energy can be transmitted through the boundaries.

N and V are fixed, and from conservation of total energ E, the energy is

fixed too. These are the constraints defining this system – fixed N , V , and

E.

14



Let Ω(N, V,E) = total number of states, microscopic

states that is, constraint with

fixed N , V , and E.

That is like the degeneracy of the macroscopic system.

scheme 012

How many ways can you put N = 5 particles in the available boxes?

At macroscopic equilibrium, the principle of equal weights implies that for

each of these microscopic states the probability is

P =
1

Ω(N, V,E)

A related quantity is the entropy, S, which we define as

S(N, V,E) ≡ kB ln Ω(N, V,E)

kB is, at this point, an arbitrary constant. It will be Boltzmann’s constant.

We expect that S is extensive.

Example 1 N identical particles, each on can exist in one of two degenerate

states ( both having the same energy)

15



scheme 013

In this case, there area total of 2N states, i.e.,

Ω = 2N ⇒ S = kB ln Ω = NkB ln 2← it is extensive!

Example 2 N uncorrelated and indistinguishable particles in a volume

composed of M cells.

scheme 014
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particle 1 has M places to go

particle 2 has M places to go
...

particle 1 has M places to go

This seems to suggest Ω = MN .

This is based on M � N and one particle per cell. For smaller M we would

have Ω = M(M − 1)(M − 2) · · · (M −N).

But due to indistinguishability

scheme 015

The number of equivalent configurations is the number of ways to relabel the

indistinguishable particles, and that number is N ! = number of permutations

of N things.

scheme 016

17



Thus, Ω = MN over counts the number of different states by a facor of N !.

Hence,

Ω =
1

N !
MN .

As a result, in this case

S/kB = N lnM − lnN ! .

For N large, Stirling’s formula is

lnN ! ≈ N lnN −N .

Thus, finally,

S/kB = N lnM −N lnN +N

= N

[
ln
M

N
+ 1

]
= N

[
ln

1

〈n〉
+ 1

]
= N [1− ln 〈n〉]

which is extensive.
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Chapter 2

The Second Law and the

Meaning of Temperature

2.1 The Second Law of thermodynamics

Partitionfunction

Ω(N, V,E) = number of all possible microscopic

states (i.e., instantaneous fluctuations)

with N , V , E fixed.

Consider a subset of all these fluctuations which can be realized through

internal constraints.

Example

19



scheme 017

Divide the system into two subsystems, such that

N = N1 +N2

V = V1 + V2

E = E1 + E2

If ”internal constraint” was impermeable, then it could be used to enforce

an inhomogenious distribution of particles in the system. If it was insulating

and rigid, it could enforce a partitioning of energy that was inconsistent with

the partitioning at equilibrium without the constraint.

Let Ω′(N, V,E) = total number of microscopic states

with internal constraints applied

Since the constraint reduces the total number of possible fluctuations

Ω′(N, V,E) < Ω′(N, V,E)

or

S ′(N, V,E) < S ′(N, V,E) .

20



But macroscopic states accessed through the application of internal con-

straints correspond to nonequilibrium macroscopic states without those con-

straints.

Thus

S is max. at equilibrium

This idea is the essence of the Second Law of thermodynamics.

To see what this law can predict, consider the following question.

How is the total energy of a system partitioned at equilibrium?

scheme 018

E = E1 + E2 since energy is extensive

E1 = Eeq
1 + ∆E

E2 = Eeq
2 + ∆E

∆E is the fluctuation in energy.

Entropy as a function of N , V , E.

21



scheme 019

Since S is extensive S = S1 + S2 and

∂(−S)

∂∆E
=
∂(−S1)

∂∆E
+
∂(−S2)

∂∆E

Define temperature, T , by

1

T
≡
(
∂(S)

∂E

)
N,V

,

since both E and S are extensive, T must be intensive.

Thus,
∂(−S)

∂∆E
= − 1

T1

+
1

T2

⇒ T1 = T2 at thermal equilibrium, and

∆E flows from hot (high T )

to cold (low T ).

2.2 Does entropy increase for all natural pro-

cesses?

Hahn’s echo experiment (see Brewer and Hahn, Scientific American

251, pp 50–57, (1984))
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scheme 020

After several turns of crank, dye appears dispense. Is this the Second Law

at work? – No, we can return to the initial configuration by simply reversing

the turns of the crank.

Evidentally, relaxation times in the viscous fluid are much longer than the

times of the experiment.

Are you sure Ω(N, V,E) must increase with increase of E? If not, tempera-

ture T =
(
∂S
∂E

)−1

N,V
will not be positive!

Example 1

scheme 021
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Increase in energy (larger V) leads to increase in possible states

dΩ

dE
> 0

Example 2 Spin in a magnetic field

scheme 022

Example 3

24



scheme 023

What is the chance no air will be where the teacher is?

scheme 024

Teacher region with no particles has αM cells, α� 1, but αN � 1.

We can use Poisson’s formula

Pm ≈
(np)m

m!
e−np

with p = α; n = N ; m = 0, to get

P ≈ e−αN → very small number!

2.3 Entropy as a function of E, N and V

S = kB ln Ω = S(E, V,N)

25



scheme 025

Specify E, V , and N , and this will give

you S for an equilibrium system.

Note: The equilibrium manifold of macroscopic states is only a small frac-

tion of allpossible states.

Consider small displacements among the equilibrium states: (total differen-

tial)

dS =

(
∂S

∂E

)
N,V

dE +

(
∂S

∂V

)
E,N

dV +

(
∂S

∂N

)
V,E

dN

Partial differentiation
(
∂S
∂E

)
N,V

meaning: We are thinking about S as a func-

tion of E, N and V , and we are considering its rate of change due to changing

E in the direction orthogonal to N and V .

We have already defined 1
T

=
(
∂S
∂E

)
N,V

.

Let us now define

p

T
=

(
∂S

∂V

)
E,N

, and − µ

T
=

(
∂S

∂N

)
V,E

,

so that

dS =
1

T
dE +

p

T
dV − µ

T
dN

Notice that as we have defined them, p and µ are intensive functions of E,

V and N .
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In analogy with our analysis of thermal equilibrium

scheme 026

V1 = V eq
1 + ∆V

V2 = V eq
2 −∆V

scheme 027
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dS

d∆V
= 0 at equilibrium

⇒ (p/T )1 = (p/T )2

⇒ p1 = p2 at equilibrium

and p1 > p2 causes membrane to deform with ∆V > 0.

scheme 028

N1 = N eq
1 + ∆N

N2 = N eq
2 −∆N

28



scheme 029

dS

d∆N
= 0 at equilibrium

⇒ (µ/T )1 = (µ/T )2

⇒ µ1 = µ2 at equilibrium

and µ1 > µ2 causes particles to flow with ∆N > 0.

• quantity T controls energy equilibrium (Temperature).

• quantity p controls volume equilibrium (Pressure).

• quantity µ controls mass equilibrium (Chemical Potential).

To help further identify the physical meaning of p and µ, rearrange the

formula for dS

TdS = dE + pdV − µdN

dE = TdS − pdV + µdN

So, here we are thinking about E as a function of S, V and N (E(S, V,N)).

29



scheme 030

Specify S, V , N and that will determine E for an equilibrium system.

E is the total energy of the system, so called, the internal energy. Since

energy is conserved, (First Law), E will change only if we do something to

the system.

We can do work, squeeze or stretch the system, heat or cool it, or add parti-

cles.

For example:

scheme 031

work done on system = (force) ·∆l

= − (force/area)︸ ︷︷ ︸
externally applied pressure

·∆V

= −Pext ·∆V

Positive work done on system decreases system volume.

30



At equilibrium, Newton tells us that Pext = pressure of system. Therefore, if

work is done reversibly, the work differential for changing V is

(dW )rev = −(pressure of system) ·∆V

Compare with dE = TdS − pdV + µdN ,

⇒ p = pressure of system.

Reversible process is one that is done slowly enough to move through equi-

librium states only.

scheme 032

Equlibrium states are relatively simple to characterize (only S, V and N

need to be specified). So reversing a path through such states is conceivable.

Non equilibrium states are , in principle, infinitely more complex, and it is

inconceivable that we could retrace on uncontrolled path through such states

– thue irreversible.

31



2.4 Ideal gas law

We have established that (
∂S

∂V

)
N,E

=
p

T
.

Earlier we showed that uncorrelated structurless identical particles leads to

Ω(N, V ) = MN/N !

or

S = kB

[
ln

(
M

N

)
+ 1

]
N , M∆ν = V

If we also consider the possible energies of such particles

Ω(N, V,E) =
MNfN(E)

N !

fN(E) = number of ways of distributing energy E among N particles.

Therefore

S = kB ln Ω = kBN

[
ln

(
M

N

)
+ 1 + ln f(E)

]
Thus

1

T
=

(
∂S

∂V

)
N,E

= kB
N

f(E)

df(E)

dE

⇒ T = T (E/N) or E/N = function of T independent of V or density.

Further

p

T
=

(
∂S

∂V

)
N,E

= kBN
1

∆ν

∂

∂M
ln

(
M

N

)
= kB

N

∆νM
= kB

N

V
= kBρ

Thus, p
kBTρ

= 1 – compare to pV = NRT (the ideal gas law)

R = N0kB

N0 = Avogadro’s number
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Now we know the essential physics behind pV = nRT – uncorrelated density

fluctuations.

Reversible and isothermal compression of an ideal gas

scheme 033

Surrounding is an infinite source of energy which keeps the temperature fixed

– it is called a heat bath.

The work done in changing V from V1 to V2 is

W =

∫ V2

V1

[−p(T, V,N)]dV

= −nRT
∫ V2

V1

dV

V
= −nRT ln

(
V2

V1

)
= nRT ln

(
V1

V2

)
But the temperature is constant, so the total change in energy at the ideal

gas is zero. – We did work, but there is no change in energy (remeber E/N

= function of T alone!)

What is going on?

HEAT FLOW !
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2.5 Temperature and energy fluctuations

scheme 034

Cosider case where Nj = N is fixed, and fluctuations are those in which Ej

changes. (The bath is then a heat bath in equilibrium with the closed – but

not isolated – system of interest.)

A given Ej corresbonds to (we are going to assume that the bath is truly

enormous.)

EB = ET − Ej

EB fluctuates as Ej fluctuates, and ET is fixed. The probability for observing

this partitioning of energy is

Ω(ET − Ej, NB, VB) Ω(Ej, V,N)

Ω(ET , NT , VT )

=
( number of bath states)(number of subsystem states)

( number of states of total system )

that is, the probability that the subsystem has energy E is

P (E) ∝ Ω(ET − Ej, NB, VB) Ω(E, V,N)

(replace Ej by E and omit the normalization factor).
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Since the bath is huge, ET � E, hence we can truncate the following Taylor

series

ln Ω(ET − Ej, NB, VB) = ln Ω(ET , NB, VB) + (−E)

(
∂ ln Ω

∂ET

)
NB ,VB

+ · · ·

after the linear term.

Recall (T = bath temperature)

1

kBT
=

(
∂ ln Ω

∂ET

)
NB ,VB

= β

Hence, for a very big bath in thermal equilibrium with the system of interest

P (E) ∝ Ω(E, V,N)eln Ω(ET−E,NB ,VB)

= Ω(E, V,N) Ω(ET , NB, VB)︸ ︷︷ ︸
a constant

e−βE

∝ Ω(E, V,N)e−βE

Ω(E, V,N) accounts for the degeneracy of energy levels, and e−βE is the

thermal Boltzmann factor.

scheme 035

Thus,

P (Ej, V,N) = e−βEj
[

1∑
l e
−βEl

]
︸ ︷︷ ︸

normalization constant
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is the probability of observing state j of a closed system of size N ∝ V at

thermal equilibrium with temperature T = (kBβ)−1.

The assembly of all microscopic states of this closed system in contact with

a heat bath is called the canonical ensemble.

The assembly of all states of the isolated system when E vannot change is

called the micorcanonical ensemble.

The quantity

Q(β, V,N) =
∑
j

e−βEj =
∑
E

Ω(N, V,E)e−βE

is called the canonical partition function.

Let us use the canonical distribution law to study energy fluctuations.

〈E〉 =
∑
j

PjEj = e−βEj/Q ,

where Pj is probability of jth state.

For a large system

〈E〉 = mean or average macroscopic energy of

observed system

= thermodynamic internal energy

=
∑
j

e−βEjEj/
∑
l

e−βEl

=

(
∂ lnQ

∂(−β)

)
N,V

remember
∂ ln f(x)

∂x
=

1

f(x)

∂f

∂x
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Similarly,

〈(E − 〈E〉)2〉 ≡ 〈(δE)2〉 = 〈E2〉 − 〈E〉2

=
∑
j

PjE
2
j −

(∑
j

PjEj

)2

=
∑
j

PjE
2
j −

∑
j

PjEj
∑
l

PlEl

=
∑
j

E2
j e
−βEj/Q︸ ︷︷ ︸

1
Q

∂
∑
j Eje

−βEj

∂(−β)

−
∑
j

Eje
−βEj/Q

∑
l

Ele
−βEl/Q︸ ︷︷ ︸

1
Q2

∑
jl

EjEle
−βEje−βEl︸ ︷︷ ︸∑

j Eje
−βEj ∂Q

∂(−β)

Making use of the identity

1

Q2

∂Q

∂(−β)
= − ∂1/Q

∂(−β)

we get

〈(E − 〈E〉)2〉 =
1

Q

∂
∑

j Eje
−βEj

∂(−β)
− 1

Q2

∑
j

Eje
−βEj ∂Q

∂(−β)

=
1

Q

∂
∑

j Eje
−βEj

∂(−β)
+
∑
j

Eje
−βEj ∂1/Q

∂(−β)

=
∂

∂(−β)

[
1

Q

∑
j

Eje
−βEj

]
︸ ︷︷ ︸

〈E〉

=

(
∂〈E〉
∂(−β)

)
N,V

=

(
∂〈E〉
∂T

∂T

∂(−β)

)
N,V

The last term can be easily calculated

∂T

∂(−β)
=

∂

∂(−β)

−1

−βkB

=
−1

kB

−1

β2

=
1

kB

(kBT )2 = kBT
2 .
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Therefore, we get

〈(δE)2〉 = kBT
2

(
∂〈E〉
∂T

)
N,V︸ ︷︷ ︸

CV :heat capacity

= kBT
2CV

Remarkable for several reasons:

• 〈 (Spontaneous fluctuations in E)2〉 ∝ ease of changing 〈E〉 by altering

T .

• CV is extensive. Hence, √
〈(δE)2〉
〈E〉

≈ 1√
N

scheme 036

Hence thermodynamic energy is meaningful.

• Existance of heat capacity is manifestation of microscopic fluctuations.

• CV is positive! (∝ 〈(δE)2〉)

Positivity of CV also follows from the Second Law.

On the way to equilibrium, heat goes from hot to cold. If CV were negative,

this would cause the system to go even further from equilibrium.

Thus stability requires CV ≥ 0.
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scheme 037

−
(
∂2S

∂E2

)
eq

> 0 → CV > 0

Using the Boltzmann distribution: Example

At 300K, what is the chance of seeing a gaseous O2 molecule inits first

vibronically excited state?

use ideal gas

approximation
⇔

independent molecule

approximation

We treat each molecule as a system in its own heat bath. Hence, for any one

molecule

Pj ∝ e−βEj ,j = quantum numbers for

–translation

–rotation

–vibration

– . . .

Roughly, vibrations are uncoupled from these other motions, and

Evib ≈ (n+ 1/2)~ω , n = 0, 1, . . . ;ω =

√
f

µ
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where f is the force constant and µ the reduced mass.

Thus (assuming no degeneracies)

Pvib = p(n) = 1 · e−β(1/2+n)~ω/
∞∑
m=0

e−β(1/2+m)~ω

For O2 we have ~ω/kB = 2230K and notice e−β~ω = e−2230/300 ≈ 6 ·10−4 � 1.

Thus,

p(1) =
e−3/2β~ω

e−1/2β~ω + e−3/2β~ω + · · ·
≈ e−β~ω ≈ 6 · 10−4

So, probability that one particular molecule is excited is 6 · 10−4 (meaning

small)!.

In one mole, how many molecules are excted? The number is

〈N1st excited state〉 = N0 · p(1) ≈ 1023 · 10−3 ≈ 1020 .

2.6 Low temperature and the Third Law

Consider the relative probability of two different energy levels (β = 1/kBT )

P (E ′)

P (E)
=

Ω(E ′)

Ω(E)
e−β(E′−E)

T→0−→ 0 for E ′ > E

This means that at zero temperature, only the ground state is accessible.

In virtually all circumstances, the lowest energy level is nondegenerate; that

is why we say ”ground state”, not ”ground level”.

Hence,

S|T=0 − kB ln Ωground state = kB ln 1 = 0 .

That is,

lim
T→0

S = 0 The Third Law!
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Thta is not all! Consider the heat capacity

CV =

[
∂

∂T
〈E〉
]
N,V

.

Now

〈E〉 =

[
∂

∂(−β)
lnQ

]
N,V

, Q =
∑
j

e−βEj

and (E1 first excited state)

Q =
∑
j

e−βEground
(
1 + Ω1e−β(E1−Eground) + · · ·

)
.

For large enough β (i.e., low enough T ),

Q
T→0−→ e−βEground or lnQ = −βEground

〈E〉 =
∂

∂(−β)
(−βEground) = Eground

Thus, since Eground is independent of temperature

CV −→ 0 as T −→ 0

No thermal excitations of fluctuations in E at T = 0.

Alternative derivation

〈E〉 =
∑
j

PjEj =
1∑

l e
−βEl

∑
j

Eje
−βEj

=
e−βEground

∑
j Eje

−β(Ej−Eground)

e−βEground
∑

j e−β(El−Eground)

=
Eground + E1e−β(E1−Eground) + · · ·

1 + e−β(E1−Eground) + · · ·
= Eground + (terms involving e−β(El−Eground)︸ ︷︷ ︸

→0 for T→0

)

Zero T is the ultimate low temperature and perfectly ordered state. There

are no fluctuations (except quantal zero point motions).
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Could you ever reach T = 0?

No. You would need a ’heat’ bath already at T = 0 to transfer energy (heat)

out of your system as it approaches T = 0.

With the Third Law, we know that entropy is, at least in principle, a mea-

surable quantity.

S(T, V,N) = S(0, V,N)︸ ︷︷ ︸
=0

+

∫ T

0

dT ′
(
∂S

∂T ′

)
V,N

Since (dQ)rev = TdS

CV =

[
(dQ)rev

dT

]
N,V const.

= T

(
dS

dT

)
N,V const.

= T

(
∂S

∂T

)
N,V

Thus

S(T, V,N) =

∫ T

0

dT ′
CV (T ′, N, V )

T ′

Heat capacivities CV are measurable, and so is S(T, V,N).

2.7 Partition function of molecular gases

2.7.1 Ideal monoatomic gas

We are considering a

• one component dilute gas with

– no intermolecular for forces (neglected)

– no correlation

• particles are treated as mass points with three degrees of freedom

(translation)
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• independent, indistinguishable particles

Q =
1

N !
qN

assuming the number of available quantum states is large compared to

N.

The molecular partition function q

q =
∑
j

e−ej/kBT

Model for the energy levels: quantum particles in a cubic box of length L.

enlm =
h2(n2 + l2 +m2)

8ML2
n, l,m = 1, 2, . . .

with h: Planck constant and M : particle mass.

Number of states with energy smaller than ε : Φ(ε).

We define a sphere with radius R in the tree-dimensional space of quantum

numbers n, l, m.

R2 = n2 + l2 +m2 =
8MV 2/3ε

h2

We have used that L2 = V 2/3. The number of unique and allowed points

inside the sphere (= Volume of octant with n, l, m positive).

Φ(ε) =
πR3

6
=
π

6

(
8Mε

h2

)3/2

V

We need Φ(ε)� N for ε ≈ kBT as states with ε� kBT will not be occupied.

Φ(ε) ≈
(

2πMkBT

h2

)3/2

V � N

This is favoured for

• low density N/V .
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• large mass.

• high temperature.

and can be summarized with

Λ3N

V
� 1 with Λ =

h√
2πMkBT

Test : use experimental density of liquid at boiling point.

T [K] Λ3N/V

He 4.2 1.5

H2 20.4 0.44

Ne 27.2 0.015

Ar 87.4 0.0054

Gas phase reduces Λ3N/V by about a factor of 100. Φ(ε)� N is OK, except

for light molecules at high density and very low temperatures.

Molecular partition function

q =
∑
nlm

e−ε(nlm)/kBT .

Replace sum by integration, valid if ∆ε� kBT .

∆ε ≈ h2

MV 2/3
and

∆ε

kBT
≈ Λ2

V 2/3
� 1

N2/3
≈ 10−14

Number os states between ε and ε+ ∆ε is

ω(ε)dε =
dΦ

dε
dε =

π

4

(
8M

h2

)3/2

V
√
εdε
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For the molecular partition function q we get

q(V, T ) =

∫ ∞
0

ω(ε)e−ε/kBTdε

=
π

4

(
8MkBT

h2

)3/2

V

∫ ∞
0

u1/2e−udu ; u =
ε

kBT

=

(
2πMkBT

h2

)3/2

V =
V

Λ3

We see that q is proportional to the volume V and dimensionless.

The fraction of molecules with energies between ε and ε+ ∆ε is

P (ε)dε =
ω(ε)e−ε/kBTdε

q
.

The state density ω(ε) is propotional to ε1/2, this is the Maxwell-Boltzmann

distribution. In classical physics, we have

ε =
M

2
v2 −→ P (v) =

(
M

2πkBT

)3/2

v2e
− Mv2

2kBT .

Canonical partition function

Q =
1

N !
qN =

1

N !

(
V

Λ3

)N
or

lnQ = −N lnN +N +N ln q

= N ln

[(
2πMkBT

h2

)3/2
V e

N

]

The canonical partition function is needed to calculate thermodynamic prop-

erties of gases.
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2.7.2 Internal degrees of freedom

The translational Hamiltonian is rigorously separable, electronic and nuclear

Hamiltonians are to a high degree seperable.

E = εt + εe + εN

Q =
1

N !
(qtqeqN)N

Nuclear excited states are at very high energy (≈ 1 MeV ≈ 1010 K) and not

important for our energy scales. We can replace the nuclear energy partition

function by its ground state degeneracy ωN.

qN = ωN

Energy differences between electronic states can vary considerably

qe =
∑
j

ωjee
−

εej
kBT

where ωje is the degeneracy of electronic states, e.g. hydrogen atom ground

states ωe = 2 (spin).

Zero of energy (arbitrary)

E0 = e0
t + eg

e + eg
N = 0

qe(T ) = ω0
e + ω1

ee
− ε1

kBT + ω2
ee
− ε2

kBT + · · ·

For halogen atoms at T = 1000K contributions of the second term are

0.22, 0.12, 0.0024, 10−5 for F, Cl, Br, and I.
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2.7.3 Ideal diatomic gas

We have to include in addition vibrationand rotation. We will assume a

further separation of energies

ε = εt + εr + εv + εe

Q =
1

N !
qN

q(V, T ) = qt(V, T ) qr(T )qv(T )qe(T )︸ ︷︷ ︸
only depends on T

qt(V, T ) =

[
2πMkBT

h2

]3/2

V M : total mass

qe(T ) = ωee
− ε1

kBT beware zero of energy!

If more than the ground state has to be included, separation becomes difficult,

as e.g. vibrations are different in different electronic states.

Vibration Harmonic approximation

εn = (n+
1

2
)hν ν =

1

2π

√
f

µ

n = 0, 1, 2, . . . f: force constant µ: reduced mass

qv =
∞∑
n=0

e−εn/kBT = e−hν/2kBT

∞∑
n=0

(
e−hν/kBT

)n
︸ ︷︷ ︸

1

1−e−hν/kBT

=
e−hν/2kBT

1− e−hν/kBT
=

ehν/2kBT

e−hν/kBT − 1

Rotation There arise difficulties for symmetric ( or highly symmetric in

case of polyatomic) molecules because of degeneracies.
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Example: rigid linear rotator

εj =
j(j + 1)h2

8π2I
j = 0, 1, 2, . . .

ωj = 2j + 1 degeneracy

I: moment of inertia

qr(T ) =
∑
j

ωje
−

εj
kBT =

∞∑
j=0

(2j + 1)e−j(j+1)Θr/T

Θr =
h2

8π2IkB

At high temperatures we get the classical limit

qr −→
∫ ∞

0

(2J + 1)e−j(j+1)Θr/Tdj

=
T

Θr

=
8π2IkBT

h2

qr ≈
T

Θr

(
1 +

Θr

3T
+ · · ·

)
for smaller temperatures

2.7.4 Polyatomic molecules

Vibration (3N − 6 harmonic oscillators)

’normal modes’ decoupling

qv(T ) =
n′∏
i=1

e−Θi/2T

1− e−Θi/T
Θi =

hνi
kB

Rotation

qr(T ) =

√
π

σ

(
8π2IAkBT

h2

)1/2(
8π2IBkBT

h2

)1/2(
8π2ICkBT

h2

)1/2

IA, IB, IC : principle moments of inertia

σ symmetry number

specific for special cases, e.g. σ = 12 for

CH4 (tetrahedral symmetry)
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High temperature limit

qr =

√
π

σ

(
T 3

ΘAΘBΘC

)1/2
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2.8 Partition function and free energy

We have established that

〈E〉 =

(
∂ lnQ

∂(−β)

)
N,V

.

What does that tell us about Q?

Consider the Helmholtz free energy, A, defined as

A ≡ E − TS ; A(E, T, S)

E : This is the termodynamic E, i.e. 〈E〉

As soon as you see things like ”T” and ”S” in an equation you know it is

refering to equilibrium because that is the only place where T and S are

defined.

Clearly,

dA = dE − TdS − SdT total differential

Recall that

dE = (dQ)rev︸ ︷︷ ︸
Heat

+ (dW )rev︸ ︷︷ ︸
Work

= TdS − pdV + µdN

So,

dA = TdS − pdV + µdN − TdS − SdT

= −SdT − pdV + µdN

So, this quantity A is a natural function of T , V , and V .

Equivalently,

− A

kBT
= −βA = −βA+

S

kB

Differential

d(−βA) = d

(
S

kB

)
− d(βE)

50



The first term is

d

(
S

kB

)
=
TdS

kBT
= βTdS

and with

TdS = dE + pdV − µdN

we get

d(−βA) = [βdE + βpdV − βµdN ]− βdE − Edβ

= −Edβ + βpdV − βµdN

From this we get (
∂(−βA)

∂(−β)

)
N,V

= E =

(
∂ lnQ

∂(−β)

)
N,V

and therefore

lnQ = −βA+ ”constant of integration” = −βA

The constant of integration we get from (assuming Ωground = 1)

=

lnQ = ln
∑

i e
−βEi β→∞−→ −βEground

−βA β→∞−→ −βEground + S(T = 0)/kB = −βEground

Thus

Q = e−βA =
∑
i

e−βEi

Boltzmann weighted sum over all fluctuations with N and V fixed.

A = −kBT lnQ

We will have many applications of this result.

Other identities derived from

dA = −SdT − pdV + µdN .

Dived by dt to get
dA

dT
= −S − pdV

dT
+ µ

dN

dT
.
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keep N , V fixed

(
∂A

∂T

)
N,V

= −S − p
(
∂V

∂T

)
N,V︸ ︷︷ ︸

=0

+µ

(
∂N

∂T

)
N,V︸ ︷︷ ︸

=0

S = −
(
∂A

∂T

)
N,V

=

(
∂(kBT lnQ)

∂T

)
N,V

= kBT

(
∂ lnQ

∂T

)
N,V

+ kB lnQ

Similarly, from dA/dV and N , T fixed we get

p = −
(
∂A

∂V

)
N,T

= kBT

(
∂ lnQ

∂V

)
N,T

and from dA/dN and V , T fixed we get

µ =

(
∂A

∂N

)
V,T

= −kBT

(
∂ lnQ

∂N

)
V,T

Another transformation starts with

−β =
−1

kBT

d(−β) =
−1

kB

(
∂1/T

∂T

)
dT =

1

kBT 2
dT

and gets

E =

(
∂ lnQ

d(−β)

)
N,V

= kBT
2

(
∂ lnQ

dT

)
N,V

.

With lnQ = − A
kBT

we finally get

E = kBT
2

∂
(
− A

kBT

)
∂T


N,V

= −T 2

(
∂A/T

∂T

)
N,V
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2.8.1 Thermodynamic functions of the monoatomic ideal

gas

We recall the canonical partition function for an ideal gas

Q =
1

N !

(
V

Λ3

)N
Λ =

h√
2πMkBT

lnQ = N ln

[(
2πMkBT

h2

)3/2
V e

N

]
The Helmholtz free energy for this system is

A(N, V, T ) = −kBT lnQ = −NkBT ln

[(
2πMkBT

h2

)3/2
V e

N

]
.

From the formula for the pressure p

p = kBT

(
∂ lnQ

∂V

)
T,N

= NkBT

(
∂ lnuV

∂V

)
T,N

Q ∝ V

= NkBT
1

uV
u =

NkBT

V

we get the ideal gas law

pV = NkBT NkB = nR

The thermodynamic energy of the system is

E = kBT
2

(
∂ lnQ

∂T

)
V,N

= NkBT
2

(
∂ lnuT 3/2

∂T

)
V,N

= NkBT
2 1

uT 3/2

3

2
uT 1/2 =

3

2
NkBT

=
3

2
nRT

The Heat capacity is

CV =

(
∂E

∂T

)
V,N

=
3

2
kB

(
∂NT

∂T

)
V,N

=
3

2
kBN

=
3

2
nR
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2.8.2 Einstein’s model of a crystal

Einstein imagined each atom in a crystal as vibrating in the fixed self con-

sistent field of its neighbors.

scheme 038

We are considering one single atom. It is vibrating in the potential field

created by the surrounding atoms. It is at ~ri = ~r0
i + ∆~ri.

Einstein’s approximation of the Hamiltonian of a crystal consists of the ki-

netic energy and a harmonic potential part

H ≈
N∑
i=1

[
p2
i

2m
+

1

2
k|∆~ri|2

]
The force constant k should be a function of ρ = N/V .

Energy levels of an assembly of one-dimensional harmonic oscillators with

E = (
1

2
+ n)~ω with ~ω = ~

√
k

m

The energy expression for the full system is

E(n1x, n1y, n1z, n2x, . . . , nNz) =
N∑
i=1

∑
α=x,y,z

(
1

2
+ niα)~ω

The quantum numbers niα = 0, 1, 2, . . . specify the quantum state of a 1-

dimensional harmonic oszillator associated with the Cartesian coordinate α

of the ith atom.
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Hence, the partition function of the crystal is

QAE =
∞∑

n1x=0

∞∑
n1y=0

· · ·
∞∑

nNz=0︸ ︷︷ ︸
3N sums

e−β(1/2+n1x)~ωe−β(1/2+n1y)~ω · · · e−β(1/2+nNz)~ω

=

[
∞∑
n=0

e−β(1/2+n)~ω

]3N

=

[
e−

β
2
~ω

(
1 +

∞∑
n=1

(
e−β~ω

)n)]3N

Making use of

1 +
∞∑
n=1

(
e−β~ω︸ ︷︷ ︸
=x<1

)n

= 1 + x+ x2 + x3 + · · · = 1

1− x

we get

QAE =

[
e−

β
2
~ω

1− e−β~ω

]3N

Thus, Einstein’s theory for the energy A, is

−βA = lnQ = 3N
[
ln e−

β
2
~ω − ln

(
1− e−β~ω

)]
= 3N︸︷︷︸

extensive

[ −β~ω/2︸ ︷︷ ︸
ground state

energy of one

oscillator

− ln
(
1− e−β~ω

)︸ ︷︷ ︸
contributions from

finite temperature

thermal fluctuations

]

The corresponding internal energy is

〈E〉 =

(
∂ lnQ

∂(−β)

)
N,V

= 3N

[
~ω
2

+ ~ω
e−β~ω

1− e−β~ω

]
where

~ω
2

is the zero point energy

e−β~ω

1− e−β~ω
is the average number of excitations per oscillator
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Thus, heat capacity according to Einstein

CV =

(
∂〈E〉
∂T

)
N,V

= 3N~ω
d

dT

(
1

e−β~ω − 1

)
or (

CV
N

)
≈ 3

~ω
kBT 2

e−β~ω

(e−β~ω − 1)2

T→0;β→∞−→ 3
~ω

kBT 2
e
− ~ω

kBT

scheme 039

Notice that Einstein’s theory says

T

(
CV
N

)
= 3β~ωe−β~ω/(e−β~ω − 1)2

= function of (β~ω)

Changing the crystal changes ω; but with ω fixed, Einstein predicts that

TCV /N is a universal function of T or β = 1/kBT . That is, Einstein’s

theory predicts a Principle of Corresponding States (see e.g. van der Waals

gases).

• High T limit

CV −→ 3NkB (Dulong–Petit)

• Low T limit (experiment: CV ∝ T 3)

CV −→ 3NkBe−Θ/T
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Einstein’s theory fails for low temperatures. What is the problem?

Einstein’s model only involves local, rather high frequency motions. Collec-

tive motions at low frequency are ignored. At low temperature these motions

will be more important.

Phonon (vibrations in crystals) dispersion, frequency distribution g(ν).∫ ∞
0

g(ν)dν = 3N

scheme 040

scheme 041

With the general phonon dispersion function one gets

− lnQ =

∫ ∞
0

[
ln
[
1− e−βhν

]
+

hν

2kBT

]
g(ν)dν
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Debye approximation g(ν) ∝ ν2 (from continuum theory)

Normalization ∫ νm

0

g(ν)dν = 3N =
αν3

m

3

where α is a proportionality constant and the cutoff frequency νm is needed

to have a finite integral. The normalization fixes the constant alpha for a

given cutoff.

g(ν) =

9Nν2

ν3
m

0 ≤ ν ≤ νm

0 ν > νm

For the energy we get

E = kBT
2

(
∂ lnQ

∂T

)
N,V

=
9NkBT

ν3
m

∫ νm

0

(
hν

2kBT
+

hν/kBT

ehν/kBT − 1

)
ν2dν

=
9NkBT

u3

∫ u

0

(
x

2
+

x

ex − 1

)
x2dx where x = hν/kBT ; u = hνm

kbT. =
9Nhνm

8
+ 3NkBTD(u) where D(u) =

3

u3

∫ u

0

x3

ex − 1
dx

Asymptotic values for D(u)

D(u) =
3

u3

∫ u

0

x3

ex − 1
dx −→ π4

5u3
for T → 0, u→∞

D(u) =
3

u3

∫ u

0

x3

ex − 1
dx −→ 1 for T →∞, u→ 0

Therefore

E −→ 9Nhνm
2

+
3Nπ4hνm

5

(
kBT

hνm

)
T → 0

E −→ 3NkBT T →∞ (same as Einstein)

and for the heat capacity

CV =

(
∂E

∂T

)
N,V

= 3NkB
∂

∂T
[TD(u)]

= 3NkB

[
4D(u)− 3u

eu − 1

]
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Introducing the Debye Temperature, ΘD = hνm
kB

, u = hνm
kBT

= ΘD

T
the low

temperature limit of the heat capacity gets

CV −→
12NkBπ

4

5

(
T

ΘD

)3

∝ T 3 for T → 0 .
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Chapter 3

Summary and Mathematical

Properties

3.1 Microcanonical ensemble

S = kB ln Ω(E,N, V )

Boltzmann’s legacy, principle of equal weights; equilibrium states character-

ized by E, N , V .

scheme 042

S(E,N, V ; no extra constraints) > S(E,N, V ; internal constraints)
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The Second Law. Equilibrium maximizes S

dE = TdS − pdV + µdN

{
Moving among

equilibrium states

dE = dQ+ dW

TdS = (dQ)rev


The First Law; conservation of

energy; heat and work are

the two forms of energy transfer

E and S are state functions.

Since CV =
(
∂E
∂T

)
N,V

is always positive, T−1 ≡
(
∂S
∂E

)
N,V

= T−1(E,N, V ) can

be inverted to give E = E(T, V,N). Equilibrium states can therefore be

characterized by T , V , N .

3.2 Canonical ensemble

Equilibrium with T , V , and N

Pj = e−βEj/Q , β = 1/kBT

Q(T, V,N) =
∑
j

e−βEj = e−βA ; partition function

A = E − TS , dA = −SdT − pdV + µdN ; Helmholtz free energy

E(T, V,N) = 〈E〉 =

(
∂ lnQ

∂(−β)

)
N,V
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Repeat what we already know:

S = S(E, V,N) Entropy as a function of E, V , N

↓ its differential

dS =

(
∂S

∂E

)
N,V︸ ︷︷ ︸

1/T

dE +

(
∂S

∂V

)
N,E︸ ︷︷ ︸

p/T

dV +

(
∂S

∂N

)
V,E︸ ︷︷ ︸

−µ/T

dN

TdS = dE + pdV − µdN

1. dE = TdS − pdV + µdN ; E = E(S, V,N)

We assume the energy is conserved.

We know empirically that the energy of a system can be changed by

• doing work on the system (W )

• allowing heat to flow into the system (Q)

in mathematical notation

2. dE = (dQ)rev + (dW )rev

• (dQ)rev: differential heat flow into the system

• (dW )rev: differential work done on the system

Keep in mind that work and heat are forms of energy transfer!

You also already know that the mechanical definition of work is the

product of the external force on a body times the distance through

which the force acts:

(dW )rev = (force)x∆l = −
(

force

area

)
·∆V

Remember: positive work done on the system decreases system volume.
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3. (dW )rev = −pext ·∆V
external pressure × change of volume of bulk system

By comparing equations 1), 2), and 3)

(dW )rev = −pdV︸ ︷︷ ︸
one form of

mecanical work

+ µdN︸︷︷︸
chemical work

+ · · ·
any other

kind of work

(dQ)rev = TdS

Recall the example of reversible and isothermal (T= const.) compression of

an ideal gas:

The energy of an ideal gas depends only on T , so when T is fixed, so is the

energy.

∆Eid. gas = 0 = (Q)rev + (W )rev

(W )rev = nRT ln
Vinitial
Vfinal

Consider now the same two states, but connected by an irreversible path

with constant pext > p2 = nRT
Vfinal

.

(W )irrev = −
∫ VF

VI

pext dV = −pext(VF − VI) 6= nRT ln
VI

VF
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Example of 3 different paths between final and initial states.

scheme 045

Another example:

scheme 046
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(W )A � (W )B, however the altitude increase for both is the same (= gain

in potential energy)!

Lesson:

• work is a function of the path

(W )path =

∫
path

f(x)dx

• the altitude increase ∆h during the trip is not a function of the path

If the change in a property of a system is independent of a path, the property

is called a State Function . The change in any state function is independent

of path.

The altitude increase ∆h is a state function of the journey and does not

depend on the history of any one particular trip.

Recall that the energy E is a function of the variables defining the equilibrium

state

E = E(S,N, V︸︷︷︸
=X

) = E(S,X) and (∆E)cycle = 0

Consider the energy change in a cyclic process

∆E =

∮
dE =

∫ B

A

dE +

∫ A

B

dE = 0
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In a cyclic process (∆E)cycle = 0 and the work done by the gas or its sur-

rounding must be compensated for by an absorption of heat.

Hence, consider the change in internal energy between two states A and B:

∆E = EB − EA =

∫ SB

SA

dS

(
∂E

∂S

)
X

+

∫ XB

XA

dX

(
∂E

∂X

)
S

scheme 048

Change in energy on this arbitrary path must equal that of the two step path

since (∆E)cycle = 0.
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E(S,X) = E(S, V,N) is called a state function, i.e. it is a real function! By

counter example, however, the fact that W depends on path implies there is

no unique function W !

3.3 Mathematical Properties of state func-

tions

• if a function f(x, y, . . .) exists, its total differential df is called exact

df =

(
∂f

∂x

)
y,...

+

(
∂f

∂y

)
x,...

+ · · ·

• if a function f(x, y, . . .) does not exist, the differential is called inexact,

and we denote it by the stroke over d: d̄

• if f(x, y) does exist (as well as the partial derivatives) the order of

differentiation is irrelevant

∂2f

∂x∂y
=

∂2f

∂y∂x

Thus if df = a(x, y)dx+ b(x, y)dy, then (Euler reciprocity theorem)(
∂a

∂y

)
x

=

(
∂b

∂x

)
y

It is satisfied if and only if f(x, y) exists.

Examples

• E is a state function and dE is an exact differential∫ B

A

dE = EB − EA

We do not need to know the particular process that leads from A to B

to perform integration.
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• Work is not a state function and d̄W is an inexact differential.∫ B

A

d̄W = −
∫ B

A

p(V )dV

Cannot be integrated without knowing the dependence of the pressure

on volume.

With this notion we can write the First Law of thermodynamics

dE = d̄Q+d̄W

dE : exact differential since E is a function of state

d̄Q,d̄W : inexact differentials, they depend upon path

Q and W are the forms of energy transfer, not functions of state.

3.4 Heat capacity

Since heat flow and temperature changes are intimately related, it is useful

to quantify their connection by introducing Heat Capacity . It quantifies

the amount of heat added to a system in terms of the resulting increase in

temperature.

If the system is constrained to have V = const. at constant number of

particles, we define

CV =

(
d̄Qrev

dT

)
V,N

whilst at p = const.

Cp =

(
d̄Qrev

dT

)
p,N

.

However, one can relate the derivative
(
d̄Qrev

dT

)
V,N

to a derivative of the internal

energy in the following manner: at constant volume no work is done on the

system and d̄W = 0→ dE = d̄Q

CV =

(
∂E

∂T

)
V,N
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To define Cp in this way, we have to introduce another state function called

Enthalpy .

(dE)p,N = (d̄Q)p,N − (pdV )p,N = (d̄Q)p,N − d(pV )p,N

d(E + pV )p,N = (d̄Q)p,N

H(enthaply) ≡ E + pV

E, p, V are state functions and so is H.

Cp =

(
∂H

∂T

)
p,N

3.5 Free energies

Tricks to make life easy. Recall

dE = TdS − pdV + µdN ⇒ E = E(S, V,N)

We have also encountered

dA = d(E − TS) = −SdT − pdV + µdN ⇒ A = A(T, V,N)

Look carefully at what has happend here. E is a natural function of S, V ,

N ; T is the intensive variable that is conjugate to S (and −p is conjugate to

V , and µ is conjugate to N).

By subtracting TS from E, we get A, a natural function of T , V , N .

Can we switch back and forth between any pairs of conjugate variables?

For example, the natural function of T , P , N is E−TS+pV , which is called

G the Gibbs free energy.

G = E − TS + pV

dG = dE − TdS − SdT + pdV + V dp

= (TdS − pdV + µdN)− TdS − SdT + pdV + V dp

= −SdT + V dp+ µdN ⇒ G = G(T, p,N)
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Notice that you cannot do this switching with non-conjugate variables. Fur-

ther, the new functions formed by switching conjugate pairs contain the same

information as the original function. For example, using E(S, V,N), we get

T (E, V,N) =
(
∂E
∂S

)
V,N

from which, in principle, inversion gives us E(T, V,N).

But from A we also get

E(T, V,N) = A = TS = A− T
(
∂A

∂T

)
N,V

=

(
∂A/T

∂1/T

)
N,V

.

We get the same thing, but without having to carry out the inversion ex-

plicitely. It is this saving of effort – not having to do an inversion – that

makes it helpful to introduce auxiliary functions like A and G.

How did we know that the inversion between E and T was possible?

Because

CV =

(
∂E

∂T

)
N,V

> 0

i.e. E is a monotonically increasing function of T .

scheme 049
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It was the Second Law that implied the stability criterion,
(
∂E
∂T

)
N,V

> 0.

Similarly, look back at the derivation and you could also derive

condition of equilibrium stability

T constant (∂E/∂T )N,V > 0

p constant −(∂V/∂p)S,N > 0

−(∂V/∂p)T,N > 0

µ constant −(∂N/∂µ)S,V > 0

−(∂N/∂µ)T,V > 0

The chart of auxiliary functions

variables function differential name

S, V,N E dE = TdS − pdV + µdN energy

T, V,N A = E − TS dA = −SdT − pdV + µdN Helmholtz

free energy

T, p,N G = E − TS + pV dG = −SdT + V dp+ µdN Gibbs

free energy

S, p,N H = E + pV dH = TdS + V dp+ µdN enthalpy

To exploit what the auxiliary functions can do for us, we need to review some

more mathematics.
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Suppose

f = f(x, y)

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy

≡ a(x, y)dx+ b(x, y)dy

Since order of differentiation is irrelevant(
∂a

∂y

)
x

=

(
∂b

∂x

)
y

Expoliting this will give us Maxwell relations.

Also from df , we see (chain rule)

1 =

(
∂f

∂x

)
y

dx

df
+

(
∂f

∂y

)
x

dy

df

⇒ 1 =

(
∂f

∂x

)
y

(
∂x

∂f

)
y

y constant!

in addition, from df , we see

df

dy
=

(
∂f

∂x

)
y

dx

dy
+

(
∂f

∂y

)
x

⇒
(
∂f

∂y

)
x

= −
(
∂f

∂x

)
y

(
∂x

∂y

)
f

To illustrate the use of these things, consider the following:

Given v = v(T, p) the equation of state of some gas with v = V/N = 1/ρ.

How does the entropy change if the gas is compressed isothermally from

pressure p1 to pressure p2?

Answer:

∆S = S(T, p2, N)− S(T, p1, N) =

∫ p2

p1

dp

(
∂S

∂p

)
T,N

We think of S as a function of p, T , and N . p, T , N are a reasonable set of

variables, since p is conjugate to V and T is conjugate to S. So we have got

one entree from each of the p−−V , S −−T , and µ−−N families.
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To examine the derivative, look to the natural function of p, T , N :

d(E − TS + pV︸ ︷︷ ︸
G

= −SdT + V dp+ µdN

Thus (we have a total differential),

−
(
∂S

∂p

)
T,N

=

(
∂V

∂T

)
p,N

This is one of the Maxwell relations.

Since N is fixed in the derivatives, we can also note(
∂V

∂T

)
p,N

= N

(
∂V/N

∂T

)
p,N

= N

(
∂v

∂T

)
p

So, the problem is now solved

∆S = −N
∫ p2

p1

dp

(
∂v

∂T

)
p

since (∂v/∂T )p can be calculated from the equation of state.

Example: an ideal gas is compressed v = kBT/p.

∆S = −N
∫ p2

p1

dp
kB

p
= NkB ln

p1

p2

Similarly, ∆S for changing the volume of an ideal gas isothermally is

∆S = NkB ln
V2

V1

You can show this from the preceeding one by computing

∆S =

∫ V2

V1

(
∂S

∂V

)
T,N

dV

through a Maxwell relation for
(
∂S
∂V

)
T,N

. That Maxwell relation is obtained

from the natural function of V , T , N , namely A.
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We are beginning to see how thermodynamics provides inter-relationships

between different macroscopic experiments. For example, heat flow or ∆S of

a process is related to p−−v −−T measurements.

Here is some more: Consider

dS =

(
∂S

∂T

)
V,N

dT +

(
∂S

∂V

)
T,N

dV +

(
∂S

∂N

)
V,T

dN

Now, divide through by dT and make use of A = E − TS(
∂S

∂T

)
V,N

=

(
∂

∂T

[
E − A
T

])
V,N

=

(
∂E/T

∂T

)
V,N

−
(
∂A/T

∂T

)
V,N︸ ︷︷ ︸

E/T 2

= − E
T 2

+
1

T

(
∂E

∂T

)
V,N︸ ︷︷ ︸

CV

+
E

T 2

=
CV
T

to get
dS

dT
=

1

T
CV +

(
∂S

∂V

)
T,N

dV

dT
+

(
∂S

∂N

)
V,T

dN

dT

Now hold p and N fixed(
∂S

∂T

)
p,N

=
Cp
T

=
1

T
CV +

(
∂S

∂V

)
T,N

(
∂V

∂T

)
p,N

From dA = −SdT − pdV + µdN we get (Maxwell relation)(
∂S

∂V

)
T,N

=

(
∂p

∂T

)
V,N

So,

(Cp − CV )

T
=

(
∂p

∂T

)
V,N

(
∂V

∂T

)
p,N

= N

(
∂p

∂T

)
v︸ ︷︷ ︸

−( ∂p∂v )T ( ∂v∂T )
p

(
∂v

∂T

)
p

= −N
(
∂p

∂v

)
T︸ ︷︷ ︸

stability>0

(
∂v

∂T

)2

p

> 0

and we get

Cp ≥ CV
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Thus, we have suceeded at relating Cp−CV to the isothermal compressibility

κT ≡ −
1

v

(
∂v

∂p

)
T

and the coefficient of thermal expansion (∂v/∂T )p.

Here is something else you can show: Let

κS = − 1

V

(
∂V

∂p

)
S,N

, adiabatic compressibility

The ratio

κT
κS

=

(
∂v

∂p

)
T

/

(
∂V

∂p

)
S

=
(∂v/∂p)T

−
(
∂v
∂S

)
p

(
∂S
∂p

)
v

=
(∂v/∂p)T

−
(
∂v
∂T

)
p

(
∂T
∂S

)
p

(
∂S
∂T

)
v

(
∂T
∂p

)
v

=
(∂v/∂p)T

−
(
∂v
∂T

)
p

(
∂T
∂p

)
v

Cp
CV

=
Cp
CV

Thus
κT
κS

=
Cp
CV

and since Cp ≥ CV folows κT ≥ κS, another connection between different

experiments.

3.6 Thermodynamics of rubber bands

We need not confine our thoughts to gases. For example, consider a rubber

band
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In this case

d̄W = +fdL

We will consider only those processes where the mass of the rubber band

remains fixed; so, we have no counter part to µdN in the differential for E.

Hence, the First and Second Laws at equilibrium give

dE = TdS + fdL ⇒ E = E(S, L)

As with gases, T constant and f constant throughout material are conditions

for equilibrium. Stability criteria are conditions like(
∂S

∂T

)
f

=
Cf
T

> 0

and (note sign!) (
∂L

∂f

)
S

> 0 and

(
∂L

∂f

)
T

> 0

Note also that (
∂L

∂f

)
S

> 0 implies that

(
∂L

∂f

)
T

> 0

Here, is how:

dL =

(
∂L

∂f

)
S

df +

(
∂L

∂S

)
f

dS

So, (
∂L

∂f

)
T

=

(
∂L

∂f

)
S

+

(
∂L

∂S

)
f

(
∂S

∂f

)
T

From

d(E − TS − fL) = −SdT − Ldf

follows (
∂S

∂f

)
T

=

(
∂L

∂T

)
f
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Hence, (
∂L

∂f

)
T

=

(
∂L

∂f

)
S

+

(
∂L

∂S

)
f

(
∂L

∂T

)
f

=

(
∂L

∂f

)
S

+

(
∂L

∂T

)
f

(
∂T

∂S

)
f

(
∂L

∂T

)
f

=

(
∂L

∂f

)
S

+

(
∂L

∂T

)2

f

T

Cf

T

Cf
positive due to stability(

∂L

∂f

)
T

>

(
∂L

∂f

)
S

> 0

An auxiliary function in this case is

d(E − TS) = −SdT + fdL

from which we see, for example that(
∂S

∂L

)
T︸ ︷︷ ︸

related to heat

measurements

= −
(
∂f

∂T

)
L︸ ︷︷ ︸

related to

equation of state

f = f(T, L)

We can thus interrelate different macroscopic measurements, and by applying

stability criteria, make some predictions.

What might you expect from the molecular nature of rubber bands?
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e.g. Polyethylene

scheme 053

The expanded rubber band is more ordered than the contracted rubber band.

One thing you can verify is that if you pull on a rubber band adiabatically,

its temperature goes up. That is

(
∂T

∂L

)
S

> 0 or

(
∂T

∂f

)
S

> 0

Either one, they are equivalent. To see why, use the chain rule

(
∂T

∂L

)
S

=

(
∂T

∂f

)
S

(
∂f

∂L

)
S

(∂f/∂L)S is positive due to stability, thus
(
∂T
∂L

)
S
> 0 holds only if

(
∂T
∂f

)
S
> 0

too.

The experimental fact is certainly reasonable in light of the molecular picture

of the polymers. Specifically, stretching polymers removes gauche conform-

ers, the trans conformers have lower energy. The energy therefore released

(into vibrations, for example) causes temperature to rise.
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Quite generally, however, without recourse to molecular models, we can use

the experimental fact, (∂T/∂L)S > 0, to make a prediction about the sign of(
∂L

∂T

)
f

Does a rubber band under constant tension

expand or contract when heated?

Here is what we can do: (use chain rule and definition of heat capacity)(
∂L

∂T

)
f

=

(
∂L

∂S

)
f

(
∂S

∂T

)
f

=

(
∂L

∂S

)
f

Cf
T

Next, to analyse L(S, f), think about

d(E − Lf) = TdS − Ldf

where we have made use of dE = TdS + fdL. We can derive a Maxwell

relation (
∂T

∂f

)
S

= −
(
∂L

∂S

)
f

So, (
∂L

∂T

)
f

= −
(
∂T

∂f

)
S

Cf
T

With
−
(
∂T
∂f

)
S

negative according to experiment
Cf
T

positive according to stability
we predict

(
∂L

∂T

)
f

< 0
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i.e., heat a rubber band and it should shrink (could be checked by experi-

ment).
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Chapter 4

Chemical Potential and Mass

Equilibrium

4.1 Conditions for equilibrium

scheme 060

Regions (1) and (2) could have a hypothetical boundary or a real physical

boundary. Examples of the latter: interface between two phases (e.g. liquid–

vapor) or a membrane separating two different fluids.
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At equilibrium, there are N
(1)
eq molecules in region (1), and N

(2)
eq molecules in

region (2). Now repartition:

N (1) = N (1)
eq + ∆N , N (2) = N (2)

eq −∆N .

Nonzero ∆N , will make S go down or E go up. Either picture leads to the

condition for equilibrium

µ(1) = µ(2)

Similarly, for two components, ∆E for repartitioning Ni’s is

0 ≤ ∆E =
(
µ

(1)
1 − µ

(2)
1

)
∆N1 +

(
µ

(1)
2 − µ

(2)
2

)
∆N2 +O((∆Ni)

2)

and from this follows

µ
(1)
i = µ

(2)
i , i = 1, 2

Example : Phase equilibria

scheme 061

The chemical potential of a one component system can be expressed in terms

of T , P ; i.e. µ = µ(T, p). Thus, µ(liquid)(T, p) = µ(gas)(T, p).

T and P of two phases in equilibria must satisfy conditions of thermal and

mechanical equilibrium

T (1) = T (2) = T ; p(1) = p(2) = p
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Example : Trans–gauche equilibrium

scheme 063

Here, thinking about mu as a function of T and ρ.

µ(gauche)(T, ρg) = µ(trans)(T, ρt)

But we have already figured out conformational equilibrium in terms of the

Boltzmann distribution. Somehow, the conditions of equilibrium involving

µ’s must be equivalent to the Boltzmann distribution.

Example : Chemical equilibria
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scheme 064

Need to do stoichiometry

scheme 065

NAB + ∆N ⇔ NA −∆N , NB −∆N

Due to stoichiometric constraints on how we can change NAB and NA, NB

0 ≤ ∆E = µAB∆NAB + µA∆NA + µB∆NB

= (µAB − µAµB) ∆N

Therefore, the condition of equilibrium is

0 = µAB − µA − µB

Generalization

aA + bB + · · · ↔ cC + dD + · · ·

has the condition of equilibrium

aµA + bµB + · · · = cµC + dµD + · · ·

To exploit these conditions of equilibrium, we need some thermodynamic

relations, and a molecular model.
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4.2 Gibbs–Duhem equation

Recall,

G = E − TS + pV

is extensive and satisfies (we consider two components)

dG = −SdT + V dp+ µ1dN1 + µ2dN2 .

So, G = G(T, p,N1, N2).

Consider changing system size. Since G, N1 and N2 are extensive, but T and

p are intensive,

λG = G(T, p, λN1, λN2) .

Hence

G =
d

dλ
(λG) =

d

dλ
G(T, p, λN1, λN2)

= µ1N1 + µ2N2

Thus, for any λ, and thus λ = 1

G(T, p,N1, N2) = µ1N1 + µ2N2

Thinking about µi’s as functions of T , p and what else?

Now take total differentials

dG(T, p,N1, N2) = dG(µ1, µ2, N1, N2)

−SdT + V dp+ µ1dN1 + µ2dN2 = µ1dN1 + µ2dN2 +N1dµ1 +N2dµ2

Gibbs–Duhem equation

SdT − V dp+N1dµ1 +N2dµ2 = 0
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For a one component system

Ndµ = −SdT + V dp

dµ = − S
N

dT +
V

N
dp(

∂µ

∂p

)
T

=
V

N
=

1

ρ

So, the discontinuity of slope at phase equilibrium tells us the discontinuity

of density.

4.3 Partial molar quantities

For an arbitrary extensive quantity Y , we define a partial molar quantity

Yi ≡
(
∂Y

∂Ni

)
T,p,Nj 6=i

.

Example: partial molar volume

Vi(T, p,Nj 6=i) =

(
∂V

∂Ni

)
T,p,Nj 6=i

.

Therefore, the partial molar volume of component i of a system is the differ-

ential change of volume per added number of particles. The process is per-

formed at constant temperature, presure, and amount of particles of other

types.

Y is a function of T , p, Ni. Hence,

dY =

(
∂Y

∂T

)
p,Ni

dT +

(
∂Y

∂p

)
T,Ni

dp+
∑
i

(
∂Y

∂Ni

)
T,Nj 6=i

dNi

=

(
∂Y

∂T

)
p,Ni

dT +

(
∂Y

∂p

)
T,Ni

dp+
∑
i

YidNi .

Reuse arguments of extending system by factor λ . . .

(Recall result for G: G(T, p,Ni) =
∑

i µiNi)
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to get in general

Y =
∑
i

YiNi .

We also see that the partial molar Gibbs free energy is the chemical potential

Gi = µi .

Molfraction as independent variable in a homogenous binary phase.

mol fraction x =
N1

N1 +N2

(1− x) =
N2

N1 +N2

Gibbs–Duhem equation

SdT − V dp+N1dµ1 +N2dµ2 = 0

Think of the chemical potentials as functions of T , p, and the mol fraction x

SdT − V dp+N1

(
∂µ1

∂T
dT +

∂µ1

∂p
dp+

∂µ1

∂x
dx

)
+N1

(
∂µ2

∂T
dT +

∂µ2

∂p
dp+

∂µ2

∂x
dx

)
= 0

With (
∂µ

∂p

)
T

=
V

N
and

(
∂µ

∂T

)
p

= − S
N

we get

SdT −V dp− (S1 + S2)︸ ︷︷ ︸
S

dT + (V1 + V2)︸ ︷︷ ︸
V

dp+

(
N1

∂µ1

x
+N2

∂µ2

x

)
dx = 0 .

Therefore,

N1
∂µ1

x
+N2

∂µ2

x
= 0

x

(
∂µ1

∂x

)
T,p

+ (1− x)

(
∂µ2

∂x

)
T,p

= 0
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4.4 Ideal solution chemical potential

A molecular picture

scheme 066

How many ways can we arrange N solute molecules in the above volume?

ideal = no correlation between solute molecules

Ω =
MN

N !

The corresponding entropy is

S = kB ln Ω = NkB

(
ln
M

N
+ 1

)
= kBN

(
ln

(
1

ρ∆v

)
+ 1

)
Consider the solution at E = const. and V = const.

dS = −µ
T

dN ⇒
(
∂S

∂N

)
V,E

= −µ
T

= kB ln ρ∆v

So, the configurational contribution to the chemical potential:

βµ = ln ρ∆v

Let’s consider now what happens if we reversibly create a particle (solute) in

the solvent. The chemical potential is related to the Helmholtz free energy

µ =

(
∂A

∂N

)
T,V

,
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or for ∆N = 1

µ = A(T, V,N + 1)− A(T, V,N) .

We know that A = kBT lnQ and therefore

∆µ = − 1

β
lnQsolute +

1

β
lnQsolvent

Using the Boltzmann formula for the partition functions, we get

e−β∆µ =

∑
j e−βÊj∑
j e−βEj

,

where the sums run over all solvent states with solute fixed. The energy Êj

is from the system with the solute fixed in one cell, and the energy Ej is for

the same configuration but no solute present.

e−β∆µ is a measure of the solvation energy, and ∆µ is independent of ρsolute,

depends on T and ρsolvent. Finally, we can define a chemical potential for

an ideal solution, namely

βµ = β∆µ+ ln ρ∆v

We are not done yet!

Standard states Can only measure differences in chemical potentials. We

cannot measure absolute chemical potentials.

For example, we can measure µ at a particular volume (pressure)

βµ = β∆µ+ ln ρV + ln ∆v/V

Remember that the density ρ has units of 1/volume.

In general

βµ = β∆µ+ ln ρ∆v + constant

Consider

βµ = β∆µ+ ln ρ/ρsolvent + ln ρsolvent∆v
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Absorb the last term into β∆µ and define

ρ

ρsolvent
=

Nsolute
Nsolvent

≈
Nsolute

Nsolvent +Nsolute
= Xsol

Thus, the more familiar equation (usually found in textbooks) Raoult’s Law

βµ = βµ? + lnXsol

4.5 Chemical potential and reversible work

For an ideal solution

βµ = β∆µ+ ln ρ+ constant

where

∆µ free energy of one fixed solute. It includes the

solvation energy – the free energy change of

the solvent to accomodate one solute.

ρ concentration or density of solutes – always with

respect to a standard state (units!)

constant physically irrelevant constant; its value establishes

convention of standard state (see ρ).

An ideal

solution is one in which concentration of solutes is very low – low enough that

different solute molecules are uncorrelated. Thus, ρ−1 must be much larger

than any relevant (molecular length scale)3.
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scheme 067

Interested just in a few molecules! Then call those specific few molecules the

solutes, and the whole system is an ideal solution.

Example Isomerization of 1,2 dichloroethane.

First in vacuum

scheme 063

Let

∆E = energy of gauche state - energy of trans state

Condition of chemical equilibrium

µg = µt

or

β∆µg + ln ρg + constant = β∆µt + ln ρt + constant

We use the same standard state, so the constant drops out.

So,

ρg/ρt = e−β(∆µg−∆µt)

This is also true in solution!
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Next consider the gas phase ∆µ.

e−β∆µg =
∑

all gauche//states j

e−βEj = 2 · e−β(∆E+Et)

e−β∆µt =
∑

all trans//states j

e−βEj = 1 · e−βEt

ρg/ρt = 2 · e−β∆E = e−β(∆E−kBT ln 2)

The common energy Et drops out and in the final equation we have an energy

(∆E) and an entropy (kBT ln 2) contribution to equilibrium.

Chemical equilibrium in solution requires an analysis of ∆µ more general

than that given above. We consider that now.

In the next few remarks, we will work with the canonical distribution law

– energy fluctuates but N is fixed. The remarks are general, however, and

apply equally well when N fluctuates too. Convince yourself that this is true.

Grab onto a few degrees of freedom. We will call them special or tagged

degrees of freedom. Perhaps they are the positions of a few atoms. Held

them fixed, and allow all other degrees of freedom to fluctuate.

scheme 068
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The resulting partition function (the Boltzmann weighted sum over all fluc-

tuations) is

Q̃( x1, . . . , xn︸ ︷︷ ︸
fixed coordinates

; β,N, V ) =
∑
i,with

x1,...,xnfixed

e−βEi

Consider the variation of Q̃ w.r.t. the fixed coordinates

∂ ln Q̃

∂x1

=
1

Q̃

∑
i

(x1,...,xnfixed)

e−βEi
(
−β∂Ei

∂x1

)

Note,

(−∂Ei/∂x1) = force on degree of freedom 1 when system is in

the ith microscopic state (instantaneous fluctuation)

which allows us to write

∂ ln Q̃

∂x1

= β

(
average force on degree of freedom 1

given that x1, . . . , xn are fixed

)

similar results hold for ∂ ln Q̃/∂xi, i = 2, 3, . . . , n.

The integration of the average force yields a work, a reversible work since

for each configuration of the tagged degrees of freedom, all fluctuations are

Boltzmann averaged. Thus the quantity W (x1 . . . xn) defined by

ln Q̃(x1 . . . xn; β,N, V ) = −βW (x1 . . . xn; β,N, V )

has the interpretation of a reversible work surface, sometimes called a poten-

tial of mean force or a free energy surface.

Suppose you observe some property,f , which depends explicitely upon the

special coordinates only, i.e., f = f(x1 . . . xn). Its observed or averaged value
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is

〈f〉 =
∑
i

fie
−βEi/

∑
i

e−βEi

=
∑
x1...xn

∑
i//x1...xnfixed

fie
−βEi/

∑
j

e−βEj

=
∑
x1...xn

f(x1 . . . xn)e−βW (x1...xn) · 1∑
x1...xn

e−βW (x1...xn)

Alternatively, we could write

〈f〉 =
∑
x1...xn

f(x1 . . . xn)P (x1 . . . xn)

where P (x1 . . . xn) = probability of oberving the system with the special

coordinates of x1 . . . xn.

If the xi’s are truly coordinates, we should use an integral rather than a sum

〈f〉 =

∫
dx1 · · ·

∫
dxnf(x1 . . . xn)P (x1 . . . xn)

in which case P (x1 . . . xn) is then the probability distribution (or density) for

x1 . . . xn.

Comparision of the two results for 〈f〉 implies

P (x1 . . . xn) ∝ e−βW (x1...xn)

where the constant of proportionality is the normalization constant.

In summary (This is important = The basis of everything)

exp [−β(reversible work surface forx1 . . . xn)]

= Boltzmann weighted sum over all fluctuations with x1 . . . xn fixed

∝
probability for observing system with the special

(tagged) degrees of freedom at x1 . . . xn

Note, that e−βA = Q =
∑

i e
−βEi is a special case of the above principle.
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4.6 Free energy calculations

4.6.1 Helmholtz free energy from computer simula-

tions

A = kBT lnQ(N, V, T ) = −kBT ln

(∫
·· ·
∫

dpdre−βH(p,r)

N

)
p, r position and momentum of all particles∫
·· ·
∫

dpdr integral over all phase space

= all possible realisations of the system

H(p, r) = T (p) + V (r) total energy function of the system

N normalization constant

Including

the following integral in the formula for the free energy∫
· · ·
∫

dpdre−βH(p,r)eβH(p,r) = N

we get

A = kBT ln

(∫
·· ·
∫

dpdre−βH(p,r)eβH(p,r)∫
·· ·
∫

dpdre−βH(p,r)

)
The probability density is

P (p, r) =
e−βH(p,r)∫

·· ·
∫

dpdre−βH(p,r)

and we have

A = kBT ln

(∫
· · ·
∫

dpdreβH(p,r)

)
This quantity is difficult to sample because of

H(p, r) = large → eβH(p,r)very large

→ P (p, r)very small

H(p, r) = small → eβH(p,r)small

→ P (p, r)large
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Numerical methods (molecular dynamics, Monte Carlo) will sample mostly

states with H small → very bad convergence. It is therefore very difficult to

determine A accurately.

The same is true in experiment. We measure usually ∆A or derivatives of A(
∂A

∂V

)
N,T

= −p or

(
∂A/T

∂1/T

)
V,N

= E

4.6.2 Thermodynamic perturbation

R.W. Zwanzig, J. Chem. Phys. 22 1420–1426 (1954)

We consider two systems X and Y , e.g. ethanol in water and ethanthiol in

water. The energy functions of the systems are HX and HY .

The free energy difference between the two systems is

∆A = AY − AX = −kBT ln
QY

QX

This can be computed from

∆A = −kBT ln

(∫
·· ·
∫

dpdre−βHY (p,r)∫
·· ·
∫

dpdre−βHX(p,r)

)
= −kBT ln

(∫
·· ·
∫

dpdre−βHY (p,r)eβHX(p,r)e−βHX(p,r)∫
·· ·
∫

dpdre−βHX(p,r)

)
= −kBT ln

〈
e−β(HY (p,r)−HX(p,r))

〉
X

where 〈·〉X stands for a canonical sampling over distribution of system X.

A completely analogous derivation also leads to

∆A = kBT ln
〈
e−β(HX(p,r)−HY (p,r))

〉
Y

with a sampling over the distribution of system Y .
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A problem arises if the phase spaces sampled for systems X and Y do not

sufficiently overlap: ‖(HY (p, r)−HX(p, r))‖ � kBT

Solution: intermediate systems

scheme 070

∆A = AY − AX
= (AY − A1) + (A1 − AX)

= −kBT ln

(
QY

Q1

Q1

QX

)
= −kBT ln

〈
e−β(HY (p,r)−H1(p,r))

〉
1
− kBT ln

〈
e−β(H1(p,r)−HX(p,r))

〉
X
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Generalization to N systems

∆A = AY − AX
= (AY − AN) + (AN − AN−1) + · · ·+ (A1 − AX)

Implementation: Parametrization of system energy

H(λ) with
H(λ = 0) = HX

H(λ = 1) = HY

scheme 071

4.6.3 Thermodynamic integration

We make the assupmtion that the Helmholtz free energy is a continuous

function of a parameter λ.

A(λ) = −kBT lnQ(λ)

∆A = A(λ = 1)− A(λ = 0)

∆A =

∫ 1

0

∂A(λ)

∂λ
dλ
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We get

∆A = −kBT

∫ 1

0

[
∂ lnQ(λ)

∂λ

]
dλ =

∫ 1

0

−kBT

Q(λ)

∂Q(λ)

∂λ
dλ

Q(λ) = N
∫
· · ·
∫

dpdre−βH(p,r,λ)

∂ lnQ(λ)

∂λ
= N

∫
· · ·
∫

dpdr(−β)
H(p, r, λ)

∂λ
e−βH(p,r,λ)

∂A(λ)

∂λ
= − 1

βQ

∂Q

∂λ
= N

∫
· · ·
∫

dpdr
∂H
∂λ

e−βH(p,r,λ)

= N
∫
· · ·
∫

dpdr
∂H
∂λ

(
e−βH(p,r,λ)

Q

)
=

〈
∂H
∂λ

〉
λ

Final result

∆A =

∫ 1

0

〈
∂H
∂λ

〉
λ

dλ

Implementation:

∆A ≈
∑
i

〈
∂H
∂λ

〉
λi

Numerical integration of integral over λ. For each integration point λi do a

simulation and calculate the Boltzmann averaged value of ∂H
∂λ

∣∣
λi

.

scheme 072
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4.6.4 Umbrella sampling

Allows sampling in otherwise seldom visited regions of phase space using a

bias potential W (r).

Define a new total potential function

V ′(r) = V (r) +W (r)

Choose W (r) in such a way, that you get good sampling close to r0, e.g.

W (r) = kW (r − r0)2

The sampling with V ′(r) will result in a non-Boltzmann distribution (w.r.t.

V (r).

Correction of biased sampling:

We are looking for

〈A〉 =

∫
·· ·
∫

dpdrAe−βH(p,r)∫
·· ·
∫

dpdre−βH(p,r)

The biased average of an observable A calcuated is

〈A〉bias =

∫
·· ·
∫

dpdrAe−βH
′(p,r)∫

·· ·
∫

dpdre−βH′(p,r)

The biased average for a function AeβW is

〈AeβW 〉bias =

∫
·· ·
∫

dpdrAe−β(H′−W∫
·· ·
∫

dpdre−βH′
=

∫
·· ·
∫

dpdrAe−βH∫
·· ·
∫

dpdre−βH′

The biased average for a function eβW is

〈eβW 〉bias =

∫
·· ·
∫

dpdre−β(H′−W∫
·· ·
∫

dpdre−βH′
=

∫
·· ·
∫

dpdre−βH∫
·· ·
∫

dpdre−βH′

Using the two biased averages we can calculate the unbiased average of the

original function A

〈A〉 =
〈AeβW 〉bias

〈eβW 〉bias

Reconstruction of the free energy surface

102



scheme 073

Matching of individual calculations.
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A Two-Dimensional Energy Surface for a Type I1 s N 2  
Reaction in Aqueous Solution+ 
Jiali Gao' and Xinfu Xia 

Contribution from the Department of Chemistry, State University of New York at Buffalo, 
Buffalo, New York 1421 4 
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Abstract: The role of aqueous solvation on the potential surface of the s N 2  Menshutkin reaction between ammonia and 
methyl chloride has been examined by using a combined quantum mechanical and statistical mechanical method. In 
the present simulation approach, the reactant molecules are treated by the semiempirical AM1 theory, while the solvent 
is represented by the empirical TIP3P model. Solute-solvent interactions are evaluated through Hartree-Fock molecular 
orbital calculations throughout the fluid simulation. In this paper, it is first demonstrated, by comparison with high- 
level a b  initio results, that this hybrid quantum mechanical and molecular mechanical (QM/MM-AM 1/TIP3P) model 
can provide an adequate description of intermolecular interactions between the solute and solvent for the Menshutkin 
reaction. The free energy surface in aqueous solution is then determined via statistical perturbation theory with a grid 
search algorithm. The results suggest that the solvent effects strongly stabilize the transition state and products. The 
computed free energy of activation (26 kcal/mol) is in good agreement with previous theoretical and experimental 
estimates. The most striking finding is that the transition state is shifted significantly toward the reactants, with a 
lengthening of the C-N bond by 0.30 A and a shortening of the C-Cl bond by 0.15 A. This is in accord with the 
Hammond postulate and consistent with previous theoretical studies. Analyses of the simulation results indicate that 
the charge separation during the present Type I1 s N 2  reaction is promoted by.the solvent effect, with a charge transfer 
of about 6 5 %  complete a t  the transition state. Detailed insights into the structural and energetic nature of the differential 
solvation of the reactants and transition state are provided. 

Introduction 
The bimolecular nucleophilic substitution reaction is one of 

the most fundamental processes in organic chemistry and has 
attracted numerous experimental and theoretical inve~tigations.l-~ 
In his classic work, Ingold classified nucleophilic substitutions 
into four categories according to the charge type of the nucleophile, 
being negative or neutral, and of the substrate, being neutral or 
positive.' This classification has helped qualitatively to explain 
the dramatic solvent effect on the rate of s N 2  reactions observed 
experimentally on the basis of charge distributions of the reactant 
and the transition state.14 Quantitative characterization of the 
solute-solvent interaction at  the molecular level, however, was 
only recently made possible, thanks to advances in computer 
technology and accurate free energy computational techniques. 
In particular, much attention has been paid to the prototypical 
Type 1 s N 2  reaction of c1- -k CH3Cl- ClCH3 + c1-, involving 
an anion and a neutral substrate in aqueous and organic solvent^.^^ 
To further our understanding of the solvation effect on s N 2  
reactions, extension of theory to other charge types is warranted. 

f Taken in part from the Ph.D. dissertation of X.X., SUNY, Buffalo, 1993. 
a Abstract published in Advance ACS Abstracts, October 1 ,  1993. 
(1) (a) Ingold, C. K. Sfructure and Mechanism in Organic Chemistry, 2nd 

ed.; Cornell University Press: Ithaca, NY, 1969. (b) Hughes, E. D.; Ingold, 
C. K. J. Chem. SOC. 1935, 244. 

(2) (a) Harris, J. M.; McManus, S. P., Eds.; Nucleophilicity; American 
Chemical Society: Washington, DC, 1987; Series 215. (b) Hartshorn, S. R. 
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L. J .  Am. Chem. SOC. 1985,107,2974. (c) Jorgensen, W. L.; Buckner, J. K. 
J. Phys. Chem. 1986, 90,4651. 
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Much progress has been made in elucidating the intrinsic 
properties of gas-phase s N 2  reactions through quantum me- 
chanical a b  initio calculations. The double-well potential energy 
surface for the Type I reaction9 predicted by early theoretical 
studies was confirmed by the extensive experimental work of 
Brauman and co-workers.lOJ1 In addition, ab initio calculations 
providevaluable information on the transition-state (TS) structure 
and charge distributions along the whole reaction coordinate. 
Recently, these computations have been extended to condensed- 
phase simulations using statistical mechanical Monte Carlo and 
molecular dynamics techniques.%s This was led by the calculation 
of the reaction profile involving chloride and methyl chloride in 
aqueous and DMF solutions.5a The striking solvent effect observed 

(6) (a) Chiles, R. A.; Rossky, P. J. J .  Am. Chem. SOC. 1984, 106, 6867. 
(b) Huston, S. E.; Rossky, P. J.; Zichi, D. A. J .  Am. Chem. SOC. 1989,111, 
5680. (c) Bash, P. A.; Field, M. J.; Karplus, M. J .  Am. Chem. SOC. 1987, 
109,8092. (d) Hwang, J.; King, G.; Creighton, S.; Warshel, A. J.  Am. Chem. 
SOC. 1988, 110, 5297. 

(7) (a) Bergsma, J. P.; Gertner, B. J.; Wilson, K. R.; Hynes, J. T. J .  Chem. 
Phys. 1987, 86, 1356. (b) Gertner, B. J.; Whitnell, R. M.; Wilson, K. R.; 
Hynes, J. T. J .  Am. Chem. SOC. 1991, 113, 74. (c) Gertner, B. J.; Wilson, 
K. R.;Hynes, J. T.J. Chem. Phys. 1989,90,3537. (d) Kozaki, T.; Morihashi, 
K.; Kikuchi, 0. J .  Am. Chem. Soc. 1989, 1 1 1 ,  1547. (e) Basilevsky, M. V.; 
Chudinov, G. E.; Napolov, D. V. J .  Phys. Chem. 1993, 97, 3270. 

(8) (a) Tucker, S. C.; Truhlar, D. G. J .  Phys. Chem. 1989,93,8138. (b) 
Tucker, S. C.; Truhlar, D. G. J. Am. Chem. SOC. 1990, 112, 3347. 
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103,7602,7694. (b) Dedieu, A.; Veillar, G. A. J .  Am. Chem. SOC. 1972,94, 
6730. (c) Bader, R. F. W.; Duke, A. J.; Messer, P. R. J .  Am. Chem. SOC. 
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experimentally was demonstrated by a predicted increase of 15 
kcal/mol in activation free energy over its intrinsic (in uacuo) 
barrier.5 

In the present study, we report the results of a theoretical 
examination of a Type I1 S N ~  reaction, the Menshutkin reaction 
in aqueous sol~tion,l,~a 

Gao and Xia 

H3N + CH3Cl - H3NCH3+ + C1- 

using the combined quantum mechanical and molecular me- 
chanical (QM/MM) Monte Carlo simulation method described 
previously.I2 Several issues are of interest in this reaction. First, 
TS structures are generally expected to be different in the gas 
phase and in solution. This is not a serious problem for symmetric 
reactions because the solvent effects are the same on both sides 
of the TS along the reaction coordinate. Thus, the structural 
change is not expected to be considerably large and has been 
confirmed by Jorgensen and Buckner for the Type I reaction in 

However, switching to a system consisting of a neutral 
nucleophile and substrate (Type 11), in which large charge 
separation occurs during the reaction, should yield an “unevenn 
solvation effect that is accompanied by a reduction of the reaction 
barrier and a shift in the TS structure according to the Hammond 
postulate.’3 In a recent communication, we reported the results 
of a study of the Menshutkin reaction using empirical potential 
f~nc t i0ns . l~  That work, along with the study of Sola et a1.,15 
confirmed the empirical expectation and demonstrated that the 
solvent effect can, indeed, significantly modify the position of the 
transition state. Consequently, the solvent effect should be 
included in the electronic structure calculations to determine the 
reaction path in solution. Second, the solvent effect on the 
polarization of the reactants is expected to enhance the charge 
separation of the Menshutkin reaction over that of the reaction 
in the gas p h a ~ e . l ~ , ~ ~  Although this would be very difficult to 
investigate using empirical potential functions, the problem is 
naturally solved by the QM/MM method because the solvent 
effect is coupled into the electronic structure calculation in fluid 
simulations.13J6 Therefore, additional insights into the solvent 
effect may be inferred from the QM/MM simulation. Finally, 
it is desirable to locate the minimum free energy path for the 
Menshutkin reaction in solution rather than to follow the reaction 
path of the gas-phase p r o c e ~ s . ~ - ~ J ~  

In this report, we have extended our study to cover the free 
energy surface of the Menshutkin reaction by mapping out the 
bond formation and breaking process independently. The results 
provide new insights into the structure and energetics for the 
understanding of S N ~  reactions in solution. In the following, 
computational details are given first, followed by results and 
discussion. 

Computational Details 
(a) Intermolecular Potential Fuactions. In the present study, we adopt 

a combined QM/MM approach in statistical mechanical Monte Carlo 
simulations. The method has been reviewed recently by several authors; 
additional details are in ref 12. Here, the fluid system is partitioned into 
a quantum mechanical region consisting of the solute molecule, H3N- 
CHo-Cl, and a molecular mechanical region containing solvent monomers 
which are approximated by the three-site TIP3P model for water.16J9 

(12) For reviews, see: (a) Field, M. J.; Bash, P. A.; Karplus, M. J .  Comput. 
Chem. 199O,II, 700. (b) Luzhkov, V.; Warshel, A. J .  Comput. Chem. 1992, 
13,199. (c) Gao, J. J.  Phys. Chem. 1992,96,537. Methodsusingcontinuum 
models such as the self-wnsistent reaction field theory are also relevant but 
are not specifically discussed. For recent applications and leading references, 
see: (d) Cramer, C. J.; Truhlar, D. G. J .  Am. Chem. SOC. 1991, 113, 8305. 
(e) Karelson, M. M.; Zerner, M. C. J .  Phys. Chem. 1992, 96, 6949. 

(1 3) See, for example: (a) Issacs, N. S. Physical Organic Chemistry; John 
Wiley &Sons, Inc.: New York, 1987. (b) Connors, K. A. Chemical Kinetics: 
rhe Study of Reaction Rates in Solution; VCH: New York, 1990. 

(14) Gao, J. J .  Am. Chem. SOC. 1991, 113, 7796. 
(15) Sola, M.; Lledos, A.; Duran, M.; Bertran, J.; Abboud, J. M. J .  Am. 

Chem. SOC. 1991, 113, 2873. 
(16) Gao, J.; Xia, X. Science 1992, 258, 63 1. 

Table I. Lennard-Jones Parameters Used in the AMl/TIP3P 
Model 

atom U, A 8, kcal/mol 
HoN-CHj-Cl 

C 3.4000 0.1000 
N 3.0875 0.1615 
c1 4.1964 0.1119 
Hc  2.0000 0.0700 
HN 0.0 0.0 

0 3.1506 0.1521 
H 0.0 0.0 

Water 

Clearly, to compute the energies of the QM solute molecule throughout 
the condensed-phase simulation, a computationally efficient method must 
be used. Therefore, the semiempirical Austin Model 1 (AMI) theory 
developed by Dewar and co-workers17 is employed to form the AMI/  
TIP3P force field in this study.l”-c Warshel and co-workers have used 
the empirical valence bond (EVB) theory in their study of the Type I SNZ 
reaction and enzymatic processes.aJ2b 

For the QM region, the solute is represented by valence electrons and 
nuclei. The restricted Hartree-Fock wave function, @, is used with a 
single Slater determinant of all doubly occupied molecular orbitals (MOs), 
which are linear combinations of a minimum basis set.I7J8 The total 
effective Hamiltonian of the system is given by12 

where is the AM1 Hamiltonian for the-solute molecule, H M M  is the 
molecular mechanical solvent energy, and HQMIMM is the solute-solvent 
interaction Hamiltonian (eq 2), 

H Q M j M M  = q M j M M  + Z Z j M M  

where e is the charge of electrons, q1 and 2, are charges on the solvent 
and solute nuclei, S and M are the corresponding total numbers of 
interaction sites, and rli and R,, are the distances of the solute electrons 
and nuclei from the solvent sites, respectively. The Lennard-Jones term 
in eq 2 accounts for the dispersion interaction between the QM and MM 
regions, which are omitted in the hybrid QM/MM approximation;I6 it 
contains the only adjustable parameters for the solute (u, and s,) in the 
present approach. These parametersarelisted in Table I. Thecombining 
rules used for the solute-solvent interaction are a,, = (u8u,)W and c8, 

The total potential energy in the combined QM/MM force field is 
= (€,€,)’/*. 

computed using eq 3, 

Here, is the wave function of the solute in aqueous solution, EMM is 
the MM pair interaction energy for the solvent molecules enumerated 
with the empirical TIP3P potential, and (EQM + Ec&lMM) is determined 
through Hartree-Fock self-consistent-field (SCF) MO calculations. 

As usual, the intermolecular interaction energy for a water dimer in 
the MM region is given as the sum of Coulombic interactions between 
all atomic pairs plus a Lennard-Jones term between the two oxygen atoms 
(eq 4). The three-site TIP3P model is employed for water, with 
experimental geometry held fixed throughout the s i m ~ l a t i o n s . ~ ~  

(b) Geometrical Constraints. Due to the symmetry of the Menshutkin 
reaction of H3N + CHsCl, the three non-hydrogen atoms, N, C, and C1, 

(17) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.  
Am. Chem. SOC. 1985, 107, 3902. 

(18) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Inirio 
Molecular Orbital Theory; Wiley; New York, 1986. 

(19) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; 
Klein, M. L. J .  Chem. Phys. 1983, 79, 926. 
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are constrained to be collinear along the C3 symmetry axis. Dihedral 
variations of H3N and CHI groups about the C-N bond are allowed 
during the Monte Carlo simulation.20b The bond length and bond angles 
associated with the hydrogen atoms are optimized at a fixed H-N-C-H 
dihedral angle sampled in the calculation. 

(c) Monte Carlo Simulpti~~. Statistical mechanical Monte Carlo 
calculations were carried out in the isothermal-isobaric (NPT) ensemble 
at 25 OC and 1 atme20 A cubic box containing 265 water molecules (ca. 
20 X 20 X 20 A') was used in the free energy surface calculation, whereas 
a rectangular box consisting of 321 water molecules (ca. 19 X 19 X 28 
A3) was employed for computing the reaction profile (see below) to allow 
adequate sampling at large separation distances along the reaction 
coordinate(RC). In thelatter simulation, theC3symmetryaxisisoriented 
to coincide with the z-axis of the water box. Standard Metropolis sampling 
procedures were adopted along with the Owicki-Scheraga preferential 
sampling technique using l / ( r2  + c)  weighting, where c = 150 A2, to 
facilitate the statistics near the solute molecule.21 At least 5 X lo5 
configurations were taken in the equilibration stage for each point on the 
free energy surface, while lo6 configurations were collected to compute 
the statistical averages. The solute-solvent interaction energy was 
evaluated by single-point Hartree-Fock SCF calculations using the 
effective Hamiltonian of eq 1. The intermolecular interactions are 
feathered to zero between spherical cutoff distances of 9.0 and 9.5 A for 
water-water and solutewater interactions, based roughly on the center- 
of-mass separation. New configurations were generated by randomly 
selecting a molecule, translating it in all three Cartesian directions, rotating 
it along a randomly chosen axis, and varying the internal rotation. An 
acceptance rate of about 40% was maintained by using ranges of fO.ll 
A and loo for molecular motions. Volume changes were restricted to 
within &lo0 A3 at every 1625 configurations. Standard deviations are 
estimated from averages of blocks 105 configurations. 

(a) Free Energy Surface. In order to assess the solvent effects on the 
TS structure of the prototypical Menshutkin reaction, H3N + CHsCl- 
CH3NH3+ + CI-, in aqueous solution, a two-dimensional free energy 
surface was constructed through a grid search method. The two 
independent coordinates of the map are C-N distance RCN and C-Cl 
distanceRcC1. Thegrid searching wascarried out in a rectangular region 
of 1.406 A 5 &N 5 2.406 A and 1.744 A -< Reel -< 2.444 A, while 
statistical perturbation theory was used to compute free energy differences 
between neighboring grid points.22 Specifically, at a given value of Rea, 
a series of perturbation calculations with ARCN = *0.05 A were carried 
out to yield a free energy profile as a function of RCN. The relative 
heights of two such neighboring profiles (parallel to each other) at an 
interval of 0.10 A were determined by another perturbation calculation 
with respect to Reel at a fixed RCN value. Finally, the potential surface 
was anchored relative to the free energy at an RC of -2.0 A (see below). 
Hence, the whole free energy surface was constructed (Figure 1) through 
a total of 87 simulations. The numerical results are summarized in the 
supplementary material. 

We note that Warshel and co-workers introduced an elaborate method 
that employs a mapping function to drive the reactant state to the product 
state.@12b,23 The free energy of activation for the reaction is then recovered 
by an umbrella-sampling-type treatment,24 making use of the energy 
gap, At, between the products and reactants on the mapping function 
potential surface as the reaction coordinate.6dv23b The method is 
particularly advantageous for use with the EVB approach, which has 
been applied to many chemical and biological systems by these authors.23 
The method, of course, can be used with the MO approach as described 
in ref 12b. Effectively, the method gives the probability of reaching the 

~~ 

(20) All simulations were performed using (a j MCQUB (Monte Carlo 
QM/MM at University at Buffalo, Gao, J., SUNY at Buffalo, 1992) and (b) 
BOSS (Version 2.9; Jorgensen, W. L., Yale University, 1990) programs. (c) 
The quantum mechanical energy was evalulated with MOPAC (Stewart, J. 
J. P. MOPAC, Version 5; Quantum Chemistry Program Exchange 455,1986, 
Vol. 6, No. 391. 

(21) (a) Owicki, J. C.; Sheraga, H. A. Chem. Phys. Lett. 1977,47,600. 
(b) Owicki, J. C. ACSSymp. Ser. 1978,86,159. (c) Jorgensen, W. L.; Bigot, 
B.; Chandrasekhar, J. J .  Am. Chem. SOC. 1982, 104, 4584. 

(22) Zwanzig, R. W. J .  Chem. Phys. 1954, 22, 1420. 
(23) (a) Warshel, A. J .  Phys. Chem. 1979,83, 1640. (b) Hwang, J.-K.; 

Warshel, A. J .  Am. Chem. SOC. 1987, 109, 715. (c) Warshel, A,; Sussman, 
F.; Hwang, J.-K. J .  Mol. Biol. 1988, 201, 139. (d) Warshel, A.; Aqvist, J. 
Annu. Rev. Biophys. Biophys. Chem. 1991.20, 267. (e) Warshel, A. Curr. 
Opinion Struct. Biol. 1992, 2,230. (f') Warshel, A. Computer Modeling of 
Chemical Reactions in Enzymes and Solutions; Wiley: New York, 1991. 

(24) (a) Patey, G. N.; Valleau, J. P. J .  Chem. Phys. 1975,63, 2334. (b) 
Valleau, J. P.; Torrie, G. M. In Statistical Mechanics, Part A: Equilibrium 
Techniques; Berne, B. J., Ed.; Plenum: New York, 1977; p 169. 
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Figure 1. Schematic representation of the algorithm used in calculating 
the free energy map. X represents the C-Cl distance, and Y is the C-N 
separation in the Menshutkin reaction. In the first step, free energy 
profiles in the Y direction are constructed by perturbing Y with fixed X 
values. These profiles are then connected by perturbations with respect 
to x. 
transition state from the reactant state, while the energy of the transition 
state (which is defined by Ac) results from a distribution of solute 
geometries in solution. Thus, structural constraints are not involved in 
these calculations, though the mapping function provides an energetic 
restriction. On the other hand, the present grid approach, as in many 
applications reported in the l i t e r a t ~ r e , ~ . ~  yields the potential of mean 
force for the reaction if a one-dimensional reaction coordinate is used or 
the solvent-averaged free energy surface with a multiple-dimensional 
reaction coordinate. 

Recently, Pearlman and Kollman proposed a method for establishing 
the free energy surface using statistical perturbation theory.25 They 
suggested perturbing the two independent variables, the dihedral angles 
in their study, in multiple directions. Consequently, several free energy 
changes can be obtained from a single fluid simulation. This would, 
indeed, be computationally efficient if empirical potentials are used because 
the time-limiting stepis the configurational sampling in those simulations. 
However, the major cost in the hybrid QM/MM method is the quantum 
mechanical MO calculations. Furthermore, multiple-direction mutations 
over the present double-wide sampling26 will also significantly increase 
the memory requirement in the combined QM/MM method. Thus, the 
grid search in the present study is limited to double-wide sampling.26 

Gas-Phase Reaction 
(a) Potentialsurfacein the Gas Phase. In our previous study,14 

the transition-state structure for the Menshutkin reaction of H3N 
+ CH3Cl - CH3NH3+ + C1- was located through ab initio 
molecular orbital calculations at the 6-31 + G(d)  level using 
G A U S S I A N  90.*' A minimum energy path (MEP)  was then 
determined by energy minimizations a t  different values of the 
reaction coordinate ( R C )  defined by14 

where Reel and RCN are respectively the distances of C1 and N 
from C, and RCo is the difference between the C-Cl and C-N 
separations at the  saddle point. A C3, symmetry was maintained 
during the minimizations. Correlation energies were obtained 
by single-point energy computations a t  the MP4SDTQ/6-3 1 + 
G(d)  level for all structures considered. The gas-phase free energy 
profile was constructed using s tandard procedures by including 
zero-point energy and entropy corrections based on the  6-3 1 + 
G(d)  vibrational frequencies.14 In these calculations, a b  initio 
vibrational frequencies were scaled by a factor of 0.89, and the 

(25) Pearlman,D.A.;Kollman,P.A.J. Am. ChemSoc. 1991,113,7167. 
(26) Jorgensen, W. L.; Ravimohan, C. J .  Chem. Phys. 1985, 83, 3050. 
(27) Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foreman, J. B.; 

Schlegel, H. B.; Raghavachari, K.; Robb, M.; Binkley, J. S.; Gonzalez, C.; 
Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, 
J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A. 
GAUSSIAN 90; Gaussian Inc.: Pittsburgh, PA, 1990. 
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Table 11. Computed and Experimental Energies for the Menshutkin 
Reaction in the Gas Phase at 25 "C (kcal/mol) 

Gao and Xia 

species AH (AMI) AG (MP4/6-31+G*)" AG (expt)" 
HjN + CH3C1 0 0 0 

CH3NH3' + C1- 137 119 110 
[HIN-CH~-C~] '  50.0 46.7 

a Reference 14. 

resulting vibrations that are lower than 500 cm-1 were treated as 
rotations. In addition, the normal mode along the reaction 
coordinate, which becomes imaginary at the TS, was ignored. 
The computed free energy of reaction is in good agreement with 
the experimental data (Table II).14928 It should be pointed out 
that the reaction path calculated this way is not necessarily the 
steepest descent path (SDP) due to the restriction of eq 5 .  The 
SDP or the intrinsic reaction coordinate (IRC) may be obtained 
through the reaction-path-following procedure incorporated in 
GAUSSIAN 90. 

The a b  initio free energy profile described above has been used 
tocompute the potential of mean force (pmf) for the Menshutkin 
reaction in aqueous solution through Monte Carlo simulations 
with fitted empirical potential functions.14 Although the com- 
puted energetic results are in good agreement with the available 
experimental data, there is concern with the predicted transition- 
statestructurein water becauseofthedramaticsolvent e f f e ~ t . * ~ J ~  
In the previous empirical approach, it was not possible to determine 
a priori the solvent effect on the change of the reaction profile 
in solution. The solvation free energy has to be evaluated 
separately and added to the free energy profile in the gas phase. 
Consequently, the maximum point on the free energy profile in 
solution will always be along the gas-phase MEP. Hence, the 
"TS" structure obtained this way is not necessarily the true saddle 
point on the free energy surface in solution. A proper treatment 
of the solvent effects on the TS structure should couple the s o l u t e  
solvent interaction and the chemical process simultaneously and 
consider a two-dimensional free energy surface by treating both 
bond formation and breaking processes. 

Fortunately, the combined QM/MM-AMl/TIP3P Monte 
Carlo simulation method provides a viable solution, and it is 
adopted in this study. To ensure that the AM1 method is 
appropriate to describe the Menshutkin reaction of H3N + CH3- 
C1, structural and energetic results are compared with the ab 
initio 6-3 1 + G(d) findings (Table I1 and Figure 2).** Geometric 
variables for the reactant and product molecules predicted by the 
AM1 model are in excellent agreement with predictions by a b  
initio calculations at  the 6-3 1 + G(d) level. The largest deviations 
are only 0.04 8, for the bond lengths and 1.3' for the bond angles. 
On the other hand, the AM1 model yields a much tighter TS 
structure than the ab initio approach. At the transition state, the 
C-N and C-C1 distances are 1.899 and 2.474 A at  the 6-31 + 
G(d) level, which are 0.24 and 0.23 8, longer than the AM1 
values. In addition, the Walden inversion at  the methyl group 
is about 3.8O more advanced in the AM1 structure. However, 
the ab initio geometric parameters appear to be somewhat 
overestimated for the Menshutkin reaction in view of the results 
for the Sp42 reaction of C1- + CH3C1, where the two C-Cldistances 
are 2.383 8, at  the TS.5 In any event, since the primary interest 
of the present study is the solvent effect on the change in TS 
structure, it seems to be reasonable to use the AM1 geometry in 
fluid simulations. An alternative approach would be to use the 
ab initio potential surface for the Menshutkin reaction in the gas 

(28) Computed from standard free energies of formation: -3.91 (NHI), 
-14.38 (CHICI), -57.40 (Cl-), and 149.2 (CH3NH,+). JANAF Thermo- 
chemical Tables, 3rd ed.; U.S. Government Printing Office; Washington D.C., 
1971. J .  Phys. Chem. Ref. Dara Suppl. 1982; Vol. 11, 1985; Vol. 14. The 
value for CHINHI+ was calculated from the process CHJNH~ + H+ - CH3- 
NH,+: Aue, D. H.; Webb, H. M.; Bowers, M. T. J .  Am. Chem. SOC. 1976, 
98, 31 1. Lias, S. G.; Liebman, J. F.; Levin, R. D. J .  Phys. Chem. Ref. Dora 
1984, 13, 695. 

(1 10.8) 

0.997 
(1.002) 

1.479 
(1.507) 

109.5 
(108.1) 

Figure 2. Optimized AMI and 6-3 1 + G(d) (in parentheses) geometries: 
bond lengths in angstroms and angles in degrees. 

R(C-N) 
Figure 3. Contour of the heat of formation for the Menshutkin reaction, 
H3N + CH3Cl- CH3NH3+ + C1-, in the gas phase determined by AMI 
calculations. The contour level is 2 kcal/mol. Values higher than 60 or 
less than -25 kcal/mol are not shown. Monte Carlo simulations are 
carried out within the rectangular region. 

phase, supplementing solvation free energies evaluated with the 
AMl/TIP3P model. 

The AM1 energy contour for the reaction H3N + CHlCl- 
CH3NH3+ + C1- in the gas phase is shown in Figure 3. The 
feature of a shallow minimum for the product ion pair predicted 
by a b  initio calculations is also revealed by the AM1 results.14J~ 
Note that although standard enthalpies arecomputed in theAM1 
geometry optimization, the numerical results are actually in good 
agreement with free energy changes predicted a t  the MP4SDTQ/ 
6-3 1 + G(d) level with 6-3 1 + G(d) vibrational frequencies (Table 
11). It appears that the AM 1 results without entropic corrections 
provide a reasonable approximation to the a b  initio free energy 
profile and thus will be used in the present study (see below). 

(b) Bimolecular Interactions. The most crucial element in the 
simulation of chemical reactions in solute is the reliability of the 
method for computing intermolecular interaction energies a t  
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R 

complex a 

Q 

complex b 

complex c 
Figure 4. Structural arrangements of monohydrated clusters of [H3- 
CH+J]. 

different stages of the reaction; of course, it is, too, important for 
the solvent effects and associated boundary conditions to be 
correctly incorporated into the quantum Hamiltonian.12 Con- 
sequently, geometries and interaction energies for solute-water 
complexes a t  different values of RCN and Reel are computed a t  
the a b  initio 6-3 1 + G(d) level and are compared with predictions 
from the Q M f M M  model, through which the Lennard-Jones 
parameters (eq 2) are determined. Values of RCN and Rccl are 
chosen along the 6-31 + G(d) MEP corresponding to RCs of 
-1.5, -1.0, -0.5, -0.25, -0.1, 0.0, 0.1, 0.25, 0.5, and 0.75. The 
ab initio results for these bimolecular complexes with water have 
been used to derive the empirical potential function employed in 
our previous study of the Menshutkin reaction in water.14 At 
each of the selected points, two or three configurations of the 
solute-water complex are considered. Figure 4 depicts the 
structural arrangement of these bimolecular complexes. Structure 
a specifies the hydrogen-bonding interaction between the am- 
monium hydrogen and the oxygen of water, while complexes b 
and c denote the open and bifurcated forms between water and 
C1. In all geometry optimizations (ab initio, QM/MM, and 
empirical), monomer geometries are fixed at  the 6-31 + G(d) 
and experimentalvalues for the reactants and water, respectively, 
while hydrogen-bonding parameters that are optimized are 
indicated in Figure 4. At the 6-3 1 + G(d) level, complex a has 
the strongest binding energy along the whole RC, whereas complex 
c forms the weakest complex of the three structures considered. 

The a b  initio interaction energies are first compared in Figure 
5 (top) with those predicted by the empirical potential function 
used in ref 14. As expected, hydrogen-bonding interactions exhibit 
a gradual increase along the reaction coordinate. Excellent 
agreement is obtained with a root-mean-square (RMS) deviation 
of 0.4 kcal/mol between the two methods; however, the param- 
etrization procedure was laborious and required a cubic spline 

0.0 

-5.0 

ri 
2 
d 

-10.0 

(kcallmol) 

0 Complex a 
Complex b 

A Complex c 

I 
-15.0 

-15.0 -10.0 -5.0 
Empirical 

0.0 

-5.0 

B 
3 
d 

-10.0 

-15.0, 

(kcallmol) 

0 Complex a 
Complex b 

A Complex c 

.O -10.0 -5.0 
QMlMM 

Figure 5. Comparison of the solute-solvent interaction energies predicted 
by the potential functions (top) and by the AMl/TIP3P model (bottom) 
vs the 6-31 + G(d) values. A line of slope = 1.0, indicating perfect 
agreement, is shown. All energies are in kilocalories per mole. 

technique to specify the changes of the potential function 
parameters along the RC.14 It is perhaps not even practical to 
derive such empirical potentials for the reaction surface considered 
here because the empirical parameter fitting would require 
consideration of bimolecular interactions spreading over the entire 
potential surface.* In contrast, the solute-solvent interaction is 
naturally determined in the combined Q M / M M  treatment.12316 
Figure 5 (bottom) correlates the Q M / M M  prediction and the ab 
initio6-3 1 + G(d) results. In thesecalculations, thesolute, [H3N- 
CH3-C1], is treated quantum-mechanically, while water is 
represented by the TIP3P model. The accord is good for an 
energy range of -1 to -12 kcal/mol; the overall R M S  deviation 
is 0.5 kcalfmol. Large deviations between the Q M f M M  and 
6-31 + G(d) results are mainly from complex c, without which 
the R M S  deviation would be 0.4 kcal/mol. The agreement 
demonstrated here provides strong support for the use of the 
Q M / M M  method to study the Menshutkin reaction in aqueous 
solution. 

Free Energy Surface in Aqueous Solution 
The principal goal of the present study is to determine the 

solvent effect on the potential surface of the Menshutkin reaction 
in water. This can be achieved by using statistical perturbation 
theory in Monte Carlo or molecular dynamics simulations. It is, 
of course, straightforward to compute the potential of mean force 
for the reaction along a predefined one-dimensional reaction 
path;'J4 however, the construction of the potential surface requires 
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Figure 6. Computed free energy surface for the Type I1 S N ~  reaction 
[HpN-CHp-Cl] in aqueous solution as a function of C-N and C-CI 
separations. The transition state is marked by an X, while the minimum 
energy path defined by q 5 is indicated by the curve across the diagram. 
Energies are given in kilocalories per mole, and distances are in angstroms. 

knowledge of relative free energies of all grid points (Figure 1) 
on the two-dimensional map.25 This is a substantial undertaking 
in computational effort, especially with the use of the combined 
QM/MM potential. Consequently, emphasis is centered on the 
region indicated in Figure 3, where bond forming and breaking 
in the Menshutkin reaction take place. The results are shown in 
Figure 6, in which the saddle point a t  RCN = 1.96 8, and R c c l  
= 2.098,ismarkedbyanX, whilethatin thegasphaseisindicated 
by an 0. 

Several technical points should be addressed before the results 
are discussed further. First, in the present QM/MM approach, 
it is possible to decompose the computed total free energy change 
between two adjacent grid points into the intrinsic (gas-phase) 
contribution and the free energy of hydration.29 This is accom- 
plished by writing the quantum mechanical energy of given C-N 
and C-Cl distances EQM(RCN,RCC~) (eq 3) in terms of the gas- 
phase energy and an energy penalty required to polarized the 
electron distribution in s o l ~ t i o n : ~ 6 ~ * ~  

EQhf(RCN&2Cl) Eogas(RCN,RCCI) + mdist(RCN3RCCl) 

(6) 
Here, E o g a s ( R ~ ~ , R ~ ~ i )  = (CPOIHOQM(RCN,RCCI)(CP~ ), and EQM- 
( R c ~ , R c a )  = (CPIPQM(RCN,RCCI)~O) ,  which are the electronic 
energies of the reactants in the gas phase and in water. hEdist 
is the electron distortion energy due to solute-solvent interac- 
tions,16*29 and Cho and CP are the wave functions of the solute in 
the gas phase and in water, respectively. Thus, the solvation free 
energy for the Menshutkin reaction can be determined by 
subtracting the gas-phase potential (Figure 3) from the aqueous 
free energy surface (Figure 6) obtained via the QM/MM 
simulations. It should be emphasized that the combined QM/ 
M M  approach has the advantage of taking into account of the 
solvent polarization effects that are partially reflected by the 
hEdist term.I6 Generally, this is of great concern if pairwise, 
empirical potential functions are used. 

Second, the enthalpy change computed with the AM 1 method 
is used here to approximate the free energy surface for the reaction 
of H3N + CH3C1 in the gas phase. Table I1 shows that the 
approximation is quite reasonable since the estimated enthalpy 
of activation (50 kcal/mol) is in reasonable accord with the free 
energy predicted at  the MP4SDTQ/6-31 + G(d) level (47 kcal/ 
mol). However, the AM1 method overestimates the energy of 
reaction for the Menshutkin reaction by 18 (27) kcal/mol 
compared with the ab initio (experimental) data.28 The dis- 
crepancy is largely due to the poor performance of the AM1 

(29) Gao, J.  J .  Phys. Chem. 1992, 96, 6432. 
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Figure 7. Potential of mean force for the Menshutkin reaction in water 
(solid curve) and in the gas phase (dashed curve). The reaction coordinate 
is the minimum energy path shown in Figure 6. 

theory for the chloride ion, whose heat of formation is predicted 
to be 18.2 kcal/mol higher than the experimental number.” This 
difference is expected to be fully transferred into the results from 
the QM/MM Monte Carlo simulation; however, it is not expected 
to affect the energetics in the region before/near the transition 
state. 

Finally, a major concern in the present study is the choice of 
the independent variables for the reaction surface. A linear 
approach of the nucleophile to CH3C1 is assumed, which appears 
to be reasonable; however, a full description of the reaction surface 
should also include the angular averaging of the nucleophilic 
attack. Extension beyond the present two-dimensional surface 
that treats the C-Cl and C-N variations independently is 
unfortunately beyond our current computational capability. Note 
that classical trajectory studies of the Type I sN2 reactions with 
a box of solvent molecules have been carried out by Gertner et 
al.7b and by Hwang et a1.,6d while Tucker et a1.* used a 
multidimensional transition-state theory, but included only a few 
solvent molecules. It is of interest to perform similar calculations 
using the present QM/MM approach. 

The most striking finding in Figure 6 is the shift of the TS 
structure that accompanies a dramatic solvent stabilization of 
the products. This finding is in good agreement with the prediction 
based on the Hammond postulate.13 The structural change 
features a lengthening of the C-N distance of 0.30 8, from its 
gas-phasevalue of 1.66 8, and a decrease in the C-C1 bond length 
by 0.15 8, (2.09 8, in water). Therefore, the TS of the Menshutkin 
reaction occurs much earlier in aqueous solution than in the gas 
phase. For comparison, structural changes predicted in our 
previous investigation using empirical potentials are +0.15 and 
-0.10 8, for RCN and RcCl, respe~tive1y.l~ However, that work 
differs from the present investigation in two ways: (1) there is 
no relaxation of the electronic structure allowed during the 
simulation and (2) the gas-phase MEP is held fixed without 
consideration of the symmetric stretch along the reaction path.sc 
The structural change is entirely due to solvation without 
consideration of electronic structure relaxation.14 The present 
QM/MM method, on the other hand, allows electronic relaxation 
of the reactants on a two-dimensional free energy surface in 
aqueous solution through the quantum Hamiltonian.I6 Conse- 
quently, a much more dramatic solvent effect is observed. Note 
that a similar Menshutkin reaction involving H3N and CH3Br 
has been studied by Sola et al., using a continuum self-consistent 
reaction field method in ab initio molecular orbital c a l c u l a t i ~ n s . ~ ~  
They found similar qualitative features for the TS structure when 
a dielectric constant of 78 was used to represent the aqueous 
solution. 

Figure 7 illustrates the pmf along the reaction path shown in 
Figure 6 for the Menshutkin reaction, which has been extended 
by additional calculations along the path leading to the reactants 
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R(C-N) 
Figure 8. Free energy of hydration for the Menshutkin reaction in water. 
Energies are given in kilocalories per mole relative to the reactants at an 
RC = -2 A. 

and products. The R C  of Figure 7 is defined by eq 5 ,  but the 
TS structure in aqueous solution (Figure 6) is used to specify the 
reference state for RCo. In Figure 7, the pmf is zeroed a t  RC 
= -2.0 A, which is virtually flat for IRC( I 1 .O A, suggesting that 
the SCF-type calculation can provide reasonable estimates for 
the energetics for the entire Menshutkin reaction, including the 
entrance and exit channels. It should be mentioned that the 
potential surface shown in Figure 6 is also anchored relative to 
this point (RC = -2.OA). Thecalculatedfreeenergyofactivation 
is 26.3 f 0.3 kcal/mol in water. Experimentaldatado not appear 
to be available for this particular system, perhaps due to practical 
difficulties in using gaseous CH3C1 to carry out these experiments; 
however, the result is in accord with the experimental activation 
energy (23.5 kcal/mol) for a similar reaction between H3N + 
CH31 in water30 and the previously computed value of 25.6 kcal/ 
mol.I4 The agreement further supports the utilization of the 
combined QM/MM-AM 1 /TIP3P potential in the present study. 
For comparison, an activation energy of 8.3 kcal/mol was 
predicted by Sola et al. for H3N + CHjBr, which appears to be 
too small,15 indicating that specific consideration of solute-solvent 
interactions is important for the present type I1 sN2 reaction. 

Figure 7 also gives the free energy of reaction, AG,,,, in water 
(-18 f kcal/mol), which represents a solvent stabilization of 
about 155 kcal/mol relative to the gaseous process. The latter 
value is in exact agreement with the prediction of ref 14. The 
experimental estimate of AG,,, from a thermodynamic cycle, 
using free energies of hydration and standard free energies of 
formation, is about -34 f 10 kcal/mol.I4 As mentioned above, 
the AM1 model overestimates the heat of formation of C1- by 18 
kcal/mol.17 If the experimental value were used, the computed 
reaction free energy would be -36 kcal/mol. The calculations 
by Sola et al. yield values of -27 to -44 kcal/mol with different 
basis sets.15 

A detailed consideration of the free energy surface sheds light 
on the nature of the Menshutkin reaction in water. The attack 
of H3N toward the substrate leads to a charge separation to yield 
methylammonium and chloride ions. The process is extremely 
unfavorable in the gas phase due to Coulombic interactions. 
Indeed, Menshutkin reactions have never been reported in the 
gas phase.31 However, in aqueous solution, the reactants become 
better and better solvated as the reaction proceeds, eventually 
leading to an exothermic p r o c e s ~ . ~ , ~ a  The contour of the free 
energy of hydration is depicted in Figure 8, which shows a 
continuous enhancement of the reaction toward products. 
Therefore, the balance between the increase in energy due to 

(30) (a) Okamoto, K.; Fukui, S.; Shingu, H. Bull. Chem. SOC. Jpn. 1967, 
40,1920. (b) Okamoto, K.; Fukui, S.; Nitta, I.; Shingu, H. Bull. Chem. SOC. 
Jpn. 1967, 40, 2354. 

(31) Abraham, M. H. Prog. Phys. Org. Chem. 1974, ZZ, 1. 
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Figure 9. Comparison of the average charge transfer in aqueous solution 
(solid curve) and in the gas phase (dashed curve) along the reaction 
coordinate for H3N + CH3CI. Partial charges for the leaving group (Cl) 
are given in electrons. Standard errors for the computed atomic charge 
in water are about 0.005 e. 

charge separation during the reaction and the favorable solvation 
effects result in a shift in the position of the transition state and 
a reduction of the free energy of activation. Analogously Sola 
et al. used a Shaik-type state correlation diagram to rationalize 
the solvent effects on the change of the TS structure.I5-32 It is 
also interesting to notice that the pmf in Figure 7 corresponds to 
a unimodal energy profile in aqueous solution, which is consistent 
with the traditional notion of SN2 reactions and with the prediction 
from the empirical approach.lJ4J5 

Differential Solvation on the Reactants and the Transition 
State 

(a) Atomic Charges. Additional insight into the solvent effect 
can be obtained by analyzing the extent of charge transfer during 
the reaction in the gas phase and in aqueous solution. The 
computed Mulliken population charges for the leaving group (Cl) 
along the reaction path of Figure 7 for both the gas-phase and 
the aqueous processes are shown in Figure 9, since it gives a good 
indication of the charge development during the reaction. Charge- 
population analyses have been performed by Bash et a1.k and by 
Hwang et a1.6d in their molecular dynamics calculation of the 
reaction, C1- + CH3Cl -. CH3Cl + C1-, using the combined 
AMl/TIP3P potential and an EVB approach.k Similar cal- 
culations have been performed for other systems.7J2bJ4.33 In 
contrast to the findings by Bash et al. for the Type I process, 
where charge transfer in water lags behind the process in the gas 
phase,& the Type I1 reaction exhibits a solvent-promoted charge 
separation due to stabilization by interacting with the solvent 
molecules. This is, of course, consistent with theobserved solvent 
effect on the activation energies for these reactions. For the 
Menshutkin reaction, a charge separation of more than 65% at  
the transition state in water is predicted from the QM/MM- 
AMl/TIP3P simulation, whereas it is only about 50% in the gas 
phase. It should be pointed out that although the Mulliken 
population analysis only gives a "rough" estimate of the charge 
distributions, the qualitative trends are still informative. Inter- 
estingly, the partialchargeused in the empirical potential is about 
0.7 e on the chlorine atom at  the TS.I4 

(b) Energy Distributions. Details of the solute-solvent inter- 
action are provided in Figure 10, which shows the distribution 
of pair interaction energies between the solute and water molecules. 
Three distributions, corresponding to the reactants (RC = -2 A), 
TS (RC = 0 A), and products (RC = 2 A), are shown. As 
expected, the neutral reactant molecules interact weakly with 
the solvent without any specific structural features, while the 

(32) Shaik, S. S. Prog. Phys. Org. Chem. 1985, IS, 197. 
(33) (a) Cramer, C. J.; Truhlar, D. G. Science, 1992,256,213. (b) Tapia, 

0.; Colonna, F.; Angyan, J. G. J .  Chim. Phys. 1990, 87, 875. 
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Figure 10. Computed solute-solvent energy pair distributions for the 
reactant (dashedcurve), transitionstate (solidcurve),and product (dotted 
curve). The ordinate gives the number of water molecules bound by the 
solute, with the energy shown on the abscissa. Units for the ordinate are 
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Figure 11. Computed CI-0 radial distribution functions. Dashed curves 
are for the reactant, solid curves are for the transition state, and dotted 
curves are for the product. This convention is used throughout. 

1 (A) 

striking pike centered at  Eint = 0 kcal/mol is due to interactions 
with distant water molecules. Although ammonia is a good 
hydrogen bond acceptor, the close proximity of the substrate 
prevents water from forming a hydrogen bond to the lone pair 
of electrons on the nitrogen atom. On the other hand, it is well 
known, both from gas-phase microwave experiments and theo- 
retical investigations, that ammonia is a poor hydrogen bond 
d0nor.3~ The pair energy distribution is thus consistent with 
bimolecular interactions shown in Figure 6. At R C  = -2 A (RCN 
= 3.5 A), the best reactant-water interaction energy is -2.6 kcal/ 
mol. For the transition state, a hydrogen-bonding band begins 
todevelop (solidcurve in Figure 10). The best interaction energy 
from Figure 10 for the TS is -7.6 kcal/mol. Finally, two low- 
energy bands are clearly seen for the product ion pair (dotted 
curve). The lowest energy band can be assigned to water molecule 
solvating the ammonium ion, while the second peak is for the 
chloride ion-water complex. In fact, the low-energy bands can 
nearly be superimposed with pair energy distributions for CH3- 
NH3+ and C1- obtained from separate simulations. 

Integration of the dotted curve to -12.0 kcal/mol yields about 
3.7 water molecules, whereas integration of the second band from 
-12.0 to -8.0 kcal/mol reveals another 5 water molecules. The 
total number of the water molecules resulting from the first and 
second peaks is 8.7, which consists of approximately three CH3- 
NH~+-water pairs and six C1--water pairs. An important 
observation is that the number of strong hydrogen-bonding 

(34) (a) Nelson, D. D., Jr.; Fraser, G. T.; Klemperer, W. Science 1987, 
238, 1670. (b) Del Bene, J. E. J .  Phys. Chem. 1988, 92, 2874. (c) Frisch, 
M. J.; Del Bene, J. E.; Binkley, J. S . ;  Schaefer, H. F., 111 J .  Chem. Phys. 1986, 
84, 2279. 
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Figure 12. Computed C1-H rdfs. 

interactions increases from 0 for the reactants a t  R C  = -2 A to 
about 9 for the product ion pair. It is noteworthy to recall findings 
for the Type I reaction of C1- + CH$l in water, where the number 
of hydrogen bonds is roughly constant along the whole reaction 
path.” The differential solvation for the reactants and the 
transition state in that study is due to variations in the strength 
of the hydrogen bonds.5a In contrast, increases both in the total 
number of hydrogen bonds and the strength of interaction energies 
are critical to the stabilization of the TS and products for this 
Type I1 sN2 reaction in aqueous solution. 

(c) Radial Distribution Functions. The solute-solvent structure 
can be further characterized by the radial distribution functions 
(rdfs) shown in Figures 11-15. In these figures, the first atom 
for an xy distribution, gxy(r) ,  refers to a solute atom, and the 
second atom is either the hydrogen or the oxygen of water. The 
rdf gxy(r) gives the probability of finding an atom y a t  a distance 
r from atom x. Here, the dashed, solid, and dotted curves 
correspond respectively to the reactants (RC = -2 A), TS (RC 
= 0 A), and the products (RC = 2 A) in aqueous solution. 

The CI-0 and CI-H distributions in Figures 1 1 and 12 reveal 
the progress of hydrogen-bonding interactions between chlorine 
and water during the reaction. The positions of the first peaks 
in the C1-0 rdfs (Figure l l ) ,  are 4.0, 3.6, and 3.2 A for the 
reactant, TS, and product, respectively, indicating strengthened 
interactions with the solvent in the series. The trend is unam- 
biguously demonstrated by the C1-H rdfs in Figure 12 by the 
appearance of the hydrogen bond peak at 2.4 A for the transition 
state and the striking first peak at  2.3 A for the product chloride 
ion. The reactant methyl chloride shows no hydrogen-bonding 
interactions between C1 and water, consistent with previous 
findings by Chandrasekhar et al. using empirical potential 
functions.58 Note that for the product ion-pair structure, there 
is also a well-defined second solvation shell centered at  3.5 A in 
the Cl-H rdf, while the third peak near 5 A can be assigned to 
water molecules forming hydrogen bonds with the ammonium 
ion. Integration of the first peaks for the product and TS to their 
minima at  3 A reveals 6.6 and 3.1 nearest neighbors forming 
hydrogen bonds with the chlorine atom. This is in accord with 
the prediction based on the integration of the pair energy 
distributions, where the number of hydrogen bonds to thechlorine 
atom is estimated to be about 6 for the product. 

Similar trends exist for hydrogen-bonding interactions between 
the nucleophile H3N and water. In the ammonia HN-0 rdfs 
(Figure 13), there is no strong interaction between the ammonia 
hydrogen and the oxygen of water (dashed line), while a shoulder 
in the distribution at  the hydrogen-bonding range occurs for the 
transition state (solid curve). Integration of the sharp first peak 
centered at  1.8 A for the product gives 1.0 hydrogen bonds. Thus, 
there are a total of 3 water molecules hydrogen-bound to the 
ammonium ion. The progression of hydrogen bonding with the 
ammonia group is also indicated by the N-0 rdfs given in Figure 
14. Note that the location of the sharp first peak for the product 
ion pair (2.8 A) is about 1 A (N-H bond length) longer than the 
first peak in the HN-0 rdf. 
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Figure 13. Computed ammonium hydrogen-water oxygen rdfs. 
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Figure IS. Computed C-0 rdfs. 

The C-0 (Figure 15) rdfs may give some indication of the 
change in solvation at  the methyl group that is being attacked 
by the nucleophile. However, no special features exist in these 
plots, especially for the reactant and transition state. Note that 
a strong first peak is shown in the C-0 rdf for the product. This 
is perhapsdue to electrostatic interaction between the ammonium 
ion and water, which have been observed for hydrophobic cations 
in water.35 Comparing gN0 (Figure 14) with gco (Figure 15), 
two differences are apparent: (1) the distances in the carbon- 
water oxygen rdfs are much longer than those in the nitrogen- 
water oxygen rdfs and ( 2 )  the change in the rdf on going from 
the reactant to the product is less dramatic for gco than for  NO. 
Both observations suggest that the interaction between the methyl 
group and water is weak throughout the reaction. 

Conclusions 
A comprehensive study of the Type I1 sN2 reaction between 

H3N and CH3Cl in aqueous solution has been carried out through 
(35) Jorgensen, W. L.; Gao, J. J.  Phys. Chem. 1986.90, 2174. 
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statistical mechanical Monte Carlo simulations using the com- 
bined quantum mechanical and molecular mechanical AM 1 / 
TIP3P potential. The endothermic Menshutkin reaction in the 
gas phase is strongly enhanced by the influence of aqueous 
solvation. This stems from the fact that a charge separation is 
developed in the course of the reaction, giving rise to favorable 
solvent stabilizations. Thereaction becomes exothermic in water. 
The computed free energy of activation and free energy of reaction 
are in good agreement with experiment. 

A major thrust of the present study is to characterize the solvent 
effect on the potential surface and the transition-state structure 
for the Menshutkin reaction. Thus, a two-dimensional free energy 
surface has beendetermined. The present study has the advantage 
of taking into account the effect of solute electronic structural 
relaxations, while the symmetric stretch along the reaction path 
is being considered through the grid search. In accord with 
previous theoretical studies and the empirical expectation ac- 
cording to the Hammond postulate, an early transition state is 
predicted in aqueous solution for the type I1 s N 2  reaction, with 
a dramatic increase in the C-N distance by 0.30 A and a decrease 
in the C-C1 separation by 0.15 A at  the transition state. When 
the gas-phase minimum energy path was used to approximate 
the reaction path in water, the change for C-N and C-C1 was 
predicted to be+0.15 and-O.lOA, respe~tively.'~ Clearly, solvent 
effects should be included in electronic structure calculations for 
asymmetric reactions in condensed phases. The combined QM/ 
M M  simulation method as demonstrated here and in other works 
provides a viable approach. 

The present calculations also illustrate the power of the 
combined QM/MM Monte Carlo simulation method in providing 
both qualitative and quantitative insights into the solvent effects 
on chemical reactions. In the past decade, computer simulations 
have greatly enhanced our understanding of chemical processes 
and intermolecular interactions in solution. These techniques 
have been extended to enzymatic reactions. In the past, these 
calculations were performed primarily with the use of effective 
pairwise potential functions. Although the classical approxi- 
mation is quite reasonable and can provide valuable information 
on solute-solvent interactions, the coupling between the solvent 
charge distribution and the solute electronic polarization, which 
is of central importance for reactions involving heterolytic bond 
cleavage,"J2 is not specifically considered. Further, it is generally 
not practical to fit parameters for a potential surface such as the 
one studied here. Using the combined Q M / M M  approach, we 
anticipate that a variety of chemical processes, both in solution 
and in enzymes, will be investigated with ease. 
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4.7 Chemical equilibrium in a solvent

Application of the reversible work principle to isomerization

scheme 074

Potential energy function

scheme 075

V (Φ) = reversible work surface for nuclei when molecule is in vacuum. It is

the Born–Oppenheimer surface obtained by averaging over electronic fluctu-

taions, i.e. solving the Schrödinger equation.

In a solvent, the reversible work surface for Φ is V (Φ) + ∆W (Φ), where

∆W (Φ) = solvent contribution to free energy, i.e.
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∆W (Φ) + ∆W (Φ′) reversible work or free energy change

at constant N , V , T

for solvent to accomodate a change of solute

conformation from Φ′ to Φ.

Accordingly the distribution function for Φ is

P (Φ) ∝ e−βW (Φ) = e−βV (Φ)e−β∆W (Φ)

∝ P (Φ)gase
−β∆W (Φ)

with the gas phase distribution P (Φ)gas ∝ e−βV (Φ).

scheme 076

Thus, the equilibrium constant KX = Xg

Xt
is given by

Xg

Xt

= 2

∫
g+

dφP (Φ)gase
−β∆W (Φ)︸ ︷︷ ︸

integration over

gauch+ region

/

∫
t

dφP (Φ)gase
−β∆W (Φ)︸ ︷︷ ︸

integration over

trans region

assume P (Φ)gas is highly localized near the maximums

≈
(
Xg

Xt

)
gas

e−β[∆W (2/3π)−∆W (0)]︸ ︷︷ ︸
this factor is the solvent

shift of KX
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Another application – Cundall’s experiment (1895) dimerization of NO2.

scheme 077

The condition of chemical equilibrium (constancy of chemical potentials) in

this case is (since there are 2 NO2 groups)

2µNO2 = µN2O4

Therefore,

e−2βµNO2 =

(
Boltzmann weighted sum over all

fluctuations with 2 NO2 groups

)?

(
Boltzmann weighted sum over all

fluctuations with no NO2 groups

) =
Q(2NO2 + solvent)

Q(pure solvent)

? The overwelming majority of these fluctuations are those with the 2 NO2

groups far apart. This is why µ for 2 NO2’s is twice µ for one NO2.

and similarly

e−βµN2O4 =
Q(N2O4 + solvent)

Q(pure solvent)

The chemical potential for the two species is

βµNO2 = β∆µNO2 + ln ρNO2

βµN2O4 = β∆µN2O4 + ln ρN2O4

The ∆µ’s are independent of the concentrations of tagged molecules (NO2

and N2O4). Therefore,

2β∆µNO2 + ln ρ2
NO2

= β∆µN2O4 + ln ρN2O4
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or equivalently

K ≡ [ρN2O4 ]

[ρNO2 ]
= exp{−β[∆µN2O4 −∆µNO2 ]}

We see that K is a constant in the sense that it is independent of the con-

centrations of the tagged species.

This is the Law of Mass Action.

Now, what can we say about solvent effects?

scheme 078

Assume the chemical bond is very localized and that the NO2 groups do not

change significantly during association. The reversible work principle then

gives

K ≈ Kgas exp{−β[∆W (L)−∆W (∞)]}

To compute solvent effects, we need to compute ∆W ’s.
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4.8 Models for solvent contributions to re-

versible work surfaces

4.8.1 Packing effects, excluded volume

scheme 079

Volume excluded to solvent depends upon conformation of solute, and also

the size and shape of the solvent molecules.

Space filling models: cloud shell species cannot overlap without high energy

cost (due to Puli’s exclusion principle) – high energy compared to kBT . The

radius of closest approach is the van der Waals radius or 1/2 the van der

Waals diameter.

For a solvent of diameter σs = 3Å, the trans conformer picture above excludes

a volume of about 315Å
3
; and the gauche excludes a volume of roughly 302Å

3
.

The excluded volume of gauche is thus about

10Å
3
/molecule ≈ 0.06l/mol

smaller than that of trans when σs = 3Å.

To estimate the free energies associated with changes in excluded volume,

consider packing and fluctuations of hard spheres, the simplest model of

excluded volume effects – sufficient if excluded volume is most important,

and shape effects are not so significant.
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Let (HS: hard sphere),

σ diamter of solute

σs diameter of solvent

ρs 〈N〉/V = density of solvent

σ = σs = 0 no interactions

β∆µHS(σ, σs; ρsσ
3
s) = β[µHS(σ, σs; ρsσ

3
s)− µHS(no interactions)]

= excess chemical potential (over that of the ideal gas)

for a hard sphere solute of infinite solution

scheme 080

A region of the hard sphere solute-solvent mixture in an allowed configura-

tion. What would be an example for a forbidden configuration?

e−β∆µHS =

∑
j e−β(Ej+∆Ej)∑

j e−βEj

=
number of allowed configurations with solute inserted

number of allowed configurations without solute

with sums over all configurations of solvent, Ej energy of solvent in con-

figuration j with no solute presence, and ∆Ej is the energy of solvent in

configuration j due to presence of solute.

The last equation is true, because for hard spheres, Boltzmann factors are 1

or 0 only, and independent of temperature.
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1 → energy is 0 (no overlap)

0 → energy is ∞ (overlap)

Hey, this is an entropy calculation! There is actually no energy effect in the

hard sphere model!

The ratio givin e−β∆µHS has been studied numerically with computers which

perform explicitely the Boltzmann weighted sums over fluctuations. Th re-

sulting β∆µHS has been fit empirically to the following formula:

β∆µHS = (1− η)−3(s1η + s2η
2 + s3η

3) + s4 ln(1− η)

η = (π/6)ρsσ
3
s , si = si(σ, σs)

s1 = 3γ + 6γ2 − γ3

s2 = 3(−2γ − 3γ2 + 2γ3)

s3 = 3(γ + γ2 − γ3)

s4 = 3γ2 − 2γ3 − 1

γ = σ/σs

One way to use this information:

• sphere of diameter σ excludes volume π/6[σ + σs]
3

• estimate V (Φ) = volume excluded by solute in conformation Φ.

• let σ(Φ) be the diameter satisfying V (Φ) = π/6[σ + σs]
3

• use βµ(Φ) ≈ β∆µHS(σ(Φ), σs, ρsσ
3
s)

Applied to disubstitued ethane
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scheme 063

This procedure predicts (precise number depends upon system under inves-

tigation)

β∆µ(trans)− β∆µ(gauche) ≈ 0.5−−1

KX =
Xg

Xt

= KX,gas · e05to1

These results often agree well with experiment. But there is something else

going on too!

4.8.2 Electrostatic effects

Solvation of charge distributions Here, we think about the energetics

of charges coupled to a neutral fluid with charge density fluctuations – a

polarizable system, a dielectric.

scheme 081

The charge q exerts an electric field, ~ε, on the material that solvates it.

~m = dipole of the polarizable system.

The coupling of a dipole to an electric field gives an energy E = −~m · ~ε.

A polarizable system or a dielectric is a material for which an applied electric

field induces a change in polarization, i.e., a change in dipole moment.
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Drude model A simple harmonic model.

scheme 082

δm is the deviation of dipole from its average value in uperturbed system.

V0(m) ≈ 1

2
k(δm)2

V (m) ≈ 1

2
k(δm)2 − εδm− ε〈m〉0

The last term ε〈m〉0 is constant and we need not think about it further.

We see that the induced dipole in Drude model is

〈δm〉ε ≡ αε =
1

k
ε

This is the definition of polarizability α. The result for the Drude model we

get from the equilibrium condition for the perturbed system dV (m)/dδm =

0.
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Another way to look at it: Boltzmann averageof δm This is ther-

modynamic perturbation theory.

〈δm〉ε =

∫
d(δm)e−βV0(m)+βεδmδm∫

d(δm)e−βV0(m)+βεδm

series expansion of eβεδm

〈δm〉ε =

∫
d(δm)e−βV0(m)(1 + βεδm+ · · · )δm∫

d(δm)e−βV0(m)(1 + βεδm+ · · · )∫
d(δm)e−βV0(m)δm ∝ 〈δm〉0 = 〈m− 〈m〉〉0 = 0

〈δm〉ε = εβ〈(δm)2〉0 +O(ε2)

There, independent of the precise form of V0(m), we have

α = β〈(δm)2〉0

This is another fluctuation response formula. It says

〈(δm)2〉0 =

(
∂〈m〉
∂ε

)∣∣∣∣
ε=0

which is analogous to

〈(δN)2〉 =
∂〈N〉
∂βµ

Actually, in 3 dimensions, the answer is

α = β〈(δmz)
2〉0 = β

1

3
〈‖δm‖2〉0

where δmz is δm in direction of the field and we assume that without field

on, the system is isotropic (factor of 1/3).

For the harmonic Drude model, 〈(δm)2〉0 = 1
βk

, which you can easily check.

The average energy due to coupling between a charge and a polarizable sys-

tem is (−〈εqδm〉), where εq is the electric field which charge q exerts on

polarizable system.

−〈εqδm〉 = −εq〈δm〉εq = −βε2
q〈(δm)2〉0
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scheme 083

∆µ = energy change due to adding the charge q to the system

≈ −β〈(δm)2〉0ρ
∫ ∞
σ

4πq2r2dr

r4

This is −βε2
q〈(δm)2〉0 with εq = q2

r4 replaced and integrated over all space

outside charge with σ the size of charge. The result of integration is

∆µ = −4πβρ〈(δm)2〉0
q2

σ

• The energy to solvate a charge is favorable (see minus sign!).

• Solvation energy becomes more favorable as q goes up and σ goes down

(= high charge in small volume)

• 4πβρ〈(δm)2〉0 is a property of the solvent. This property of the solvent

is 1− 1/ε, where ε is the dielectric constant.

Dielectric constant ε The relation between electric displacement field ~D,

electric field ~ε and polarization density ~P

~ε = ~D − 4π ~P = ε~ε− 4π ~P

or

~P = polarization density or dipole per unit volume

= [(ε− 1)/4π]~ε
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In a dilute gas (uncorrelated molecules), just add up separately the induced

dipoles of each molecule per unit volume.

In that case

ε− 1 = 4π
〈N〉
V

α = 4πβρ〈(δm)2〉0
These observations suggest

∆µ ≈ −(ε− 1)
q2

σ
,

which is correct for solvation of a charge by a gas. For a dense fluid, however,

we must account for dipolar coupling between different regions; this leads to

the Debye–Langevin equation:

ε− 1

4πε
≈ βρ〈(δm)2〉0

Thus

∆µ ≈ −
(

1− 1

ε

)
q2

σ

Born’s charging formula for the solvation energy of a charge in a dielectric

fluid.

The general idea we have illustrated here is the idea of a reaction field.

scheme 084

The solvent responds or reacts to the imposed field thus creating a reaction

field that interacts back with solute.

Consider now a dipolar solute
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scheme 085

energy of ~m in the reaction field = −~m · [reaction field] ≈ −~m · [αρ~m]/σ3

Distance dependence of dipole field ∝ 1/r3.

The detailed reaction field calculation in this case yields

∆µ = −8(ε− 1)

2ε+ 1

m2

σ3

Debye’s formula for the solvation energy of a dipole in a dielectric fluid.

These formulas for solvation of charge distributions treat the solvent as a

dielectric continuum (neglecting molecular structure of solvent) which reacts

linearly to applied electric field. A nonlinear theory would have to use

〈δm〉ε = αε+
1

2
χε2 + · · ·

Another view of the Born solvation formula Consider two ions far

apart
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scheme 086

Reversible work surface is (Coulomb’s law in a dielectric)

w(r) =
q2

εr
+ constant

We can write this as a direct interaction term plus the solvation contribution

with dielectric screening

w(r) =
q2

r
− q2(1− 1

ε

1

r
+ w(∞) ((a))

Consider just the solvation part, as if direct interaction did not exist

∆µ(r) = solvation energy for two ions fixed in solution a distance r apart

= 2∆µq + [w(r)− w(∞)] ((b))

where ∆µq is the solvation energy of an independent ion.

Assuming linear response of solvent

∆µq = −q2f , f = factor independent of q ((c))

Further

∆µq ≈ ∆µ(σ) ((d))

Combine (a), (b), (c), and (d) to get

f ≈ (1− 1/ε)
1

σ

Test of Born theory What can be measured? Enthalpy changes, ∆H, can

be determined – relative to a standard or reference state – through caolorime-

try.
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Hess’ Law; enthalpy is a state function.

H2 + Cl2 −→ 2HCl ∆H0 = H(2HCl)︸ ︷︷ ︸
enthalpy

per mole

−H(H2)−H(Cl2)︸ ︷︷ ︸
= 0standard states

of the elements

HCl
H2O−→ H+ + Cl− (aq.); ∆H1 = H(H+; aq) +H(Cl−; aq)−H(HCl)

∆H0

2
+ ∆H1 = enthalpy per mole of Cl− relative to enthalpy of H+

Partial molar enthalpies are related to µ’s

G = H − TS ⇒ µi = hi − Tsi
hi, si : partial molar enthalpy, entropy for species i(
∂µi
∂T

)
p,N ′s

= −si

Thus,

∂(µi/T )

∂T
= − 1

T 2
µi +

1

T
si = − hi

T 2

hi = T 2∂(µi/T )

∂T

According to Born

∂(µBorn/T )

∂T
=

∂

∂T

[
− 1

T

e2

σ
(1− 1/ε)

]
∆H(Cl−) = − e2

σCl−

[
1− 1

ε
− T

ε2
∂ε

∂T

]

Estimate ionic radii from colvalent radii of cations and bond length of the

salts
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scheme 087

Enthalpies of hydration for ions relative to that ofH+, choosing ∆H(H+; aq) =

−260 kcal/mol. (Alexander A. Rashin and Barry Honig, J. Phys. Chem 89,

5588 (1985))
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scheme 088

Look at the size of those enthalpies. Do you remember that the NaCl bond

strength was about 80 kcal/mol. No wonder NaCl disolves in water.
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4 - H  

I I I I I 

q x  0.5 

Figure 2. Correlation between the dissociation energies of the 0,-H and 
O,*-H groups and the charges located on the ion bonded to the O3 
oxygen calculated for clusters 03A13006(0H),oH2X (where X stands for 
H, Li, Na, and K atoms). 

acidity of the skeletal 01-H groups decreases in the order H > 
Li > Na > K. 

These results thus indicate that the acidity of the skeletal 
hydroxyl groups is determined by the actual charge localized on 
the zeolite skeleton, in addition to a number of other factors (Si:AI 
ratio, structural characteristics, etc.); thus, this acidity depends 
on the amount of electron density transferred from the skeleton 
to the ions compensating its negative charge. It follows from the 
calculation that this transfer is smaller for the cations than for 
H ions forming the hydroxyl groups (in fact, ab initio calculations 
predict very small transfer of electron density to the cation6). 
Together with the fact that the acidity of the skeletal hydroxyl 
groups decreases with increasingly negative charge on the zeolite 
skeleton, this fact leads to the following general conclusions: (i) 
the acidity of the skeletal hydroxyl groups of the purely H form 
of the zeolite is always higher that that of these O H  groups in 

the indentical (structurally and with the same Si:Al ratio) zeolites 
containing both the OH groups and cations compensating the 
negative skeletal charge; (ii) for various types of cations localized 
to the same degree (the same degree of decationization) in the 
same zeolite, the acidity of the skeletal OH groups decreases with 
decreasing electronegativity of the cation. 

The same conclusions may be drawn by using Sanderson's 
model of e l e c t r ~ n e g a t i v i t y . ~ ~ - ~ ~  If the acidity of OH groups is 
characterized by the charge located on their H atoms (acidity 
increases with increasing charge), then for zeolites with the overall 
formula HJ1-,$i9hA1960384 (where X is a monovalent cation and 
0 < n < 96) the average partial charge on the H atoms is given27 
as 

(S04S,1SsiSHxSx1-")1/7 - SH 

2 .08SH I2 
qH = 

where S is the atomic electronegativity of individual atoms and 
x = n/96 is the degree of decationization. As for the cations 
studied the electronegativities decrease2' in the following order: 
SH (3.55) > SL1 (0.74) > SNa (0.70) > SK (0.56), it is apparent 
that this approach results in the same conclusions as mentioned 
above. 

Finally, it should be noted that the terminal OH groups of the 
clusters with individual cations exhibit similar behavior as the 
skeletal O H  groups. For the ions studied, the acidity of these 
terminal O H  groups increases in the order K < N a  < Li < H, 
as indicated by the charges calculated on their H atoms (which 
increase), as well as by the values of the 0-H bond orders (which 
decrease). 

(27) Sanderson, R. T. "Chemical Bonds and Bond Energy", 2nd ed.; Ac- 

(28) Jacobs, P. A.; Mortier, W. J.; Uytterhoeven, J. B. J .  Znorg. Nucl. 

(29) Jacobs, P. A,; Mortier, W. J. Zeolites 1984, 2, 227. 
(30) Mortier, W. J. J .  Catal. 1978, 55, 138. 
(31) HoEevar, S.;  Driaj, B. J .  Mol. Catal. 1982, 73,  205. 

ademic Press: New York, 1976. 

Chem. 1978, 40, 1919. 

Reevaluation of the Born Model of Ion Hydration 

Alexander A. Rashin+ and Barry Honig* 
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In this paper we demonstrate that the Born theory provides an accurate means of calculating the solvation energies of ions 
in water. The well-known equation AG,' = - (q2/2r) ( l  - 1/D) is rederived in a somewhat modified form (r  is a radius and 
D is the dielectric constant), and it is found that the value of r most consistent with the model is the radius of the cavity 
formed by the ion in a particular solvent. The failures of the Born theory are attributed to the use of ionic radii rather than 
cavity radii. The ionic radii of anions are shown to be a reasonable measure of the cavity size, but for cations we argue, 
based on electron density profiles in ionic crystals, that covalent radii rather than ionic radii must be used. When these measures 
of cavity size are introduced into the Born equation, experimental solvation energies are fairly well reproduced. Moreover, 
the addition of a single correction factor into the model, an increase of 7% in all radii, leads to excellent agreement with 
experiment for over 30 ions ranging in charge from 1- to 4+. This need for corrected radii may be due in part to an increase 
in cavity size resulting from packing defects and to our neglect of dielectric saturation effects. However, it appears that 
dielectric saturation is not a dominant factor since the model works quite well for polyvalent ions where saturation effects 
should be strongest. Applications of the Born method to the transfer of ions between different solvents are discussed, and 
the relation of our results to detailed simulations of ion-solvent interactions is considered. 

Introduction 
The Born theory,' proposed Over 60 years ago, has provided 

a useful and intuitively simple method of estimating the solvation 
energy of ions, Interactions between the ion and solvent are 

'Present address: Department of Physiology and Biophysics, Mount Sinai 
School of Medicine, One Gustave L. Levy Place, New York, NY 10029. 

assumed to be electrostatic in origin with the ion viewed as a 
charged sphere of radius r and the solvent as a dielectric continuum 
Of dielectric constant D. The electrostatic work associated with 
charging the ion immersed in the dielectric continuum is then given 
by 

(1 )  Born, M. Z. Phys. 1920, I ,  45. 
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W = q 2 / 2 D r  (1) 

where q is the net charge of the ion. The free energy of trans- 
ferring the ion from vacuum to a medium of dielectric constant 
D is just the difference in the charging energies, i.e. 

AGso = -;( 1 - i) 
It has been traditional to use ionic radii derived from crystal 
structures to evaluate eq 2 (Le., to set r = rlonlc), and under this 
assumption qualitatively reasonable results can be obtained.2 For 
example, as predicted by eq 2 ,  the solvation energies of halide 
anions and alkali cations are inversely related to the ionic radius. 
However, Latimer et aL3 found that it is necessary to add 0.1 8, 
to the ionic radii of anions and 0.85 8, to the ionic radii of cations 
to make the Born equation fit experimental data on a series of 
alkali halide salts. They provided a qualitative justification for 
these corrections in terms of the distance from the center of the 
ion to the center of the nearest water dipole. While this "adjusting" 
of parameters may be viewed as evidence for the failure of the 
theory, it is rather remarkable that such a crude electrostatic model 
works at  all and yields rather good agreement with experiment. 
Furthermore, the correction required for halide ions is small 
enough to suggest that the theory has the potential to yield rea- 
sonably accurate results. 

With this possibility in mind, we have in this paper reevaluated 
the assumptions implicit in the Born model. We find (in agree- 
ment with standard practice) that the use of ionic radii for anions 
is consistent with the model but that it is inappropriate to use the 
ionic radii of cations in eq 2 .  Rather, we demonstrate that covalent 
radii provide a logically consistent choice of r for cations. Since 
the covalent radii of cations are on the order of 0.6-0.8 8, larger 
than the corresponding ionic radii, our results provide a 
straightforward quantitative explanation for the correction applied 
to cations by Latimer et aL3 Moreover, we demonstrate that the 
Born theory in its simplest form provides an accurate means of 
estimating solvation energies in water. 

Detailed descriptions of various attempts to improve the Born 
model appear in a number of excellent reviews (see e.g. ref 2 and 
4-7). In the following we briefly discuss the physical basis of 
the various corrections that have been introduced. As pointed 
out by Born,l the free energy, AGso, of bringing a charged sphere 
from vacuum to a dielectric continuum is equal to the sum of the 
free energies of the following three processes: (1) stripping the 
sphere of its charge in vacuum, AGIO; ( 2 )  transferring the un- 
charged sphere from vacuum into the solvent, AG20; and (3) 
recharging the sphere in the solvent, AG30. In the original Born 
theory, AG2' was assumed to be zero, and thus, only the charging 
and discharging terms contribute to the solvation energy. These 
lead directly to eq 2 .  

Equation 2 has only one parameter, the radius r,  which is 
generally set equal to the ionic radius. As pointed out above, the 
use of ionic radii leads to an overestimate of experimental solvation 
energy of anions, and in particular, the calculated solvation energy 
of cations can be almost 100 kcal/mol greater than the experi- 
mental values.* If the Born model is to be retained, there are, 
in principle, three ways to reduce the calculated solvation energies: 
(1) Increase the effective radius used in eq 2 .  ( 2 )  Decrease the 
effective dielectric constant of water. (3) Add a correction term 

(2) Bockris, J. O'M.; Reddy, A. K. N. ''Modern Electrochemistry"; Plenum 
Press: New York, 1977; Vol. 1. 

(3) Latimer, W. M.; Pitzer, K. S.; Slansky, C. M. J .  Chem. Phys. 1939, 
7, 108. 

(4) Conway, B. E.; Bockris, J. O'M. In "Modern Aspects of 
Electrochemistry"; Tompkins, F. C., Ed.; Academic Press: New York, 1954; 
VOl. 1, p 47. 

(5) Rosseinsky, D. R. Chem. Rev. 1965, 65, 467. 
(6) Conway, B. E. "Ionic Hydration in Chemistry and Biophysics"; El- 

sevier: Amsterdam, 198 l .  
(7) Desnoyers, J. E.; Jolicoeur, C. In "Comprehensive Treatise of 

Electrochemistry"; Conway, E. B., Bockris, J. OM. ,  Yeager, E., Eds.; Plenum 
Press: New York; 1983; Vol. 5. 

to account for AGzo, the energy of transferring the neutral sphere 
from vacuum to water. 

Latimer et ale3 were able to fit experimental solvation energies 
to the Born equation by increasing the effective radius of the ions. 
Stokes6 suggested the use of van der Waals radii for calculating 
the charging energy in vacuum while retaining ionic radii for the 
ions in water. Since it is the vacuum term that makes the largest 
contribution to the solvation energy (due to the 1 / D  term in eq 
2 ) ,  the use of van der Waals radii which are larger than ionic radii, 
particularly for cations, produced improved agreement with ex- 
periment. While Stokes was the first to question the use of ionic 
radii in the Born expression, we will demonstrate below that the 
same radius should be used in vacuum and in water and that van 
der Waals radii are not the optimal choice. 

Most attempts to improve the Born model have been based on 
a reduction of the effective dielectric constant of the s ~ l v e n t . ~ - ' ~  
The justification for this procedure, suggested by Noyes: is that 
dielectric saturation occurs in the vicinity of the solvated ion, and 
thus, the effective dielectric constant in this region is less than 
80. However, we will demonstrate that the Born model produces 
satisfactory agreement with experiment even if the effects of 
dielectric saturation are ignored. In fact, our results suggest that 
the effects of dielectric saturation are relatively small, even for 
multivalent ions. 

The third approach that has been used to refine the Born model 
is to explicitly account for AG20, the energy of transferring the 
discharged ion from vacuum to ~ a t e r . ~ ~ ~ - ' ~ * ' ~  While this term is 
likely to make some contribution, the magnitude of the effect is 
 mall,^.^ and it cannot by itself account for the large discrepancies 
between predicted and experimental solvation energies. 

It should be pointed out that there has been considerable 
progress in the explicit simulation of ion-water interactions.14-" 
However, there still remain significant discrepancies between 
theoretical and experimental solvation energies, due in part to the 
various approximations (e.g., cutoffs, periodic boundary conditions, 
potential functions) that are used in the simulations. Thus, 
continuum models retain their value both as a simple means of 
calculating solvation energies and as a source of insight into the 
results of detailed simulations. 

A Revised Born Model 
Rederivation of the Born Equation. In this section we re- 

consider the Born cycle by breaking up the discharging and 
charging processes into a number of discrete steps. This will allow 
us to arrive at an unambiguous definition of the radius to be used 
in eq 2 .  We will carrq through the derivation for the case of a 
cation; the derivation for anions is completely analogous. It should 
first be pointed out that since discharging a cation involves adding 
an electron to the ion, the total electrostatic energy actually 
involves a nuclear-electronic attraction term in addition to the 
positive self-energy of the electronic shell itself. However, the 
spherical symmetry of the ion makes it possible to describe the 
situation in terms of discharging a shell of positive charge so that 
the nuclear attraction term need not be treated explicitly. 

The classical expression for the electrostatic work involved in 
discharging a cation in vacuum1 is just 

AGIO = - q 2 / 2 R , ,  (3) 

where R,, is the orbital radius of the neutral atom. (Note that 

(8) Stokes, R. H. J .  Am. Chem. SOC. 1964, 86, 979. 
(9) Noyes, R. M. J .  Am.  Chem. SOC. 1962, 84, 513. 
(10) Millen, W. A.; Watts, D. W. J .  Am. Chem. SOC. 1967, 89, 6051. 
(11) Padova, J. J .  Chem. Phys. 1972, 56, 1606. 
(12) Beveridge, D. L.; Schnuelle, G. W. J .  Phys. Chem. 1975, 79, 2562. 
(13) Abraham, M. H.; Liszy, J. J .  Chem. SOC., Faraday Trans. I ,  1978, 

(14) Mezei, M.; Beveridge, D. L. J .  Chem. Phys. 1981, 74, 6902. 
(15) Szasz, I.; Heinzinger, K. Z .  Naturforsch. A :  Phys., Phys. Chem., 

(16) Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. J .  Am. Chem. 

(17) Clementi, E.; Barsotti, R. Chem. Phys. Left .  1980, 59, 21. 

74,  1604. 

Kosmophys. 1982, 38A, 214. 

SOC. 1984, 106, 910. 
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it is the orbital radius rather than the ionic radius that enters into 
the expression because the electron is added to this orbit during 
this discharging process.) 

Transferring the neutral atom into the solvent produces a cavity 
of radius R,, (ac denotes atomic cavity). R,, will in general be 
larger than Raw The energy of recharging the cation in the solvent, 
AG,', may be divided into three separate contributions: (a) AG3,', 
the energy of dispersing the electron from R,, to R,, in vacuum; 
(b) i\G3bo, the energy of dispersing the electron from R,, to infinity 
in water; (c) AG3,', the work associated with the shrinking of the 
cavity around the ion to the ionic cavity radius, R,, (R lc  < Rat). 
Thus 
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AG3,0 is just the difference in the electrostatic energy of a spherical 
shell of charge between R,, and Ri,  when filled with vacuum or 
with the dielectric medium. This can easily be shown to be 

AG3,' = q2/2R, ,  - q2/2Ri ,  -+ q2/2DRi,  - q2/2DRaC ( 5 )  

Thus 

AG3' = q 2 / 2 R , ,  - q2/2Ric + q2/2DRic 

and 

AGIO + AG3' = ( q 2 / 2 R i , ) ( l / D -  1) ( 7 )  

Equation 7 is just the Born expression with the ionic cavity 
radius appearing explicitly in the denominator. It should be 
pointed out that due to a cancellation of terms only the cavity 
radius in the solvent appears in thefinal expression (eq 8). Note 
that this radius would in general be expected to change in different 
solvents. 

The Ionic Cavity Radius. Equation 7 states that the appropriate 
radius to be used in the Born expression is the radius of the cavity 
formed by an ion in a particular solvent. This is also quite rea- 
sonable on intuitive grounds since it is a t  this distance from the 
ion that the dielectric constant becomes different than that of 
vacuum and the medium actually begins. We are left then with 
the problem of arriving at  appropriate values of the cavity radius 
for both cations and anions. 

It seems plausible to define the ionic cavity as a sphere which 
contains a negligible electron density contribution from the sur- 
rounding solvent. Analysis of electron density distributions in ionic 
crystals1* (see e.g. Figure 1) reveals that the electron density due 
to positive ions begins to become significant at a distance of about 
the ionic radius from the center of the anion. It thus provides 
a reasonable measure of the cavity radius formed by an anion. 
The situation is quite different for cations. The ionic radius of 
the cation does not extend out to the high electron density region 
of the bound anion. In fact, due to quantum  effect^,'^^^^ the 
electron cloud of the anion is unable to significantly penetrate the 
empty valence orbital of the cation. As a result, the electron 
density of the anion begins to become significant a t  a distance 
from the nucleus of the cation corresponding approximately to 
the orbital radius of its valence electron. This radius provides a 
far more accurate measure of the cavity size formed by a cation 
than does the ionic radius. Since orbital radii correspond closely 
to covalent radii, which are experimentally determined quantities, 
we propose the use of covalent radii as a reasonable and convenient 
estimate of the radius to be used in the Born equation as applied 
to solvated cations. As discussed above, the ionic radius constitutes 
a good estimate for the cavity radius formed by solvated anions. 

Analysis of electron density maps demonstrates that the covalent 
radii of cations and the ionic radii of anions are closely related 
and provide a useful first approximation of the cavity radius 

(18) Gourary, B. S.; Adrian, F. J. Solid State Phys. 1960, 10, 127. 
(19) Slater, J. C. J .  Chem. Phys. 1964, 41, 3199. 
(20) Vainshtein, B. K.; Fridkin, V.  M.; Indenbom, V. L. "Modern 

Crystallography"; Vainshtein, B. K., Ed.: Nauka: Moscow, 1979; Vol. 2. 
(21) "Lang's Handbook of Chemistry", 11th ed.; Dean, J .  A,, Ed.; 

McGraw-Hill: New York, 1973. 
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Figure 1. Electron density distribution in LiF crystal along the line 
connecting the centers of the fluoride ion (point A) and lithium ion (point 
E).I8 Segments AD and DE correspond to ionic radii of F and Li. C D  
= 0.32 A,'* BD = 2CD, A E  = 1.96 A, and DE = 0.6 

TABLE I: Internuclear Distances in Alkali Fluorides, the Radii of 
Cavities Formed by Alkali Ions, and Their Covalent Radii 

Li+ Na+ K+ Rb+ Cs+ 
internuclear distance2' 1.96 2.31 2.69 2.84 3.05 
cavity radii" 1.24 1.59 1.97 2.12 2.33 
covalent radii2' 1.23 1.57 2.03 2.16 2.35 

'Calculated by setting the hard-core radius of F equal to 0.72 8, 
(see text). 

formed by the respective ions in salt crystals. Figure 1 plots the 
electron density distribution in LiFI8 which is clearly quite sym- 
metric about the minimum, defined by point C. The ionic radius 
of F corresponds to the segment AD. The electron density due 
to Li' begins to rise steeply at point D, which as discussed above 
is the justification for using ionic radii to define the cavities formed 
by anions. In order to obtain an internally consistent definition 
of the cavity formed by cations, we use the electron density a t  
point D, which corresponds to the ionic radius of F, to define the 
electron density at the boundary of any ionic cavity. Point B has 
the same electron density as point D, and thus, the segment EB 
defines the cavity formed by the Li' ion. This is found to be 1.24 
A which is close to the covalent radius of Li of 1.23 A. The 
segment AB, equal to 0.72 A, may be viewed as defining a "hard 
core" of the F ion beyond which the cavity formed by the cation 
begins. If we use this value in all alkali fluoride salts, it is possible 
to obtain a consistent measure of the cationic cavity radii by 
subtracting 0.72 A from the internuclear distance. 

In Table I, the cavity radii obtained in this way are compared 
to covalent radii. The remarkable correspondence between the 
two values strongly supports our suggestion that covalent radii 
be used to define the cavity radius of cations. Moreover, it 
demonstrates that the ionic radii of anions and the covalent radii 
of cations measure the same property, i.e., the distance from the 
nucleus at which the electron density of the surrounding medium 
begins to become significant. This then provides the underlying 
justification for the use of these values in the Born equation. 

It should be pointed out that previous attempts have been made 
to use electron density maps as a basis for defining ionic radii. 
In particular, Gourary and Adrian'* equated ionic radii to the 
distance between the point of minimum electron density (point 
C in Figure 1) and the center of either ion. The radii so defined 
removed the asymmetry in the solvation energies of positive and 
negative ions but did not produce accurate agreement with ex- 
perimental values.22 In contrast to the radii of Gourary and 
Adrian,18 the sum of the radii used in this work is not equal to 
the internuclear distance. This is reasonable since we are in- 
terested in obtaining cavity radii and both the anion and cation 

(22) Blandamer, M. J.; Symons, M. C. R. J .  Phys. Chem. 1963,67, 1304. 
(23) Gold, E. S. "Inorganic Reactions and Structure": Holt, Reinhart and 

Winston: New York, 1960. 
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TABLE 11: Experimental and Theoretical Values of the Heats of 
Solvation of Salts (in kcal/mol)' 

salt AHcxptl AHalfd % error AHEald(cor) % error 
Li F 

- 

-245.2 
CI 
Br 
I 
N a F  
CI 
Br 
I 
K F  
CI 
Br 
I 
RbF 
CI 
Br 
I 
CsF 
CI 
Br 
I 

-211.2 
-204.7 
-194.9 
-217.8 
-183.8 
-177.3 
-197.5 
-197.8 
-163.8 
-157.3 
-147.5 
-192.7 
-158.7 
-152.2 
-142.4 
-186.9 
-152.9 
-146.4 
-136.6 

~~ ~ ~ 

-261 .O 
-227.7 
-221.1 
-21 1.7 
-23 1.6 
-198.3 
-191.7 
-182.3 
-207.5 
-174.2 
-167.6 
-158.2 
-202.6 
-169.3 
-162.7 
-153.3 
-196.4 
-163.1 
-156.5 
-147.1 

6.4 
7.8 
8.0 
8.6 
6.3 
7.9 
8.1 
8.8 
4.9 
6.4 
6.5 
7.2 
5.1 
6.7 
6.9 
7.6 
5.1 
6.7 
6.9 
7.7 

-243.9 
-212.8 
-206.6 
-197.9 
-216.4 
-185.4 
-179.2 
-170.4 
-194.0 
-162.9 
-156.7 
-147.9 
-189.3 
-158.3 
-152.4 
-143.3 
-183.5 
-152.4 
-146.2 
-137.5 

0.5 
-0.8 
-0.9 
-1.5 

0.6 
-0.9 
-1.1 
-1.7 

1.9 
0.5 
0.4 

-0.3 
1.8 
0.2 

-0.1 
-0.6 

1.8 
0.3 
0.1 

-0.7 

'The experimental values are from ref 2. The enthalpies of the salts 
are sums of the solvation enthalpies of the individual ions calculated 
according to eq 8 with radii taken from ref 21 and 23 (for halogens). 

share a common low electron density region (segment B-D) as 
part of their cavities. Thus, cavity radii will always sum to values 
larger than the internuclear distance. 

Results and Discussion 
Solvation Enthalpies of Ions in Water. Since the free energies 

of solvation of individual ions cannot be measured directly, eq 2 
cannot be tested for individual ions. However, the enthalpies of 
solvation of various salts are known and can be compared to 
theoretical values obtained from the Born expression for the en- 
thalpy2 

where T(aD/aT) /D  = -1.357 for water a t  298 K.' Table I1 
compares calculated and experimental values of the enthalpies 
of solvation of alkali halide salts. As can be seen by comparing 
columns two and three, the agreement between theory and ex- 
periment, even with uncorrected radii, is quite good. This level 
of accuracy has not been obtained previously from the uncorrected 
Born expression. It appears then that the Born expression works 
quite well, even if dielectric saturation is ignored. 

As can be seen from Table 11, the calculated results are con- 
sistently larger than the experimental ones by about 10-15 
kcal/mol. This error might be attributed to the inherent limi- 
tations of the theory, but the fact that it is so systematic suggests 
that it is due to an identifiable factor. One possibility, the neglect 
of dielectric saturation, will be discussed below. However, perhaps 
the most straightforward explanation is that anionic radii and 
covalent radii for cations underestimate the cavity size. Indeed, 
as is evident from Figure 1 ,  the electron density of the atoms 
surrounding the central ion continues to increase at distances from 
the nucleus that are greater than these radii. Moreover, the 
problem of packing bound solvent molecules would be expected 
to expand the cavity somewhat. Thus, it seems quite reasonable 
to expect that the cavity radii that best fit the Born model be 
somewhat larger than those defined above. In order to obtain an 
optimal fit to the experimental results of Table 11, we have defined 
corrected Born radii by increasing each ionic and covalent radius 
by 7%. The corrected enthalpies of solvation obtained from these 
radii deviate from the experimental values by a maximum of only 
4 kcal/mol. 

In order to test the reliability of our modified Born model, it 
is necessary to compare calculated and experimental solvation 
energies for ions not included in our original sample (Table 11). 
Since experimental values for isolated ions cannot be determined 
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Figure 2. Comparison of experimental (dots) and predicted (solid line) 
enthalpies of ion hydration. The enthalpies are given per unit charge. 

directly, we base our comparison on the relative heats of solvation, 
AH,,, (relative to H+ ions). 

These are defined by2 

Affrel(x-) = AHabs(X-) + Mabs(H+) ( 9 )  

= - (10)  
where X- and M+ denote respectively anions and cations and AHah 
denotes absolute heats of hydration. 

The fourth column in Table I11 contains experimentally de- 
termined relative heats of hydration for 3 l ions. By calculating 
the absolute heat of solvation for each ion from the Born ex- 
pression, we can obtain from eq 9 and 10 a value of AHab,(H+) 
which is appropriate for each ion. Since the heat of solvation of 
a proton must be a constant, the variation in the calculated values 
for AHab,(H+) is a test of the internal consistency of the model. 
We find for alkali and halide ions that AHab(H+) varies between 
-260.00 and -264.3 kcal/mol with a mean value of -262.18 
kcal/mol. Thus, to within 1%, AHab,(H+) is constant. 

As another test of the model we use the value of -262.18 
kcal/mol for the solvation energy of a proton and the experi- 
mentally determined values for relative solvation energies to obtain 
a series of solvation enthalpies of the individual ions. These are 
listed in Table I11 and plotted as a function of the corrected radius 
in Figure 2. There appears to be excellent agreement between 
the experimental values and the straight line derived from eq 8.  
Thus by introducing only one adjustable parameter into the Born 
model, we have successfully reproduced experimental results for 
31 ions. Previous attempts to improve the theory have involved 
the use of more parameters and have not in general considered 
as large a number of ions.24 

Some of the ions for which the relative heats of hydration are 

(24) Since the "covalent radius" of ammonium is not a well-defined 
quantity, we have obtained a measure of the cavity radius from the following 
procedure. The Na+-oxygen internuclear separation in water is approximately 
2.35 A.5 Since the Na+ cavity radius is 1.68 A, the "hard-core" radius of the 
oxygen is approximately 0.67 A. Since a typical NH++.-O hydrogen bond has 
a length of 2.8 A, the cavity size of ammonium is 2.13 A as listed in Table 
IV. 
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TABLE I11 Cavity Radii and Hydration Enthalpies 
ion corrected radius,’ %, AHcalcdrb kcal/mol kcal/mol AHabs,C kcal/mol % errorf AH,,(H+),d kcal/mol 

Li+ 1.316 -126.7 136.34 -125.8 -0.7 -263.0 
Na+ 
K+ 
Rb+ 
c s +  
F 
CI- 
Br- 
I- 
c u +  
Ag+ 
c u z +  

Mg2+ 
CaZ+ 
Sr2+ 
Ba2+ 
Zn2+ 
Cd2+ 
Hgz+ 

SC’+ 
Y’+ 
La3+ 
Ce4+ 
Ce3+ 
Ga” 

NH4+g 
OH- 
S2- 
SH- 

 AI^+ 

1n3+ 

1.680 
2.172 
2.3 11 
2.514 
1.423 
1.937 
2.087 
2.343 

1.252 
1.434 
1.252 

1.455 
1.862 
2.054 
2.119 
1.338 
1.509 
1.541 

1.338 
1.541 
1.733 
1.808 
1.761 
1.761 
1.338 
1.605 

2. I30 
1.498 
1.969 
1.969 

-99.3 
-76.8 
-72.2 
-66.3 

-1 17.2 
-86.1 
-79.9 
-71.2 

-133.2 
-1 16.3 
-532.8 
-458.4 
-358.3 
-324.7 
-314.8 
-498.7 
-442.1 
-432.9 

-1 122.7 
-974.1 
-865.8 
-830.0 

-1 515.0 
-852.2 

-1122.1 
-935.1 

-77.9 
-111.3 
-338.8 

-84.7 

163.68 
183.74 
188.8 
194.6 

-381.5 
-347.5 
-341.0 
-331.2 

118.7 
147.1 

19.9 

62.0 
140.8 
176.1 
210.1 

32.8 
89.8 
85.0 

-331.6 . 
-153.3 

-82.1 
-2.5 

-508.0 
-67.0 

-337.6 
-199.9 

185.0 
-37 1 .o 
-849.4 
-341 .O 

-98.5 
-78.4 
-73.4 
-67.6 

-1 19.3 
-85.3 
-78.8 
-69.0 

-143.5 
-115.1 
-504.5 

-462.4 
-383.6 
-348.3 
-3 14.3 
-49 1.6 
-434.6 
-439.4 

-1118.1 
-939.8 
-868.6 
-789.0 

-1556.7 
-853.5 

-1124.1 
-986.4 

-77.2 
-108.8 
-325.0 

-78.8 

-0.8 
2.1 
1.7 
1.9 
1.8 

-0.9 
-1.4 
-3.1 

7.2 
-1.1 
-5.6 

0.9 
6.6 
6.8 

-0.2 
-1.5 
-1.7 

1.5 

-0.4 
-3.6 

0.3 
-5.2 

2.7 
0.2 
0.2 
5.2 

-1 .o 
-2.3 
-4.2 
-7.5 

-263.0 
-260.5 
-261 .O 
-260.9 
-264.3 
-261.4 
-261.1 
-260.0 

“The radii are taken from ref 21 and 23 (for halogens) increased by 7% (see text). bThe enthalpies of solvation are calculated from eq 8 with the 
radii from column two. CThe relative enthalpies of solvation are from ref 5, except for the first nine which are from ref 2. dThe absolute heats of 
solvation of hydrogen ion are calculated from eq 9 and 10. CThe absolute enthalpies of solvation are calculated from eq 9 and I O  and the calculated 
mean value of the absolute heat of solvation of the hydrogen ion, AHab(H+), of 262.18 kcal/mol (see text). /The errors are in calculated values from 
column three compared to the AH,,, in the fifth column. gSee ref 24. 

available5 are not listed in Table 11. These include TI+, TI”, Pb2+, 
Co2+, Ni2+, Mn2+, Cr2+, Cr3+, Fe2+, and Fe3+. For these ions the 
differences between the calculated and experimental enthalpies 
exceed 10%. However, these ions form coordination complexes 
with water (ref 6, p 335) and, therefore, it would not be expected 
that the cavity size for these ions follows the same rules that hold 
for other ions. Finally, we have also excluded Be2+ from the table. 
For Be2+, the difference between the experimental and calculated 
value is 17%, a discrepancy which may be due to large saturation 
effects resulting from the fact that Be2+ is a particularly small 
ion. 

The success of a continuum dielectric model in reproducing 
experimental results even for multivalent ions demonstrates that 
corrections due to the effects of dielectric saturation are not large 
in the calculation of solvation enthalpies (a point first made by 
Latimer et aL3). This may not be the case in the calculation of 
other thermodynamic q~ant i t ies .~ ,~  Although conflicting estimates 
of saturation effects have been reported in the literature, 6 ~ 1 0 ~ 1 3 3 2 5  

it is interesting to note that the saturation effects obtained by 
Millen and Watts’O are on the order of the 7% correction factor 
in the cavity radius that we have introduced. 

Solvation in Nonaqueous Media. It is of interest to consider 
how the Born model might be applied to solvents other than water. 
This question is of particular importance for biological systems 
where problems concerning the free energies of transfer of ions 
from water to proteins and membranes arise in a variety of 
 context^.^^.^' 

The Born equation as developed above can in principle be used 
to calculate the energies of transfer of ions from vacuum to any 

(25) Schellman, J. A. J .  Chem. Phys. 1957, 26, 1225. 
(26) Parsegian, A. Nalure (London) 1969, 221, 884. 
(27) Honig, B. H.; Hubbell, W. Proc. Null. Acad. Sci. U.S..4. 1984, 81, 
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solvent. However, since the cavity size produced by a particular 
ion will vary in different solvents, a general expression for transfer 
energies must take this into account. We obtain an expression 
for the free energy of transfer of an ion between two solvents by 
considering the process in which the ion is first transferred from 
one solvent to vacuum and then from vacuum into the second 
solvent. The energies associated with each of these processes are 
given by eq 7, but different cavity radii must be used. Thus 

where R,, and R,, are the two cavity radii. When R,, is equal 
to R,,, the standard Born expression is recovered. 

The correction to the standard expression can in principle be 
quite large. Consider for example the transfer of a C1- ion from 
water to hexane (Dl = 80, D2 = 2). If we use the corrected radius 
of 1.937 A (Table 111) for the C1- ion in water and assume that 
the cavity radius in hexane is equal to the van der Waals radius 
of the C1- ion (Rc2 = 2.252 A), the total transfer energy is cal- 
culated to be 47.8 kcal/mol or 6 kcal/mol larger than if R,, = 
R,, = 1.937 A. While it is not clear that the value we have 
assumed for the cavity radius in hexane is the correct one, the 
magnitude of the effect emphasizes the need to account for 
variations in cavity radii in estimating transfer free energies. 

It should be pointed out that the cavity radii we have used 
should constitute a good first approximation for any hydrogen- 
bonding solvents. This implies that the correction term will be 
small in going, say, from water to ethanol. Since the 1 /D terms 
are small in both solvents, the free energies of transfer should also 
be small, as is observed e~perimenta1ly.l~ Similarly, the Born 
expression using the corrected radii of Table I11 should be ap- 
propriate for many applications to proteins where ions and ion- 
izable groups appear to always be hydrogen bonded.28 
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Relation to Simulations. The success of the Born model in 
reproducing the observed solvation energies suggests that it may 
be capable of providing useful insights regarding molecular dy- 
namics and Monte Carlo simulations of ions in water. One striking 
prediction of the Born model is that the transfer energy of an ion 
to a particular solvent is essentially independent of the dielectric 
constant, once the dielectric constant is high, say above 30. This 
follows from the 1 - 1 / D  dependence of the transfer energy. For 
example, the Born model predicts about a 3 kcal/mol difference 
in transfer energies between water and methanol for a univalent 
ion, a value which is in good agreement with experimental results.13 
It would appear then that any model for water which produces 
a high bulk dielectric constant should be successful in reproducing 
solvation energies, even if the calculated dielectric constant is 
incorrect. 

On the other hand, the Born energy is highly sensitive to the 
choice of the cavity radius. When translated into the parameters 

(28) Rashin, A. A,; Honig, B. J .  Mol. Biol. 1984, 173, 515. 

used in detailed simulations, this implies that it is necessary to 
have accurate potential functions which successfully reproduce 
short-range interactions and can account, for example, for binding 
energies in the gas phase.29 Finally, since the Born theory predicts 
that ion-solvent interactions at  fairly long distances are still 
substantial (Le., 10 kcal/mol for interactions above 10 A), it would 
appear necessary to determine whether the use of periodic 
boundary conditions is capable of accounting for this contribution 
to the total solvation energy. In any case, the apparent success 
of the Born model in treating the solvation energies of ions suggests 
that the continuum model will continue to be useful in a variety 
of applications. 
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Laser Multiphoton Dissociation of Alkyl Cations: 1. Fragmentation Mechanism of 
Homologous Alkyl Cations Produced from Their Iodides 

H. Kiihlewind, H. J. Neusser,* and E. W. Schlag 
Institut fur Physikalische und Theoretische Chemie der Technischen Uniuersitat Miinchen, 0-8046 Garching, 
West Germany (Received: June 24, 1985) 

A homologous series of alkyl cations and their corresponding multiphoton mass spectra are produced from alkyl iodides to 
test the degree of fragmentation pattern transferability from one ion CnH2,+l+ to the next larger one, etc., in multiphoton 
mass spectrometry. In electron impact ionization all ions in the same mass range, even when produced from different parentages, 
produce similar fragmentation. In direct contrast to this multiphoton mass spectra of homologous alkyl compounds display 
strong differences. The wavelength of the exciting light influences the fragmentation pattern in a direct way, thus leading 
to two-dimensional control of the fragmentation pattern. These features can be exploited for mixture analysis using mass 
spectrometry. Mechanistically this can be understood as being due to the ladder switching mechanism leading to optical 
selective photon absorption by fragment ions. Results are also presented that a classification in terms of a single average 
energy for decomposing ions is not adequate. A parametrization in terms of differing internal energies for differing ions 
is required. 

I. Introduction 
Multiphoton ionization (MPI) is known to be an unique method 

providing additional variables for the production of polyatomic 
molecular ions in a mass spe~trometer. '-~ One such possibility 
is the use of high light intensities in excess of lo7 W/cmZ to lead 
to fragmentation of organic ions with a large amount of small 
fragments, even C+ cations,2 these being energetically very high 
lying. 

In order to exploit this new technique there is considerable 
interest in the clarification of the complex mechanism of the 
multiphoton fragmentation processes of polyatomic molecular ions. 
Photon absorption exclusively within the molecular parent i ~ n , ~ , ~  
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competing light absorption and dissociation in the neutral ma- 
nifoldi0 and in the ionic manifold in a so-called "ladder switching" 
mechanism,"*I2 as well as ionization and dissociation of supe- 
rexcited neutrals5 have been discussed. Two-laser experiments 
of our groupI2J3 and more recently photoelectron kinetic energy 
measurements from other laboratories have shown that for aro- 
matic hydrocarbons, e.g., benzene, toluene, and chlorobenzene,'"l6 
as well as for a series of small molecules17J8 the "ladder switching" 
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4.9 Osmotic pressure

scheme 089

We assume an ideal solution.

Conditions of equilibrium:

µ1(left side) = µ1(right side)

T (left side) = T (right side)

µ2 cannot equilibrate

π = p(left side)− p(right side)

Ideal solution

βµ2 = β∆µ2 + ln ρ2

∆µ2 is independent of ρ2, but depends on the solvent.

π is a state function and depends on ρ2, µ1, and T . The total differential is

dπ =

(
∂π

∂ρ2

)
T,µ1

dρ2 +

(
∂π

∂T

)
ρ2,µ1

dT +

(
∂π

∂µ1

)
T,ρ2

dµ1
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Holding T , µ1 constant and changing ρ′2 from 0 to ρ2 gives

π(ρ2)− π(0) =

∫ π(ρ2)

π(0)

dπ =

∫ ρ2

0

dρ′2

(
∂π

∂ρ′2

)
T,µ1

π(0) = 0 if there is no solute, the solvent pressure is equilibrated

π =

∫ ρ2

0

dρ′2

(
∂pleft

∂ρ′2

)
T,µ1

Define an auxiliary function

F = E − TS − µ1N1

with

dF = dE − d(TS)− d(µ1N1)

= TdS − pdV + µ1dN1 + µ2dN2 − TdS − SdT − µ1dN1 −N1dµ1

= −SdT − pdV −N1dµ1 + µ2dN2

Therefore F is a natural function of T , V , µ1, and N2.

F = F (T, V, µ1, N2)

The density is a simple function of natural variables of F

ρ2 =
N2

V

Let’s choose(
∂p

∂ρ2

)
T,µ1,V

=

(
∂p

∂(N2/V )

)
T,µ1,V

= V

(
∂p

∂N2

)
T,µ1,V

Maxwell relation from F(
∂(−p)
∂N2

)
T,µ1,V

=

(
∂µ2

∂V

)
T,µ1,N2
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So, we get(
∂p

∂ρ2

)
T,µ1,V

= −V
(
∂µ2

∂V

)
T,µ1,N2

= −V
(

∂µ2

∂(1/V )

)
T,µ1,N2

(
∂(1/V )

∂V

)
T,µ1,N2

= −V N2

(
∂µ2

∂(N2/V )

)
T,µ1,N2

(
−1

V 2

)
= ρ2

(
∂µ2

∂ρ2

)
T,µ1,N2

Back to the osmotic pressure

π =

∫ ρ2

0

dρ′2

(
∂p

∂ρ′2

)
T,µ1,V

=

∫ ρ2

0

dρ′2ρ
′
2

(
∂µ2

∂ρ′2

)
T,µ1,N2

From the ideal system assumption

βµ2 = β∆µ2 + ln ρ2

β
∂µ2

∂ρ′2
= β

∂∆µ2

∂ρ′2
+
∂ ln ρ′2
∂ρ′2

=
1

ρ′2

π =

∫ ρ2

0

dρ′2ρ
′
2

1

βρ′2
= β−1ρ2

βπ = ρ2

or in general

βπ =
∑
i

ρi

Example Osmotic pressure of 0.1 moles NaCl in 1 l water at normal con-

ditions.

π = kBT (ρNa+ + ρCl−)

= 1.3810−23 JK−1 · 300 K · (0.1 + 0.1) mol · 6.0221023 mol−1 · 10−3 m−3

= 4.99105 J/m3 = 4.99105 N

m2
≈ 5105 Pa ≈ 5 atm
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4.10 To be ideal or not

For an ideal solution or gas

µi = ∆µi + kBT ln ρi

and ∆µi is independent of ρi.

If the solution were not ideal

∆µi = ∆µi(T, ρsolvent; ρi)

Taylor expansion in powers of ρi

= ∆µi(T, ρsolvent; 0) +

(
∂∆µi
∂ρi

)
T,ρsolvent

∣∣∣∣∣
ρi=0

ρi + · · ·

= ∆µi(T, ρsolvent; 0) + 2kBTBiρi + · · ·

Now, recall that

µi =

(
∂A

∂Ni

)
T,V,Ni 6=j

and βp =

(
∂(−βA)

∂V

)
T,N

Using µi = µ
(ideal)
i + 2kBTBiρi + · · · , we have

βA = βA(ideal) − V Biρ
2
i + · · ·

For several components of solutes

−β[A− A(ideal)] =
∑
i,j

V Bijρiρj + · · ·

where the sums are over all solute species.

Thus,

βπ = βπ(ideal) +Bρ2
i

or for a simple one component gas

βp = ρ+Bρ2 +O(ρ3)

In this case the constant B is called the second virial coefficient of the gas.
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scheme 090

Pressure of low density real gas.

scheme 091

Example van der Waals gas

βpvdW =
ρ

1− bρ
− a ρ2

kBT
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ρ
1−bρ accounts for finite size of molecules

excluded volume

ρ = N
V
→ N

V ?
= N

V (1−bN/V )

a ρ2

kBT
accounts for attractive forces between molecules

Notice: excluded

volume part is independent of T , but the attractive force part decreases in

size with T increasing.

The parameter b is roughly the volume of one molecule. Low density is

therefore bρ� 1. In that region

βpvdW = ρ+ bρ2 + · · · − a ρ2

kBT

Hence

BvdW(T ) = b− a

kBT

The Boyle temperature for this equation of state is

1

kBTBoyle

=
b

a

Osmotic pressure of aqueous Na+ Cl− solution at concentration c

scheme 092

What is going on here? Experimental osmotic pressure of Na+ Cl− solution

doesn’t look like βπ = ρNa+ + ρCl− + · · · . Also the corrections from ideality

cannot be expressed as interger powers of density.
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What we see in the case of strong electrolytes is the result of

1. Fluctuations in density must preserve macroscopic charge neutrality

2. screening

Peter Debye figured all this out in his famous Bebye–Hückel theory of ionic

solutions. To discuss this theory, consider first

average energy of interaction

for an ion q, coupled to other

ions, q′, at average density ρ.

 ≈ 4πρ

∫ ∞
R

r2dr
qq′

εr︸ ︷︷ ︸
Thisintegraldiverges!

The Coulomb potential has infinite range. It seems as if you can never

separate charges enough to make their interactions negligible. This is not

what we have in a van der Waals gas where the volume b is finite.

To analyze carefully, consider a charge q at the origin in an electrolyte solu-

tion with charges zi of densities ρi.

scheme 093
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Charge neutrality requires
∑

i ziρi = 0.

〈ρx(r)〉q = average density of charge species x at position r

= ρxe
−βWx(r)

ρ2 : bulk uniform density

Wx(r) : reversible work to bring ion x from ∞ to a distance

r from the origin

Think about reaction fields. Wx(r) should have at least two contributions.

The direct Coulomb interaction between q and zx, and then another part

from the non-uniform charge densities induced by q.

Specifically,

Wi(r) ≈ qzi
εr

+
∑
j

∫
dr′

qzj
ε‖r − r′‖

〈δρj(r′)〉q

where the deviation from the uniform desnity induced by q has been intro-

duced.

〈δρj(r′)〉q = ρj
(
e−βWj(r) − 1

)
Recall from your knowledge of electrostatics

∇2 1

‖1‖
= −4πδ(r)

with δ(r) Dirac’s delta function, zero everywhere except at r = 0 and net

volume equal to 1.

Use this relationship and operate left and right with ∇2. You get

∇2Wi(r) ≈ −qzi
ε

4πδ(r)− 4π

ε
q
∑
j

zjρj
(
e−βWj(r) − 1

)
For large r (this should be the relevant region if concentration of ions is very

low), expand the exponential since Wj(r) will be small. This gives

∇2Wi(r) ≈ −qzi
ε

4πδ(r) +
4π

ε
qβ
∑
j

zjρjWj(r)
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This is a linear differential equation for Wi(r). You can verify that the

solution is

Wi(r) =
qzi
εr

e−κr

where

κ =

√
4πβ

ε

∑
i

ρiz2
i

κ−1 = Debye screening length

scheme 094

Effect of one ion on another – the pair correlations – decay as e−κr. Screen-

ing of ions by ionic atmosphere. The effective radius of an ion is (c ion

concentration)
1

κ
= Debye length ≈ 1√

c

Now we do the correct calculation of

〈U〉 = average energy of interaction for a tagged

ion coupled to all other ions

=
∑
i

∫
dr
qzi
εr

ρie
−βWi(r)︸ ︷︷ ︸

density of ions

surrounding ion q

144



The interaction energy of ion q with ions of type i is qzi
εr

. The exponential in

the density of ions can be expanded and only the first two terms are kept,

the other terms can be neglected at very low ρi because the ions are generally

very far apart.

ρie
−βWi(r) ≈ ρi − βρiWi(r) + · · ·

〈U〉 =

∫
dr

{∑
i

qzi
εr
ρi −

q

εr

∑
i

βρiqz
2
i

εr
e−κr + · · ·

}

= −q
2

ε

∫ ∞
0

drr24π
∑
i

βρiz
2
i

ε

e−κr

r2
+ · · ·

= −q
2

ε
κ = − q2

εDebye length
∝ (concentration)1/2

Analysis of the osmotic pressure can also be done (tedious). The result is

βπ =
∑
i

ρi −
κ3

24π
Debye–Hückel limiting law

With salt Mν+Xν− −→ ν+M+ + ν−X− (e.g. NaCl, ν+ = ν− = 1) we have

µMν+Xν−
= ν+∆µ+ + ν−∆µ− + kBT ln ρ

ν+

+ ρ
ν−
− + kBT ln γν± ν = ν+ + ν−

where γ± is the mean activity coefficient

γ± = −1

ν
(ν+z

2
+ + ν−z

2
−)

κ

2εkBT

scheme 095
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Chapter 5

Chemical Kinetics

5.1 General considerations and formal devel-

opment

First recall some old ideas:

Two state system (e.g. spin up and spin down)

State 2 ———— E2

State 1 ———— E1


Relative populations of equilibrium

determined by∆E = E2 − E1

K ≡ ρ2

ρ1
= P2

P1
= e−β∆E

How do these two states equilibrate? And how much time does it take to

equilibrate?

• How −→ Mechanism

• Time −→ Kinetics
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Trans/gauche conformations

scheme 100

State g+ ———— ———— Eg

State t ———— Et

K ≡ ρg
ρt

= 2e−β(Eg−Et)

This looks like a 3–state system! Is it? If we say the energy of intermedi-

ate conformations is very high compared to kBT , then those states have no

population and are unimportant at equilibrium!

But, if we want to know how fast a g+ → t occurs, for example, we must

consider all the intermediate states! This is the central idea of chemical

kinetics.

scheme 101
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Not really a 3–state system! To know exactly how fast a conversion from t→
g− is, for example, we would have to know the energy of all the intermediate

angles. But as a first guess to the rate, we only have to know E?!

Conclusion

1. Thermodynamic popoulations −→ energy of stable states

2. Kinetic rates −→ energy between stable states

Most fundamental distinction in physical chemistry

Thermodynamics Kinetics

⇓ ⇓
Assuming an equilibrium Non-equilibrium system

system at t =∞, at t <∞, so all fluctuations

allowing all fluctuations not yet achieved.

Think of tedious chore to illustrate difference!

Formal development Consider the reaction A −→ B.

Want a notion of rate of reaction.

Rate = number of B molecules appearing per time.

= number of A molecules disappearing per time.

If constant volume reaction, can use concentrations to count molecules of

species A and B.
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Let cA = [A], cB = [B], both cA and cB depend on time.

Rate = ċB(t) = d
dt
cB(t)

= −ċA(t) = − d
dt
cA(t)

} Note ċB(t) = −ċA(t)⇒ d
dt

(cA + cB) = 0

cA + cBconstant in time

→ conservation of mass

Now we need equations for the rate. The rate equaions are determined by

the Reaction Mechanism.

• Elementary Reactions (easy)

• Complex Reactions (tough)

Let’s do easy first: A −→ B

Assume: Rate ∝ cA (This is a big intelectual jump!?)

Then, (Rate equation)

Rate = ċB(t) = −ċA(t) = kcA(t)

where k is the Rate constant.

Easily solved to give

cA(t) = cA(0)e−kt

cB(t) = cB(0) + cA(0)
(
1− e−kt

)
This is called a first order rate equation.

A
k−→ B

B could go backwards to make A. Let the rate constant for that inverse

process be k−1

A

k−→
←−
k−1 B

ċA(t) = −kcA(t) + k−1cB(t)

ċB(t) = kcA(t)− k−1cB(t)
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At equilibrium,

ċA = 0 = ċB ⇒ 0 = −kcA + k−1cB

and we get

K︸︷︷︸
thermodynamics

≡ cB
cA

=
k

k−1︸︷︷︸
kinetics

⇐= Detailed Balance

5.2 Arrhenius law

Temperature of a chemical reaction.

– not clearly defined, as temperature as a statistical quantity only applies

to equilibrium

– for most systems in good approximation on can use the statistical tem-

perature

– be careful with special systems, like flames.

Arrhenius plot

scheme 102
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d ln k

d(1/T )
= −Ea

R
⇒ d ln k

dT
=

Ea
RT 2

For the back reaction we get

d ln k′

dT
=

E ′a
RT 2

These are empirical laws!

From, K = k
k′

, we get

lnK = ln k − ln k′

d lnK

dT︸ ︷︷ ︸
ideal gas

=
d ln k

dT
− d ln k′

dT

∆H

RT 2
=

Ea
RT 2

− E ′a
RT 2

∆H︸︷︷︸
thermodynamic

quantity; change

in enthalpy for

the reaction

= Ea − E ′a︸ ︷︷ ︸
kinetic

quantity

5.3 Transition state theory
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scheme 103

Let’s consider a bi–molecular reaction in the gas phase

A+B ←→ X + Y
−→
[C] : concentration of activated complex

for forward reaction
←−
[C] : concentration of activated complex

for backward reaction

Assumption Equilibrium of activated complexes for backward/forward reaction

A+B ←→
−→
C
←−
C ←→ X + Y

We get the equlibrium constants

−→
Kc =

−→
[C]

[A][B]

←−
Kc =

←−
[C]

[X][Y ]

Write
−→
Kc with partition sums

−→
[C] =

Qc

QaQb

e
− E0

kBT [A][B]

E0 is the energy difference of the ground states of A + B and C (zero of

energy definitions).

Qc = Q(trans)Q(rot)Q(vib) · · ·
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scheme 104

For the translational partition sum at the transition state all molecules move

along δ (reaction path) and Epot ≈ const. and we have free translation with

qδ =
δ

h

√
2πmkBT ·

1

2

where m is the mass of the complex and the factor 1/2 is due to the fact that

we only have to consider the forward movement.

−→
[C] =

δ

2h

√
2πmkBT

Q]

QaQb

e
− E0

kBT [A][B]

v̄: average velocity of complexes at the transition state

τ = δ
v̄
: average time at the transition state

Velocity of re-

action
−→
[C]

v̄

δ
=

v̄

2h

√
2πmkBT

Q]

QaQb

e
− E0

kBT [A][B]

We need an estimate for v̄: Maxwell distribution

P (v, v + dv) =

√
m

2πkBT
e
− mv2

2kBT dv ·N

where N is a normalization constant

v̄ =

∫ ∞
0

P · vdv =

∫ ∞
0

ve
− mv2

2kBT dv/

∫ ∞
0

e
− mv2

2kBT dv

and we get

v̄ =

√
2kBT

πm

−→
[C]

v̄

δ︸︷︷︸
d
−→
[C]
dt

=
kBT

h

Q]

QaQb

e
− E0

kBT︸ ︷︷ ︸
k

[A][B]

This looks exactly like the empirical equations of kinetics

d
−→
[C]

dt
= k[A][B]
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with

k =
kBT

h

Q]

QaQb

e
− E0

kBT

=
kBT

h
K]

−→
Kc = K]

(
πmkBT

2

)1/2
δ

h

K] is an artificial equilibrium constant.

Comparision with Arrhenius:

d ln k
dT

= 1
T

+ d lnK]

dT
d ln
−→
Kc

dT
= d lnK]

dT
+ 1

2T

}
eliminateK]

d ln k

dT︸ ︷︷ ︸
Ea
RT2

=
d ln
−→
Kc

dT︸ ︷︷ ︸
∆H
RT2

+
1

2T

Ea = ∆H +
RT

2

From the interpretation of K] as an equilibrium constant

∆G] = −RT lnK]

and

k =
kBT

h
e−∆G]/kBT

or

∆G] = ∆H] − T∆S]

k =
kBT

h
e−∆H]/kBT e−∆S]/kB

Compare to Arrhenius k = Ae−∆Ea/RT to get

Ea = ∆H] activation energy

A =
kBT

h
e−∆S]/R frequency factor
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Relation to experiment In experiment we measure k(T )

• Eyring plot: ln
(
k
T

)
vs. 1/T

– slope: −∆H]

R

– intercept: ∆S]

R

• Arrhenius plot: ln k vs. 1/T

– slope: −Ea
R

– intercept: A (assuming no temperature dependence of A)

5.4 Kinetic isotope effect (KIE)

Dependence on the rate of chemical reaction on the isotopes in the reactants

KIE =
k(isotope 1

k(isotope 2
=
kH
kD

Primary Isotope Effect rate change due to isotopic substitution at a

site of bond breaking or bond making in the rate determining step of a

mechanism.

Secondary Isotope Effect all other

Typical primary KIE values.
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klight/kheavy [25 deg. C]

C −H/C −D 6–8

C −H/C − T 15–16
12C/13C 1.04
12C/14C 1.07
14N/15N 1.03
16O/18O 1.02
32S/34S 1.01

35Cl/37Cl 1.01

From transition state theory

KIE =
klight

kheavy

=

kBT
h

Q]l
QR,l

e−E
l
0/kBT

kBT
h

Q]h
QR,h

e−E
h
0 /kBT

=
Q]
l

Q]
h

QR,h

QR,l

e−(El0−Eh0 )/kBT

Molecular partition sum

Q = Qtrans ·Qrot ·Qvib︸ ︷︷ ︸
mass dependent

·QE

In the Born–Oppenheimer approximation QE is independent of mass. The

most important contribution to the KIE is from Qvib.

Qvib −→
1

2
~ω zero point contribution

ω =

√
f

µ
f : force constant; µ: reduce mass
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scheme 105

Under the assumption that at the transition state the bond is broken, there

is no specific contribution to Q]
vib.

∆E0 ≈ ∆E(zero point energy)

=
1

2
~(ωlight − ωheavy)

KIE =
klight

kheavy

≈ e−
1
2
~∆ω/kBT

estimate for primery isotope effect

Example C −H vs. C −D

µH = 12·1
12+1
≈ 1

µD = 12·2
12+2
≈ 2

}
ωH
ωD
≈
√

2 ≈ 1.4→ KIE ≈ 5

Examples of KIE Dehydrohalogenation reactions
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scheme 106

kH
kD

= 6.7→ primary KIE for C −H/C −D

Transition state

scheme 107

Rate limiting step involves H(D) abstraction.

scheme 108

kH
kD

= 1.4→ secondary KIE for C −H/C −D

Transition state (rational)
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scheme 109

Rate limiting step is Br− elimination.

Decomposition of azo compound

scheme 110

k14N

k15N

= 1.02→ primary KIE

KIE can be used to elucidate reaction mechanisms.

Origins of secondary KIE

• Differences in steric demand

scheme 111

kD
kH

= 1.15

C −D has smaller vibrational amplitude.
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• Hyperconjugative effects

• Differences in inductive effect, e.g. H is mor electronegative than D.

Tunneling Quantum mechanical effect: transfering through instead over

a barrier.

Basic exercise in QM

scheme 112

Classical physics E > U R = 0 T = 1

E < U R = 1 T = 0

Quantum mechanics

E < U R =
(λ2 + 1)2 sinh2 κa

4λ2 + (λ2 + 1)2 sinh2 κa

T =
4λ2

4λ2 + (λ2 + 1)2 sinh2 κa
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with

κ2 =
2m

~2
(U − E) mass dependence

k2 =
2m

~2
E

λ =
κ

k

Example: U = 2E; κ = k λ = 1

T =
4

4 + 4 sinh2 κa
=

1

1 + sinh2 κa
x = κa

≈ 1− x2 + 2/3x4 + · · ·

scheme 113

Importance in chemical reactions

scheme 114
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Bell’s modification

k = Q · Ae−Ea/kBT Q : tunneling factor

Q =
eα

β − α
(
βe−α − αe−β

)
where

α =
E

kBT
β =

2aπ2
√

2mE

h

β depends on mass (
√
m) and barrier width (a). Largest effects for small m

and small a.

Example: proton transfer

scheme 115

Can be important in proton transfer in enzymatic reactions, e.g., dehydro-

genases.

5.5 Electron transfer reactions: Marcus the-

ory

Electron transfer: the simplest chemical process

• molecular structures are preserved
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• no bonds are broken or formed

• bond adjustments

• solvent repolarization

Electron transfer: plays a central role in

• inorganic redox chemistry

• organic chemistry

• electrochemistry (fueld cells, batteries)

• solid state and surface physics

• biology

Examples

[Fe(phen)3]3+ + [Fe(CN)6]4− −→ [Fe(phen)3]2+ + [Fe(CN)6]3−

[Co(NH3)6]3+ + [Co(NH3)6]2+ −→ [Co(NH3)6]2+ + [Co(NH3)6]3+

[Co(NH3)6]3+ + [Ru(NH3)6]2+ −→ [Co(NH3)6]2+ + [Ru(NH3)6]3+

where phen = 1, 10− phenanthroline.

In all these reaction is a single electron exchanged

rates ≈ 109 M−1s−1

≈ 10−7 M−1s−1

≈ 10−2 M−1s−1

There are 16 orders of magnitude difference in the rates of these simple

reactions!
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scheme 120

λ: solvent reorganization energy.

Derivation of the Marcus formula (Nobel prize in chemistry 1992)

Reactants y1 = x2

Products (y2 − b) = (x− a)2

y2 = x2 − 2ax+ a2 + b

Calculation of intersection point coordinates (xs, ys) .

y1(xs) = y2(xs)

x2
s = x2

s − 2axs + a2 + b

0 = −2axs + a2 + b

2axs = b+ a2

xs =
b+ a2

2a

Interpretation of parameters:
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scheme 121

b = ∆G

ys = x2
s = Ea

a2 = λ

With this we get

Ea =
(b+ a2)2

4a2
=

(∆G+ λ)2

4λ

Rate constant

k = Ae
− (∆G+λ)2

4λkBT

Formula for prefactor

A =
2π

~
‖HAB‖2 1√

4πλkBT

HAB : electronic coupling element

how easy is it for an electron

to go from state A to B
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scheme 122

What is the physical meaning of the reorganization energy λ?

Amount of energy required to distort the nuclear configurations of the reac-

tants (inclusive solvent) into the nuclear configuration of the products with-

out electron tarnsfer occuring.

What is the relationship between the free energy change and the reorganzi-

ation energy when the rate constant is maximal?

Max.k → Ea = 0 (asEa ≥ 0)

(δG+ λ)2 = 0

−δG = λ

Does the rate always increase as the free energy change becomes more nega-

tive?

No, gecreases as soon as δG > λ. This is called the inverted region.
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scheme 123

Electron transfer in biological systems Charge transfer, i.e. electron

transfer, proton transfer and coupled ET/PT are essential steps in biological

systems.

Overall equation of aerobic metabolism

Photosynthesis (light)

−→

6CO2 + 6H2O ↔ C6H12O6 + 6O2

←−

Respiratory system

Bacterial metabolism

4H2 + SO2−
4 ↔ S2− + 4H2O

acetat + SO2−
4 ↔ H2O + CO2 +HCO−3 + S2− + · · ·

Photosynthesis

• Step 1: light absorption

• Steps 2–12: all electron and proton transfer
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Schematic view of aerobic biological metabolism

scheme 124

Photosynthetic reaction center

scheme 125

Steps 1–8 are electron transfer processes.
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Modifying aminoacids changes ∆G0

scheme 126

From this data an empirical rule for the relationship k, ∆G0, λ and the

distance between donor and acceptor can be derived.

Dutton’s rule

log1 0k = 13− 0.6(R− 3.6)− 3.1(∆G0 + λ)2/λ

Application of Marcus theory Computer simulation of redox potentials

(J. VandeVondele et al. Chimia, 61 155 (2007))

A+D ↔ A− +D+
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Calculate half cell redox potentials

A+ e− ↔ A− ∆A1

D+ + e− ↔ D ∆A2

A+D ↔ A− +D+∆A = ∆A1 + ∆A2

Assume no direct interaction of A and D – rather long range electron transfer.

∆A is free energy difference between different redox states – we use thermo-

dynamic integration

∆A =

∫ 1

0

〈
∂H(α)

∂α

〉
dα

where α is the coupling parameter between the two states

H(α) = αHre + (1− α)Hox

∂H(α)

∂α
= Hre −Hox = ∆E

∆E is the total energy difference between reduced and oxidized form at given

atomic positions.

∆A =

∫ 1

0

〈∆E〉α dα

〈·〉α indicates a Boltzmann sampling for ensemble generated by H(α).

Marcus theory:

∆E = y1 − y2 with y1 = x2

= 2xa− a2 − b y2 = x2 − 2xa+ a2 + b

Therefore

〈∆E〉α =

∫ ∞
−∞

(2xa− a2 − b)e−βH(α)dx/

∫ ∞
−∞

e−βH(α)dx

= 2αa2 − a2 + b linear in α!

and we get

∆A =

∫ 1

0

〈∆E〉α dα = α2a2 − αa2 + ab
∥∥1

0
= b
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scheme 127

∆A =
1

2
(〈∆E〉0 + 〈∆E〉1)

or

∆A = 〈∆E〉0 +
1

2
q

= 〈∆E〉0 +
1

2
q

where q is the slope

q =
d

dα
〈∆E〉α = 2a2 = 2λ

λ =
1

2
q =

1

2
(〈∆E〉0 − 〈∆E〉1)
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and

d

dα
〈∆E〉α =

d

dα

(∫ ∂H(α)
∂α

e−βH(α)dx∫
e−βH(α)dx

)

=

∫ ∂2H(α)
∂α2 e−βH(α)dx∫

e−βH(α)dx
− β

∫ (∂H(α)
∂α

)2

e−βH(α)dx∫
e−βH(α)dx

+ β

(∫ ∂2H(α)
∂α2 e−βH(α)dx

)2

(∫
e−βH(α)dx

)2

as H(α) is linear in α :
∂2H(α)

∂α2
= 0

= −β
(〈

∆E2
〉
α
− 〈∆E〉2α

)
= −βσ2

α fluctuations of energy difference

The solvent reorganization energy λ can therefore be calculated as

λ =
σ2

0

2kBT
=

σ2
1

2kBT

Simulation protocol

1. Generate an ensemble of configurations by molecular dynamics in the

reduced (α = 0) or oxidized state (α = 1).

2. For each configuration calculate the vertical energy (∆E) as difference

in total energy between oxidized and reduced state.

3. Compute average and variance of ∆E to obtain ∆A and λ.
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Abstract: Marcus theory of electron transfer is the quintessential example of a successful theory in physical chem-
istry. In this paper, we describe the theoretical approach we have adopted to compute key parameters in Marcus
theory. In our method, based on molecular dynamics simulations and density functional theory, the redox center
and its environment are treated at the same level of theory. Such a detailed atomistic model describes specific
solvent–solute interactions, such as hydrogen bonding, explicitly. The quantum chemical nature of our computa-
tions enables us to study the effect of chemical modifications of the redox centers and deals accurately with the
electronic polarization of the environment. Based on results of previous work, we will illustrate that quantitative
agreement with experiment can be obtained for differences in redox potentials and solvent reorganization energies
for systems ranging from small organic compounds to proteins in solution.
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atomistic models using density functional
Theory (DFT). The quantum chemical na-
ture of DFT allows the effects of chemical
modifications of the redox centers to be
studied without a need for prior knowledge
or empirical parameterization. This can
thus make our method truly predictive.

A key feature of ET reactions, or re-
dox reactions in general, is the crucial role
played by the environment. Indeed, oxi-
dation (reduction) potentials are the con-
densed phase equivalents of ionization po-
tentials (electron affinities) in the gas phase,
and these quantities can differ significantly.
Our atomistic models explicitly include the
environment (e.g. solvent and/or protein)
so that not only dielectric properties but
also specific interactions, such as hydro-
gen bonding or conformational changes are
taken explicitly into account. Furthermore,
the environment is far from being a static
spectator. Its fluctuations bring donor and
acceptor sites in an energy resonant state,
triggering ET, and its ability to relax after
ET influences significantly the energetics.
In order to probe these fluctuations and re-
laxations in our computational setup, mo-
lecular dynamics is employed to generate a
sufficiently large number of representative
configurations of solute and solvent.

A major step in the understanding of
ET reactions was the formulation by Mar-
cus[16,17] of the rate of electron transfer (kET)

as a simple function of the reaction free
energy (ΔG), the solvent reorganization
energy (λ) and a proportionality constant
(κ) depending on the quantum coupling be-
tween donor and acceptor states.

The fruitful concept that underlies this
formula is the assumed harmonic nature
of the free energy surface with respect to
the reaction coordinate of electron transfer.
This restricts the validity of this formula to
the range of systems that fall in the linear
response regime, which might thus exclude
systems that undergo significant changes
in conformation or solvation upon elec-
tron transfer. Ultimately, the success of this
theory is based on its capability to predict
and explain experimental results. As will
be illustrated in Section 2, our and other
groups[18–22] have adopted the central con-
cept of this theory to simplify and guide
calculations.

So far we have focused on computing
two of the three central parameters in Mar-
cus theory: ΔG, the driving force of the ET
reaction, and λ, the solvent reorganization
energy. Anticipating our results in Section
3, we find good agreement with experiment
for systems ranging from small organic

*Correspondence: Dr. J. VandeVondelea

Tel.: + 41 44 635 4421
Fax: + 41 44 635 6838
E-Mail: vondele@pci.unizh.ch
aInstitute of Physical Chemistry
University of Zurich
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bDepartment of Chemistry
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1. Introduction

Electron transfer (ET) reactions play a cru-
cial role in a number of processes of bio-
logical and technological importance. Well-
known examples include cell respiration,
photosynthesis, fuel cell catalysis and pho-
tovoltaics.[1,2] The efficiency of these pro-
cesses can be optimized by tuning the ET
properties of electron-donor and -acceptor
or the pathway between them. The relative
stability of the electron at these sites (i.e.
differences in redox potentials), and the
rate of electron transfer between them are
of particular interest, as they reflect directly
what is thermodynamically and kinetically
feasible. In this paper, we will summarize
some of our previous work[3–15] aimed at
computing these quantities directly from

doi:10.2533/chimia.2007.155

k
ET
= exp

( + G)
2
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compounds to proteins in solution. Where-
as our DFT calculations typically involve a
few hundred atoms, the latter system was
modeled using a DFT description for over
2800 atoms.[15]

2. Atomistic Theory of Electron
Transfer

A central element of our approach to
ET so far, is the observation that ΔG and
λ can be obtained from standard electronic
ground state calculations, thus avoiding the
complexity of excited state calculations,
if one focuses on electrochemical half re-
actions. In this case, a single redox active
center is explicitly present in the simulation
cell, either in reduced or oxidized form.
Such a setup only makes sense if there is no
strong coupling between the donor and ac-
ceptor site, and is thus most easily applied
in the case of long-range electron transfer.
The free energy difference between the
reduced and oxidized redox state, which
we will denote by ΔA, to indicate that our
simulations are at constant volume, can be
computed in a number of ways. In the pre-
sent work, we derive expressions for ΔA
based on thermodynamic integration, i.e.
integrating the reversible work needed to
change the system’s Hamiltonian linearly
from the reduced [Hre({Ri})] to the oxi-
dized [Hox({Ri})] one. We write

where Hα is a Hamiltonian, formed as a
linear combination of the two physical
Hamiltonians Hox and Hre. Its derivate with
respect to α is the vertical energy gap ΔE,
a central quantity in the following. The in-
tegrand <ΔE({Ri})>α is the canonical aver-
age of the vertical energy as obtained from
a sampling based on the Hamiltonian Hα,
for which we will introduce the short hand
notation ΔEα. The above expression for ΔA
is exact, and practical for actual ab initio
calculations.[11]

Nevertheless, let us assume that the sys-
tem is in the Marcus regime, or equivalently
in the linear response regime. In this case,
the integrand ΔEα varies linearly between
the integration limits α = 0 and α = 1, and
a number of simple expressions for ΔA can
be derived. We illustrate in the Fig. that the
assumption of linearity can be valid with
remarkable accuracy, but see e.g. ref.[11] for
a counterexample. Three expressions that
are exact in the linear regime, and that have
been used in our previous work are:

where the first expression is a two-point es-
timate of the integral, and the latter two ex-
pressions are obtained from integrating the
surface under a straight line through either
the initial or the final point, with a slope
given by the first derivative of the integrand
in that point:

The latter expression shows that the
slope of the integrand is proportional to the
variance (fluctuations) of the vertical energy.
The assumed linear behavior of ΔEα implies
that the first derivative is constant, and that
all higher derivatives vanish. While this
leads trivially to the property that σ0

2 equals
σ1

2, it is a lengthier derivation, beyond the
scope of this paper, to show that this leads
to a Gaussian probability distribution of ΔE.
The corresponding free energy profile, given
by –kT times the logarithm of this probabil-
ity distribution, is parabolic, and the solvent
reorganization energy (λ) can directly be as-
sociated with the fluctuations as

where the last equality is obtained by sub-
tracting the last two equations for ΔA.

In the remainder of this paper, we will
use the above equations in a simple three-
step recipe to compute ΔA and λ:

i) Generate an ensemble of atomistic con-
figurations by running molecular dy-
namics simulations in the reduced (α =
0) and/or the oxidized state (α = 1).

ii) For each of these configurations, com-
pute the vertical energy (ΔE) as the dif-
ference in total energy between the oxi-
dized and the reduced state.

iii) Compute the average (ΔEα) and vari-
ance (σα

2) of the set of values of ΔE to
obtain ΔA and λ.
Additionally, based on careful consider-

ations of the system’s complexity, we will
choose which formula for ΔA and λ. we em-
ploy, and how we generate the ensemble.
For example, the expressions depending on
the variance of ΔE converge significantly
slower than those depending only on the
average of ΔE, but have nevertheless the
advantage that they can be evaluated with
just one simulation in an oxidation state of
choice. The expression based on the aver-
age of the vertical energy at both end points
is likely to be more reliable if some devia-
tion from linearity is to be expected.

Finally, we conclude this section with a
brief discussion of our computational setup,
referring to ref.[23] for a complete techni-
cal review of the method, and refs.[10,12,15]

for specific computational details for each
of the selected applications. The unifying
theme for the simulations that we have se-
lected for this paper is that all DFT calcula-
tions have been performed using the freely
available simulation package CP2K/Quick-
step.[23,24] Based on the hybrid Gaussians
and plane waves (GPW) scheme,[25] excel-
lent efficiency and accuracy is obtained for
systems containing up to a few thousand
atoms.[26,15] The efficiency is obtained by
exploiting the locality and compactness of
a Gaussian basis, and the linear scaling cost
of evaluating the Coulomb (Hartree) energy
in a plane wave basis. Furthermore, Born-
Oppenheimer molecular dynamics simula-
tions can be performed using a robust wave-
function optimization technique[26] and a
density matrix extrapolation scheme.[23]

A =
H ({R

i
})

d

0

1

= E({R
i
}) d

0

1

H ({R
i
}) = H

ox
({R

i
}) + (1 )H

re
({R

i
})

H ({R
i
})
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i
}) = H
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Fig. Computed values
of the integrand ΔEα for
a classical model of the
Fe2+/Fe3+ redox pair in
aqueous solution are
shown with error bars
indicating the statistical
uncertainty. The line
represents a linear fit to
the data. The high quality
of this fit convincingly
demonstrates, for this
system, the validity
of a key assumption
underlying Marcus
theory and our
computational approach.
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The value of this approach can be best ap-
preciated for ‘electronically difficult’ sys-
tems such as radicals and transition metal
compounds, typically encountered in ET
systems, where these methods bring en-
hanced stability.

Nevertheless, these simulations remain
challenging and a number of issues that
might affect their accuracy have been dis-
cussed in more detail in ref.[14] Errors arise
from the approximate nature of DFT and
from the limited length and timescales that
can be assessed by ab initio techniques.
The most serious DFT error is likely to
come from the self-interaction error, de-
spite the fact that our half-cell approach
avoids the difficulties associated with a
computational setup where both donor and
acceptor are present in the same simula-
tion cell. The latter setup can lead to an
unphysical delocalization of the electron
and requires proper treatment. However,
even with the half cell approach, the self-
interaction error is a major concern for
systems containing an unpaired electron
in an electronic state that is (nearly) de-
generate with the band of occupied solvent
state. In this case, an unphysical delocal-
ization of the spin over the solvent might
be observed.[27] System size effects can
be expected for quantities, such as λ, that
are sensitive to the long-range nature of
the electrostatics, since charged solutes
are treated in relatively small simulation
cells. However, when investigating differ-
ences between systems that have a similar
spatial distribution of the charge, the same
unit cell, and a similar environment, these
errors are expected to cancel. Finally, in
assuming a linear response regime for our
calculations, we have introduced a system-
atic error. This is error must be balanced
to the statistical uncertainty in the results,
since only a relatively small number of
configurations (100–1000 s) can be com-
puted using methods based on DFT.

3. Results and Discussion

In the following, we present three ap-
plications that have been used to explore
the capabilities and limits of our meth-
odology within the framework of CP2K.
These are:
i) the organosulphur compounds tet-

rathiafulvalenene (TTF) and thian-
threne (TH) in acetonitrile (ACN) so-
lution,[10]

ii) model quinones, benzoquinone (BQ)
and duroquinone (DQ) in two dif-
ferent solvents, ACN and methanol
(MeOH),[12]

iii) two natural varieties of the iron–sulfur
protein rubredoxin in aqueous solu-
tion.[15]

Three variants of the same three-step

recipe have been employed. For the or-
ganosulphur compounds, we have em-
ployed ab initio molecular dynamics sim-
ulations to generate the configurations,
leading to parameter-free estimates of the
reaction free energies shown in the Table,
which agree with experiment to within our
estimated statistical uncertainty (60 meV).
For the other two applications, configura-
tions have been generated using classical
molecular dynamics, and DFT has only
been employed to compute the vertical
energies. These results are thus not truly
parameter-free, since a classical force field
must be available to describe the geome-
tries. However, this approach allows much
longer timescales to be explored, and both
systems have been simulated for several
nanoseconds, retaining a few hundred to
thousands of configurations for DFT-based
analysis. The simulations of the quinones
exhibit similar agreement with experiment
for the reaction free energies (hence vali-
dating our mixed classical/quantum ap-
proach), but more interestingly allow the
effect of hydrogen bonding on the solvent
reorganization free energy to be illustrated,
and hence the rate of electron transfer. In-
deed, we have selected two solvents (ACN
and MeOH) with very similar dielectric
properties. In particular, their Pekar fac-
tors, which in a continuum description are
proportional to the solvent reorganization
energy, differ only by about 5%. However,
we find that the solvent reorganization en-
ergies of both solutes are larger by approx-
imately 230 meV in the hydrogen bonding
solvent, consistent with experiment.[28]

This illustrates the limits of a continuum
theory approach, which predicts a much
smaller difference. Our third application
is also based on classical sampling with
DFT calculations of the vertical energies,
but applies this technique to a significantly
larger system, the mesophilic Clostridium
pasteurianum (Cp) and the hyperthermo-
philic Pyrococcus furiosus (Pf) variants of
the iron–sulphur protein rubredoxin. We
consider it a significant break-through that

we are now able to obtain redox potentials
differences in agreement with experiment
(see the Table) for a system of this size
(2800 atoms). Furthermore, we also obtain
solvent reorganization energies (0.5–0.7
eV) that are in good agreement with the
estimates employed in kinetic models of
the self-exchange reaction.[29] This is sig-
nificant, since simulations based on stan-
dard force fields yield results that are much
larger. This overestimate is consistent with
the continuum dielectric expression of the
solvent reorganization energy, and under-
lines the importance of the high frequency
dielectric response. The latter term is ab-
sent in non-polarizable force fields, but
included in our DFT description.

Finally, we note that atomistic and
electronic information is available in these
simulations as well. For example, the re-
sponse of the solvent to the ionization of
the solute can be analyzed,[10] the contri-
bution of particular residues to the solvent
reorganization energy estimated,[15,30]

or the correlation between one-electron
energies levels and redox potentials ob-
tained.[14] In this paper, we focused on the
computation of key parameters in Marcus
theory and compared these results with
experiment where available. The results
presented here are a good indication that
the method is quantitative and predictive,
and that our approach can thus be applied
in cases where experiments might be dif-
ficult or more approximate theories inap-
propriate.
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Chapter 6

Summary

Mass equilibrium

scheme 150

The boundary can be a hypothetical or real physical boundary (liquid/vapor,

liquid/liquid).

Condition for equilibrium:

µ(1) = µ(2)

This is equivalent to conditions for equilibrium for p and T !

For multiple components we have

µ
(1)
i = µ

(2)
i
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Compare this again to conditions for p and T .

Condition for equilibria in chemical reactions

aA+ bB + · · · ↔ cC + dD + · · ·

aµA + bµB + cdots = cµC + dµD + · · ·

From the fact that G(T, p,N1, N2, . . .) is an extensive function, we get

G = µ1N1 + µ2N2 + · · ·

with µi = µi(T, P ) and dependent on other components.

Using dG(T, p,N1, N2, . . .) = dG(µ1, µ2, . . . , N1, N2, . . .), we get the Gibbs–

Duhem equation

SdT − V dp+
∑
i

Nidµi = 0

For a one component system, we can derive

N

(
∂µ

∂p

)
T

= V and N

(
∂µ

∂T

)
p

= −S

Chemical potential for an ideal solution Configurational contribution

βµconf = lnXsol

where Xsol is the mole fraction.

Reversible work to create a solute molecule in solution ∆µ. The sum of these

two contributions is the total chemical potential of an ideal solution (Raoult’s

Law).

βµ = β∆µ+ lnXsol

Reversible work surface Hold specific coordinates fixed

→ partition function Q̃(x1, . . . , xN ; β,N, V )

∂ ln Q̃

∂x1

= β〈fx1〉
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〈fx1〉 is the average force on coordiante x1, with x1, . . . , xN hold fix.

ln Q̃ = −β W (x1, . . . , xN ; β,N, V )︸ ︷︷ ︸
reversible work surface

potential of mean force

free energy surface

exp[−β(reversible work surface for x1, . . . , xN)]

= Boltzmann weighted sum over all fluctuations with x1, . . . , xN fixed

∝ probability for observing system with x1, . . . , xN

Free energy calculations and measurements We go for
∆A free energy difference
∂A
∂λ

free energy derivatives
Expectation value in canonical ensemble

〈f(H)〉 =

∫
Γ
f(H)e−βHdΓ∫

Γ
e−βHdΓ

where H(p, q) is the Hamilton function (= total energy function = kinetic +

potential energy) of the full system. Γ is short for all phase space variables

(r1, r2, . . . , rN , p1, p2, . . . , pN) = 6N variables, N= number of particles in the

system.

Partition function Q =

∫
Γ

e−βHdΓ

Helmholtz free energy: A = −kBT lnQ.

∆A = AY − AX = −kBT ln
QY

QX

= −kBT ln
〈
e−β(HY −HX)

〉
X

where the sampling is over distribution of system X.

Multiple configurations H1 → H2 → H3 · · · .
→ overlapping distributions

→ better convergence of simulations
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Thermodynamic integration

A(λ) = −kbT lnQ(λ)

∆A = A(λ = 1)− A(λ = 0) =

∫ 1

0

∂A(λ)

∂λ
dλ

=

∫ 1

0

〈
∂H
∂λ

〉
λ

dλ ≈
∑
i

〈
∂H
∂λ

〉
λi

Umbrella sampling

Make use of a bias potential W (r). This enhances sampling of some config-

urations, but has to be corrected in averaging.

〈A〉 =

〈
AeβW

〉
B

〈eβW 〉B
The sampling (B) is over the biased potential H +W .

Chemical equilibrium in a solvent

A↔ B

Chemical potentials have to be the same

µA = µB

Thus, (ideal gas formula)

β∆µA + ln ρA = β∆µB + ln ρB

and, we get

K =
ρA
ρB

= e−β(∆µA−∆µB)︸ ︷︷ ︸
no concentration

dependent terms!

Approximation:

K ≈ Kgase
−β∆W

∆W free energies of solvation differences.

Sources for ∆W
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• packing effect, excluded volume

• electrostatic effects

Born model

∆µ ≈ −(1− 1/ε)
q2

σ
Debye formula

∆µ ≈ −8(ε− 1)

2ε+ 1

m2

σ3

where q,m: charge and dipole of solute, σ: size of solute, ε: dielectric

constant of solvent.

Another application of βµ = β∆µ+ ln ρ:

Osmotic pressure βπ =
∑
i

ρi

Beyond ideal solutions

βµ = β∆µ+ ln ρ

but now make ∆µ concentration dependent.

∆µ = ∆µ0 +
∂∆µ

∂ρ
ρ+ · · · Taylor expansion

= ∆µ0 + 2kBTBρ+ · · · B: 2nd virial coefficient

Equation of state of real gas

βp = ρ+Bρ2 + · · ·

Chemical kinetics Thermodynamics: energy of stable states

Kinetics: energy between stable states

K =
k

k−1

detailed balance

thermodynamics

equilibrium constant

kinetics

rates of reactions
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Arrhenius (empirical formula)

k = Ae
−∆Ea

kBT

A: frequency factor; ∆Ea: activation energy

Eyring (from transition state theory)

k =
kBT

h
e

∆S]

kB e
−∆H]

kBT

Eyring plot: ln (k/T ) vs. 1/T

slope: −∆H]/kB

intercept: ∆S]/kB

Transition state theory:

˙[C] =
kBT

h

Q]

QAQB

e−E0/kBT︸ ︷︷ ︸
k(Eyring)

[A][B]

From equilibrium assumption

[A] + [B]↔ [C]↔ products

Kinetic isotope effects

KIE =
k(isotope 1)

k(isotope 2)

primary KIE isotope involved in bond

breaking or forming

secondary KIE all other

Typical size of primary KIE:
C −H/C −D 6− 8

all other isotopes < 1.1

From transition state theory

KIE =
Q]
l

Q]
h

QR,h

QR,l

e−(El0−Eh0 )/kBT
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Molecular partition functions; Qvib has largest mass dependence

∆E0 ≈ ∆E(xero point energy)

KIE ≈ e1/2~∆ω/kBT

where ∆ω is change in frequency due to isotope substitution, assumes ω] = 0.

Tunneling: other source for KIE

Important mainly for protons or at low temperatures, e.g., enzymatic reac-

tions.

Marcus theory of electron transfer Based on transition state theory

Assumes free energy curves along reaction coordinates (reversible work sur-

face) are parabola (diabatic states).

scheme 151

λ: reoranization energy = excess energy of state A at equilibrium position

of state B.

k = Ae
− (∆G+λ)2

4λkBT

Regions of electron transfer
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scheme 152
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