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Chapter 1

Principles of Macroscopic

Systems

1.1 Introduction
Let’s start with a simple experiment

N 7 time N Ve

\ Ink is now dispersed,
homogeneous
Ink drop  water
terminal state
macroscopic equilibrium

scheme 001

We can do this experiment with system totally isolated, i.e. insulated, at

constant energy.



What is the driving force?
— It has to do with fluctuations, statistics, and chaos.

Consider an enlargement of the experiment, and for the purpose of keeping

track of things, mark the system with a grid.

N 7
o~ - /
/ 4 S - - >
o -
AL it
ime | m
» [ H -

scheme 002

Each cell of volume Av; black cells are those containing dye molecules.

Av is very little — so small that no more than one dye molecule can fit in it.

With light (through scattering or absorption) we can observe or measure

p = concentration of dye molecules in observed region of volume v

= number of molecules/v

- initial state

® -Total volume V with
N dye molecules

O‘\\obsevered region,

volume v




NIV

typical size of
fluctuations at equilibrium

equilibrium

Even at equlibrium, fluctuations never stop.

scheme 003

scheme 004

These microscopic fluctuations are a consequence of molecular motions. The

relative size of the fluctuations in p depends on the size of the observed

system — the size of v.

For v = Av = microscopic volume

size of a molecule, p looks like this

when the total system is at equilibrium:

1/Av

NIV




scheme 005
(p axis is schematic, not drawn to scale.)

If observations are made over short periods of time and over short distance
scales, the system will always look chaotic. On the other hand, observations
over long times or over long length scales will be easy to characterize (at

macroscopic equilibrium) — ordinary, self evident, boring,.

How long is ”"long” — long enough so that in effect, one observation corre-

sponds to many statistically independent measurements.

e Observation over a long time 7"

1 (T
(p) = f/ p(t) dt < This is a time average
0
1 K 1 nt
=— ) - p(t) dt ; T=Kr
K ; T /(nl)T
K

1
= K Z[p] nth observation

n=1

If T'is long enough and if the system is at equlibrium, (p) will be a ” constant”,

i.e., we will get the same value every time we do the experiment.

e Observation over a large region of volume v.

m

1
=— lecules i 1 5]/A =mA
(p) ” Z[mo ecules in cell j]/Av v =mAv

J=1
m

1
= -2 _lPlith cen

j=1
If m is large enough and if system is at macroscopic equilibrium, this (p) is
also a constant, and should have the same value as (p) corresponding to a

time average.



1.2 Range or length of correlations

Correlation: Distance over which a disturbance of fluctuation has an effect.

Usually, this distance is very short (microscopic).

B macroscopic system
region A is not
A correlated to region B
N
N
~

I~ Smaller, but still
macroscopic

- -

\ large compared to correlation length
that's what we mean by macroscopic

scheme 006

A very big system can be divided into an enormous number of smaller, but

still big systems.

The very big system is an ensemble of subsystems. Observation of whole

system corresponds to an ensemble average.
What does it mean to be correlated?

Example:
P(pa,pp) joint probability that subsystem A

has density ps and that subsystem B
has density pg. It is a normalized

histogram built up from many measurements.

Clearly,

(paps) =Y Plpa,ps)paps

PA  PB

7



But if subsystems are uncorrelated,

P(pa;pp) = P(pa) - P(ps)

where P(pg) is a histogramm from observations of B ignoring A.
Thus,

<pApB>unCere]ated = Z Z P(ﬂA)P(pB)pApB

- (Z P(m)m) (Z P(pB)pB>
= (pa) (pB)

Therefore,

(paps) — (pa) (pB) = ((pa — (pa))(pB — (pB)))

is a measure of correlations.

When
((pa — (pa))(pB — {pB))) # 0

the two subsystems are correlated.

Relaxation time Time for a system to forget a particular fluctuation or

disturbance.

N relaxation time relaxation time

»t

p relaxing to equilibrium p fluctuating at equilibrium



scheme 007

Macroscopic systems are at equilibrium, if they have been prepared and

controlled over times long compared to relaxation time.

either time average of p
(p) = observed p =

or ensemble average of p

The assumed equivalence of the two averages is called the ergodic assumption
— if you believe it, it means you believe in relaxation (loss of memory and
chaos) and finite correlation lengths; and you are thinking about experiments

performed over long times and/or large spatial scales.

What does it mean to be uncorrelated at different times?

(Time correlations, a sophisticated concept!)

Consider the ”time line” for p in an equilibrium system.

A

(o =

 J

scheme 008

For every time t;, look also at ¢; + 7 and calculate p(t;)p(t; + 7). Average

this quantity over many t;’s. The average gives a function of 7.
| K
Ctr) = g2 2o Aol +7)

= (p(0)p(7))



Zero time refers to the initial time that is averaged over.

If 7 is larger than the relaxation time

1.3 Fluctuations, large numbers, extensive and

intensive

Question: How many particles (e.g. dye molecules in a solution, or air

molecules in air) will we find in an observed volume V = MAv 7

H [

observe this region
with M cells

:u

scheme 009

Let

n; = 1, if a molecules is in cell i

n; = 0, if no molecule is in cell i .

We will be assuming low concentrations and very small Av, so n; > 1 is

”impossible”.

Total number of particles in system at a particular instant is

M
=1

10



Thus,

The last step makes use of the fact, that at equilibrium, on the average, each

cell is the same.

Here,

(n) = average of n; for any one cell

= probability that one particular cell is occupied
At low concentrations (i.e. @AV is small)

(n) <1

Notice that (V) scales linearly with M, the size of the system. Thus (V) is

called an extensive property.

On the other hand, (n) appears to be independent of the system size. As

such, (n) is called an intensive property.

Examples of intensive properties:

pressure, average concentrations, . ..

Examples of extensive properties:

volume, total average energy, ...
Question: Is (N) a meaningful estimate of an instantaniously observed N7
To see, let us estimate the size of typical fluctuations

SN = N — (N)

11



We test for the average of §N? as (JN) = 0.

(ONY?) = (N
N
N?)

N?)

— (V)

— 2N(N) + (N)?)
2(N)N) + (N)?
(N)?

[\

[\

= {
=
=
= {

Now write both (N?) and (N)? in term of averages involving the ” occupation”

numbers, the n;’s:

(BNY?) = <ZZW> - <Z”> <Z”j>
=33l — () )

this is only nonzero,
if n; is correlated to n;

At low concentrations, n;’s of different cells are uncorrelated, only the ¢ = j

terms are nonzero. So,

M

(ON)?) = ) — (n)°]

=1

(make use of n? = n; !)

Thus, particle fluctuations for a gas or solution of uncrorrelated particles

obeys

((6N)*) = (N)

Things to notice

1. {(6N)?) is extensive

12



2. Relative size of fluctuations

are small for big systems and large for little systems.

Equivalentely, if we observe concentrations or densities, p = N/V/, then

(p) = (n)/Av

and
(N?) —(N)? () 1

(6p)) = L = o ()

For M large, fluctuations in the intensive property p become negligible.

P(p) = probability distribution for p

~\V{(&0f")

(o)

scheme 010

The density distribution function for a large system exhibits little dispersion.

13



1.4 Principle of equal weight

Statistical characterization of macroscopic equilibrium.

Think about the ink dye experiment. It seems to illustrate that terminal
stationary states are most random or chaotic macroscopic states, i.e. all

possible microscopic states are equally likely.

In other words, all fluctuations consistent with the constraints that define

the system occur with the same probability.

As we will see shortly, the Second Law of thermodynamics follows from this

principle.

For example, consider an isolated system of fixed size

scheme 011

System is totally insulated from its surroundings. No particlescan come in

or get out, no energy can be transmitted through the boundaries.

N and V are fixed, and from conservation of total energ E, the energy is
fixed too. These are the constraints defining this system — fixed N, V', and
E.

14



Let Q(N,V,E) = total number of states, microscopic
states that is, constraint with
fixed N, V, and F.

That is like the degeneracy of the macroscopic system.

N

scheme 012
How many ways can you put N = 5 particles in the available boxes?

At macroscopic equilibrium, the principle of equal weights implies that for
each of these microscopic states the probability is

1
Q(N,V, E)

A related quantity is the entropy, S, which we define as

P p—y

S(N,V,E) = kg InQ(N,V, E)

kg is, at this point, an arbitrary constant. It will be Boltzmann’s constant.

We expect that S is extensive.

Example 1 N identical particles, each on can exist in one of two degenerate

states ( both having the same energy)

15



oS o o o
T T > T e T8 —

Two different microscopic states of the total
N particle system

scheme 013

In this case, there area total of 2%V states, i.e.,

0=2"= 9 =kglnQ = Nkgln2 « it is extensive!

Example 2 N uncorrelated and indistinguishable particles in a volume

composed of M cells.

® =

1 2 3
e © .\ 000
\ /

scheme 014

16



particle 1 has M places to go
particle 2 has M places to go

particle 1 has M places to go

This seems to suggest Q = MY,
This is based on M > N and one particle per cell. For smaller M we would
have Q = M(M — 1) (M —2)---(M — N).

But due to indistinguishability

particle 2 article 15
¥ b’

. . are the same

macroscopic state
|| ||

particle 15  particle 2

scheme 015

The number of equivalent configurations is the number of ways to relabel the
indistinguishable particles, and that number is N! = number of permutations
of N things.

gt
N=3 %ﬁ_'j/

1 state with 3 3x2x1=6 states with 3

indistinguishable  hqjstinguishable particles
particles

Ne}
w
-
w
-
N

scheme 016

17



Thus, Q = MY over counts the number of different states by a facor of N!.
Hence,
LN
As a result, in this case
S/kg=NInM —InN! .
For N large, Stirling’s formula is
InN!'~NInN —N .
Thus, finally,
S/kg=NInM —-NInN+ N
M
=N |In—+1
S
N [1 L, 1]
= n—
(n)
= N[l —In(n)|

which is extensive.

18



Chapter 2

The Second Law and the

Meaning of Temperature

2.1 The Second Law of thermodynamics

Partitionfunction

Q(N,V,E) = number of all possible microscopic
states (i.e., instantaneous fluctuations)
with N, V| E fixed.

Consider a subset of all these fluctuations which can be realized through

internal constraints.

Example

19



N1 N2
V1 V2
E1 E>

/

internal constraint

scheme 017

Divide the system into two subsystems, such that

N = N; + Ny
V=Vi+V
E:E1+E2

If ”internal constraint” was impermeable, then it could be used to enforce
an inhomogenious distribution of particles in the system. If it was insulating
and rigid, it could enforce a partitioning of energy that was inconsistent with

the partitioning at equilibrium without the constraint.

Let Y(N,V,E) = total number of microscopic states

with internal constraints applied

Since the constraint reduces the total number of possible fluctuations
Q(N,V,E) < (N,V,E)

or

S'(N,V,E) < S'(N,V,E) .

20



But macroscopic states accessed through the application of internal con-
straints correspond to nonequilibrium macroscopic states without those con-
straints.

Thus

S is max. at equilibrium

This idea is the essence of the Second Law of thermodynamics.
To see what this law can predict, consider the following question.

How is the total energy of a system partitioned at equilibrium?

@
E1

(2
E2

e — 7
at equilibrium E, =F"

scheme 018

E=F +E since energy is extensive
E, = E{"+ AF
Ey = EsY+ AFE

AFE is the fluctuation in energy.

Entropy as a function of N, V', E.

21



}—SIN,V,E;AE|

AE

A J

scheme 019

Since S is extensive S = S} + S5 and

0(=5) _ 9(=51)  9(=5)

OAE  OAFE OAE

Define temperature, T', by

1 _ a(9)
T \ OF NV ’
since both E and S are extensive, T' must be intensive.

Thus,
d(—9) 1 1

AE . T T,

= T} =T, at thermal equilibrium, and
AFE flows from hot (high T)
to cold (low T').

2.2 Does entropy increase for all natural pro-

cesses?

Hahn’s echo experiment (see Brewer and Hahn, Scientific American
251, pp 50-57, (1984))

22



T ¥ crank connected to

Q inner cylinder

very viscous fluid

-4

- T T

ink dye Q

scheme 020

After several turns of crank, dye appears dispense. Is this the Second Law
at work? — No, we can return to the initial configuration by simply reversing

the turns of the crank.

Evidentally, relaxation times in the viscous fluid are much longer than the

times of the experiment.

Are you sure Q(N,V, E) must increase with increase of E7 If not, tempera-

ture T = (%)71

NV will not be positive!

Example 1

V)

potential
energy

¥
0

coordinate

scheme 021

23



Increase in energy (larger V) leads to increase in possible states

dQ

Example 2 Spin in a magnetic field

In(Q)
A 1
! negative temperature
1
1
1
1
1
1
1
1
|
! -
. [ 1
all spins up half up all spins down
half down
Example 3
classroom
teacher students

24
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scheme 023

What is the chance no air will be where the teacher is?

M cells, N particles M >N

scheme 024

Teacher region with no particles has aM cells, a < 1, but aN > 1.

We can use Poisson’s formula

with p=a; n = N; m =0, to get

P~e Y 5 very small number!

2.3 Entropy as a function of £, N and V

S =kgnQ = S(E,V,N)

25



Specify E, V, and N, and this will give

sS4 you S for an equilibrium system.

scheme 025

Note: The equilibrium manifold of macroscopic states is only a small frac-

tion of allpossible states.

Consider small displacements among the equilibrium states: (total differen-

tial)
oS oS oS
- [ = E —-— — N
a5 (aE)N,vd " (8V>E,N W (aN)V,Ed
)
9E) N,V

tion of £/, N and V', and we are considering its rate of change due to changing
E in the direction orthogonal to N and V.

Partial differentiation ( meaning: We are thinking about S as a func-

We have already defined % = (g_S) NV

Let us now define
p_ (95 R
T \oV)py ' T \oN/,,’

_ 1 p /"
dS = ZdE + ZdV — =dN

Notice that as we have defined them, p and p are intensive functions of F,
V and N.

so that

26



In analogy with our analysis of thermal equilibrium

@ @

V1 V2

deformable,
impermiable
membrane

scheme 026

Vi=V+ AV
Vo=V — AV

» AT

scheme 027

27



dsS
dAV

= (p/T), = (p/T),
= p; =pe at equilibrium

=0 at equilibrium

and p; > ps causes membrane to deform with AV > 0.

@ @

N1 N2

rigid,
permiable
membrane

scheme 028

Ny = N+ AN
Ny = NS — AN

» AN

28



scheme 029

ds
dAN

= (u/T); = (u/T),
= 1 = le at equilibrium

=0 at equilibrium

and py > po causes particles to flow with AN > 0.

e quantity T controls energy equilibrium (Temperature).
e quantity p controls volume equilibrium (Pressure).

e quantity p controls mass equilibrium (Chemical Potential).

To help further identify the physical meaning of p and u, rearrange the

formula for d.S

7dS =dE + pdV — udN
dE =TdS — pdV + pdN

So, here we are thinking about E as a function of S, V and N (E(S,V,N)).

E,

29



scheme 030
Specify S, V., N and that will determine E for an equilibrium system.

E is the total energy of the system, so called, the internal energy. Since
energy is conserved, (First Law), E will change only if we do something to

the system.

We can do work, squeeze or stretch the system, heat or cool it, or add parti-

cles.

For example:

scheme 031

work done on system = (force) - Al
=— (force/area) AV
—_——
externally applied pressure

= _Pext - AV
Positive work done on system decreases system volume.

30



At equilibrium, Newton tells us that P, = pressure of system. Therefore, if

work is done reversibly, the work differential for changing V' is
(dW)yey = —(pressure of system) - AV

Compare with dE' = TdS — pdV + pudN,

= p = pressure of system.

Reversible process is one that is done slowly enough to move through equi-

librium states only.

pinternal constraint
(our access to non-equilibrium states)

irreversible path moves off the
S-X plane into the manifold of
non-equilibrium states

/

B

»X=V,N

A

S \ reversible path between equilibrium
states A and B stays on X-S plane

scheme 032

Equlibrium states are relatively simple to characterize (only S, V' and N
need to be specified). So reversing a path through such states is conceivable.
Non equilibrium states are , in principle, infinitely more complex, and it is
inconceivable that we could retrace on uncontrolled path through such states

— thue irreversible.

31



2.4 Ideal gas law

We have established that

95\ _»p
oV ME‘T'

Earlier we showed that uncorrelated structurless identical particles leads to
Q(N,V) = M"/N!

or
M
S:kB[ln<W>+1]N, MAv =V
If we also consider the possible energies of such particles

MY [ (E)

AN, V. E) = =2

fY(E) = number of ways of distributing energy E among N particles.

Therefore I
S=kglnQ =kgN [ln (N) +1 —|—lnf(E)}

Thus

L_ (08 _, N df(B)
7= (7). 7w 0

= T =T(E/N) or E/N = function of T independent of V' or density.

Further

p_(35\  _ 10 (M

T V) e Av OM N

N N
=k =kg— =k
BALM By, BP
Thus, = =1 — compare to pV’ = NRT (the ideal gas law)
R == N()kB

Ny = Avogadro’s number

32



Now we know the essential physics behind pV' = nRT' — uncorrelated density

fluctuations.

Reversible and isothermal compression of an ideal gas

scheme 033

Surrounding is an infinite source of energy which keeps the temperature fixed
— it is called a heat bath.

The work done in changing V' from Vj to V5 is
Vo

W= [ [-p(T,V,N)|dV
Vi
Vo
= —nRT/ ﬂ = -—nRTIn E
w V Vi

=nRT In (%)

But the temperature is constant, so the total change in energy at the ideal
gas is zero. — We did work, but there is no change in energy (remeber E/N
= function of T" alone!)
What is going on?

HEAT FLOW !

33



2.5 Temperature and energy fluctuations

| Big total system with

“ | N, V,.E,

' «—— subsystem, system of
\ : interest, with N _ particles,
volume V and energy E j

subsystem bath with energy F B

the jth microscopic state 1s a state in
which there are N | particles and [ j
energy in the subsystem

scheme 034

Cosider case where N; = N is fixed, and fluctuations are those in which £}
changes. (The bath is then a heat bath in equilibrium with the closed — but

not isolated — system of interest.)

A given Ej; corresbonds to (we are going to assume that the bath is truly
enormous. )
Ep = FEp — E;
Ep fluctuates as F; fluctuates, and Er is fixed. The probability for observing
this partitioning of energy is
Q(Er — E;,Np,Vp) Q(E;,V,N)

Q(ET7 NT, VT)
_ ( number of bath states)(number of subsystem states)

( number of states of total system )

that is, the probability that the subsystem has energy E' is
P(E) 0.8 Q(ET - Ej, NB, VB) Q(E, V, N)
(replace E; by E and omit the normalization factor).

34



Since the bath is huge, Fr > FE, hence we can truncate the following Taylor

series

In Q2
IHQ(ET—E]',NB,VB) :an(ETaNBavB)+<_E) (8 ~ ) +
OET ) Ny v

after the linear term.

Recall (T' = bath temperature)

1 B Oln Q) _ 5
kgT \ OFp NBMB_

Hence, for a very big bath in thermal equilibrium with the system of interest

P(E) o (B, V, N} FrENTo)
- Q(E7 V’ N) Q(ETv NBa VB) e_ﬁE
—

a constant

o« Q(E,V,N)e ¥

Q(E,V,N) accounts for the degeneracy of energy levels, and e #F is the

thermal Boltzmann factor.

—BE
—— —— ——} probability of this level < Q2¢e "

—_— probability of one specific state at

. . —BE
this energy level is «CC

-
-

scheme 035

Thus,

1
. — o BE; -
P<E]7‘/7N)_e ! |:Zle_5El:|
—_——
normalization constant

35



is the probability of observing state j of a closed system of size N o< V' at

thermal equilibrium with temperature T = (kg3) .

The assembly of all microscopic states of this closed system in contact with

a heat bath is called the canonical ensemble.

The assembly of all states of the isolated system when E vannot change is

called the micorcanonical ensemble.
The quantity
QB V,N)=> e =" Q(N,V,E)e "
E

J

is called the canonical partition function.

Let us use the canonical distribution law to study energy fluctuations.
(B)=) PiEj=e"5/Q
J

where P; is probability of jth state.

For a large system

(E) = mean or average macroscopic energy of
observed system

= thermodynamic nternal energy
SO
j !

- (aagfg)

Oln f(x) 1 of

) remember =
N,V

Ox f(z) 0x

36



Similarly,

J l
=Y B2 /Q - Ee B QY Ee PP /Q
J j l

J/ [\ J/

NV TV
—BE;
1 0% Bje T 1 ) -BE; .—BE;
QT Q? Z EjEe ¢
J/
_BE; 0Q
XjEje T 55

Making use of the identity
1 0Q  01/Q

Q20(-B)  O(-B)

we get

9 1aszjefﬁj 1 —sm, 0
R & RN OV &

10y, Eje#P _sp, 01/Q
Q0 D) ZE o(-B)

0
— | = Eje PFi
5 [T
(E)
B ( O(E) ) B (8(E) T )
8(—6) N,V or o _/3) N,V
The last term can be easily calculated

or 0 -1 —1-1

a(—=p)  9(-p) —Bks kg 52

1
= —(kgT)* = kgT* .
kp

4

37



Therefore, we get

(OF)?) = kT (%?)W

—_——————
cyv:heat capacity

= kgT?Cy

Remarkable for several reasons:

e { (Spontaneous fluctuations in E)?) o ease of changing (E) by altering
T.

e (y is extensive. Hence,

(OE)?) 1

~
~

(E) N

VUSEP)

(E)
scheme 036
Hence thermodynamic energy is meaningful.
e Existance of heat capacity is manifestation of microscopic fluctuations.

e Cy is positive! (x ((§E)?))

Positivity of Cy also follows from the Second Law.
On the way to equilibrium, heat goes from hot to cold. If C'y, were negative,
this would cause the system to go even further from equilibrium.

Thus stability requires Cy > 0.
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AE

Y

scheme 037

2
—(%) >0 — Cy>0
eq

Using the Boltzmann distribution: Example

At 300K, what is the chance of seeing a gaseous Oy molecule inits first

vibronically excited state?

use ideal gas N independent molecule

approximation approximation

We treat each molecule as a system in its own heat bath. Hence, for any one

molecule

P; x e PEi g = quantum numbers for
—translation
—rotation

—vibration

Roughly, vibrations are uncoupled from these other motions, and

Ew~n+1/2)hw, n=0,1,... ;w= f
i
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where f is the force constant and p the reduced mass.

Thus (assuming no degeneracies)

Pay = pln) = 1 e=20/20mie | § =50 /24mhe

m=0

For O, we have hw/kp = 2230K and notice e 7 = ¢72230/30 ~ 6.107* < 1.

Thus,
673/2Bhw

_ ~ Bl o —4
p(l) - e—1/2,8f1w + e—S/QBﬁw 4+ ~ e ~6-10

So, probability that one particular molecule is excited is 6 - 107% (meaning
small)!.

In one mole, how many molecules are excted? The number is

~ 1023 3 1020
<let excited state> = No-p(1) = 10*-107° = 10*" .

2.6 Low temperature and the Third Law

Consider the relative probability of two different energy levels (8 = 1/kgT)

P(E) _F) _ywp)

P(E) _ Q(E)

™00 for E'>E

This means that at zero temperature, only the ground state is accessible.

In virtually all circumstances, the lowest energy level is nondegenerate; that

is why we say ”ground state”, not "ground level”.

Hence,

S|T:0—kBIIlQ :kBlnlzo .

ground state

That is,

Iim S =0 The Third Law!

T—0
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Thta is not alll Consider the heat capacity

Now

and (F; first excited state)

Q —_ Z e*ﬁEground (1 + Qle*ﬁ(Eleground) + .. )
J

For large enough 5 (i.e., low enough T),

Q T——>(>J e*,BEgrouﬂd or In Q = —ﬁEground

0
E =509

Thus, since Egrouna is independent of temperature

( - ﬁEground ) = Eground

Cy —0 as T — 0]

No thermal excitations of fluctuations in F at T = 0.
Alternative derivation

1 B8R,
<E>:ZP]E]:WZE]6 BE;
j ! j

e_ﬂEground ZJ Eje_ﬁ(Ej_Eground)

e_BEground Z ) e_ﬁ(El_Eground)
J

_ Eground + Ele_ﬁ(El_Eground) 4+ ...

1 + efﬁ(EI*Eground) —l— o o
= Egrouna + (terms involving e’ (El_Egm““d))
~—

-0 for 7—0

Zero T is the ultimate low temperature and perfectly ordered state. There

are no fluctuations (except quantal zero point motions).
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Could you ever reach T = 07
No. You would need a "heat’ bath already at 7" = 0 to transfer energy (heat)

out of your system as it approaches T' = 0.

With the Third Law, we know that entropy is, at least in principle, a mea-

surable quantity.

T
S(T,V,N) = 5(0,V, N)+/ 47 (as/)
S—— 0 orT V,N

Since (dQ)rey = TdS

(dQ)rev} (dS) (as>
Cy = [ =T | — =T =
dr N,V const. dr N,V const. or N,V

T T N
s, v - [ ar QT NY)
0

Thus

Heat capacivities Cy are measurable, and so is S(T,V, N).

2.7 Partition function of molecular gases

2.7.1 Ideal monoatomic gas

We are considering a

e one component dilute gas with

— no intermolecular for forces (neglected)

— no correlation

e particles are treated as mass points with three degrees of freedom

(translation)
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e independent, indistinguishable particles

I
Q:mq

assuming the number of available quantum states is large compared to
N.

The molecular partition function ¢
q — Z e*@j/kBT
J

Model for the energy levels: quantum particles in a cubic box of length L.

h%(n? + 1% + m?)
Enlm 8ML2 nvlam 3 &y

with h: Planck constant and M: particle mass.
Number of states with energy smaller than e : ®(e).

We define a sphere with radius R in the tree-dimensional space of quantum

numbers n, [, m.
8MV?/3¢
R

We have used that L? = V?/3. The number of unique and allowed points

R=n"+P+m’
inside the sphere (= Volume of octant with n, [, m positive).

TR [(8Me\*?
q’@:T:a(hz) v

We need ®(€) > N for e ~ kgT as states with € > kgT will not be occupied.

o MkpT\ >/?
@(6)%<7Th—2]3> V>N

This is favoured for

e low density N/V.
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e large mass.

e high temperature.

and can be summarized with

3
AN<<1 with A = f

% vV 27TMkBT

Test : use experimental density of liquid at boiling point.

T[K] AN/V
He 4.2 1.5
Hy, 204 0.44
Ne 27.2 0.015
Ar 874 0.0054

Gas phase reduces A>N/V by about a factor of 100. ®(¢) > N is OK, except

for light molecules at high density and very low temperatures.

Molecular partition function

q= Z efe(nlm)/kBT ]

nlm
Replace sum by integration, valid if Ae < kgT'.

2 A A2 1
Ae ~ h— and ¢

~ ~ 1—14
MV2/3 kpT RVEIE < N2/3 7 10

Number os states between € and € + A€ is

3/2
(8h—]\24> V/ede



For the molecular partition function ¢ we get

q(V, T):/ w(e)e k8T de
0

8MkpT\*? [
_T ( & ) V/ u?e ™ du ; w=——
0

4 h? kgT
2 MkgT \ *” 1%
e ) Vw

We see that ¢ is proportional to the volume V' and dimensionless.

The fraction of molecules with energies between € and € + Ae is

w(e)e k8T e

P(e)de = .

1/2

The state density w(e) is propotional to €'/, this is the Maxwell-Boltzmann

distribution. In classical physics, we have

M M 3/2  M?
6271}2 —  Pv) = (QWkBT) vie BpT )

Canonical partition function

or

In@QQ=—-—NInN+ N+ Nlng

3/2
NI 2 MkgT E
h? N

The canonical partition function is needed to calculate thermodynamic prop-

erties of gases.

45



2.7.2 Internal degrees of freedom

The translational Hamiltonian is rigorously separable, electronic and nuclear

Hamiltonians are to a high degree seperable.

E =€ + € + ex

1
Q= ﬁ(%q‘aCIN)N

Nuclear excited states are at very high energy (=~ 1 MeV =~ 10 K) and not
important for our energy scales. We can replace the nuclear energy partition

function by its ground state degeneracy wy.

gN = WN

Energy differences between electronic states can vary considerably
9
Ge =Y wle w7
J

where w’ is the degeneracy of electronic states, e.g. hydrogen atom ground

states w, = 2 (spin).

Zero of energy (arbitrary)
Ey=¢e+e4ef =0

€1 €2
T 0 1.~ 2~
qe( ) = We +("‘ee kBT +("’ee BT

For halogen atoms at 7" = 1000K contributions of the second term are
0.22,0.12,0.0024, 10~° for F, Cl, Br, and 1.
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2.7.3 Ideal diatomic gas

We have to include in addition vibrationand rotation. We will assume a
further separation of energies
€=¢ + € + €6 + €
I N
Q= mq

q(V.T) = q(V,T) ¢:(T)qu(T)qe(T)
only depends on T

27 MkgT 1%
@V, T) = [Wh—QB] Vv M: total mass
q(T) = wee_k;ilT beware zero of energy!

If more than the ground state has to be included, separation becomes difficult,

as e.g. vibrations are different in different electronic states.

Vibration Harmonic approximation

1 1
€n = (n+ =)hv v=— /
2 2r\l 1
n=0,1,2,... f: force constant w: reduced mass
[e.e] (o)
_ —en/kpT _ —hv/2kpT —hw/kpT\"™
b= Yo = ol (i
n=0 n=0 J
b
o R RET
e—hl//QkBT ehl//2kBT

T ] _ e hw/keT  g-h/kpT _ |

Rotation There arise difficulties for symmetric ( or highly symmetric in

case of polyatomic) molecules because of degeneracies.
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Example: rigid linear rotator
L _JG+p
T 8n?l
wj=27+1 degeneracy

=0,1,2,...

I: moment of inertia
J j=0

h2

0, =
8m2Ikp

At high temperatures we get the classical limit

G — / (2] + 1)e7UTIO/T g,
0

T 8m2IkgT

e,
G ~ z <1 + % 4 > for smaller temperatures
e, 3T

2.7.4 Polyatomic molecules

Vibration (3N — 6 harmonic oscillators)

'normal modes’ decoupling

/

n —O.
e 0,/2T hVi

oM =]l{—=7 ©= I

i=1

Rotation
V7 (82 LikpT\"? (872 IgkpT\"? (872 IcksT\ /*
ol ="\ =7 TRz R

14, I, Io: principle moments of inertia
o symmetry number
specific for special cases, e.g. ¢ = 12 for

CH, (tetrahedral symmetry)
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High temperature limit

qr =

3B

T3 1/2
(@A9390>
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2.8 Partition function and free energy

We have established that

What does that tell us about Q7

Consider the Helmholtz free energy, A, defined as

A=FE-TS; A(E,T,S)
E : This is the termodynamic E,i.e. (E)

As soon as you see things like "7T” and ”S” in an equation you know it is

refering to equilibrium because that is the only place where 7" and S are
defined.

Clearly,
dA =dF —TdS — SdT total differential

Recall that

dE = (dQ)rev + (AW )rey = T'dS — pdV + pdN
—_——  —
Heat Work
So,

dA =TdS — pdV + pdN — TdS — SdT
— —SdAT — pdV + pdN

So, this quantity A is a natural function of 7', V', and V.

Equivalently,

Differential



The first term is

S TdS

and with
TdS =dE + pdV — udN

we get

d(—BA) = [BAE + BpdV — BudN] — BdE — EdJ
= —BEdB + BpdV — BudN

From this we get

and therefore
In@ = —BA + "constant of integration” = —5A
The constant of integration we get from (assuming Qgrouna = 1)

th =In Zz e_BEi 62)0 _BEground

~BA=3 —BEgouma + S(T = 0)/kp = —BEgoma

Thus

Q= e PA — e BEi
>

Boltzmann weighted sum over all fluctuations with N and V' fixed.

A= —kgThQ|

We will have many applications of this result.

Other identities derived from
dA = -5dT — pdV + pudN .

Dived by dt to get
dA dVv dN

ar ~ " Par Thar
ol



keep N, V fixed

AN _ g (VY (9N
T )y "or),, " \or

N N

N,V

=0 =0

. [(90A ~ (0(ksTnQ) B olnQ
o= (fﬁ)w_( or )y, ar

Similarly, from dA/dV and N, T fixed we get

B 0A B oln@Q
== () o (5),,

and from dA/dN and V, T fixed we get

0A oln@Q
"= (a—N)V,T =l ( N )V,T

Another transformation starts with

-1
T
-1 /oyTN .. 1
d=0) =1 <8—T> a7 = o dl

and gets

B 8an> B 9 (aan)
E = — kpT? [ == .
(d(—ﬁ) v AT )y

)

With In@Q = —kBiT we finally get

orT orT

E = kpT? (M) _ o (%
N,V
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2.8.1 Thermodynamic functions of the monoatomic ideal

gas

We recall the canonical partition function for an ideal gas

o- L (K)N Ao
TONT A3 2 MkgT

2 MkgT\** Ve

The Helmholtz free energy for this system is

27erBT>3/ 2 Ve

AN, V,T) = —kgTIn@Q = —NkgT'In [( 72 N

From the formula for the pressure p

B 0ln@Q
p‘kBT< oV >T,N

OlnuV
= NkgT
7 (T5),, eV

1 NkpT
~ NkpT—u —
e Vi

we get the ideal gas law

The thermodynamic energy of the system is

1 In w73/
E = kpT? (8 HQ) — NkgT? (aL)
oT VN oT VN
1 3 3
_ 2 et 1/2 et
= NkBT uT3/2 2UT = 2NkBT
3

The Heat capacity is

OF 3 ONT 3
o= (o)., =2 ()., = 3

3
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2.8.2 Einstein’s model of a crystal

Einstein imagined each atom in a crystal as vibrating in the fixed self con-

sistent field of its neighbors.

CO0O0OO00OO00O0O0OO0O00
000000000000
sse OCOO0O0OOGOOO0O0OO
OO00O0O0OO0OO0OOO0O
COOO0OOO0OOOO00O0O

scheme 038

We are considering one single atom. It is vibrating in the potential field

created by the surrounding atoms. It is at 7; = 70 + A7,

Einstein’s approximation of the Hamiltonian of a crystal consists of the ki-

netic energy and a harmonic potential part

al p2 1 2
~ ! —k|AT;

The force constant k& should be a function of p = N/V.

Energy levels of an assembly of one-dimensional harmonic oscillators with

1 k
E=(s+n)hw  with hw="h/—
2 m

The energy expression for the full system is

N
1
E(nlza nly»”lza Nogy .. 7nNz) = Z Z (5 + nioz>hw

=1 a=z,y,2

The quantum numbers n;, = 0,1,2,... specify the quantum state of a 1-
dimensional harmonic oszillator associated with the Cartesian coordinate «
of the ith atom.
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Hence, the partition function of the crystal is

QAE = i i . i e_B(1/2+nlz)hwe_5(1/2+n1y)ﬁw .

Nn1z=0n14=0 ny,=0
>

3N ;rums

o 3N
— Z eﬁ(1/2+n)rw]
| n=0
- o 3N
= e‘gh‘” (1 + Z (e_ﬂh“’)n>]
n=1

Making use of

e—ﬁ(l/?-ﬁ-nNz)ﬁw

o0 n 1
1+ (eﬁ"‘”> =lto+a’+at o=
n=1 =x<1
we get
o 3N
@Qae = | T
Thus, Einstein’s theory for the energy A, is
—BA=InQ = 3N [lne‘gh“’ —In(1- e_ﬁhw)}
_ —Bhw
= 3N, | —-fPlw/2 - In(1—e ™) ]
extensive o
ground state contributions from
energy of one finite temperature
oscillator thermal fluctuations
The corresponding internal energy is
OlnQ hw e he
E)=|—> =3N | — + hw———
0 = (5257) =2 [5 oS

where

hw . .
o> is the zero point energy
e—ﬁhw

1 —e P
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Thus, heat capacity according to Einstein

N d 1
Cv = ( oT >N7V = 3N (e—ﬂﬁw _ 1)

or

Cy hw e Phw T—0;8—00 ., AW  _ hw
— | =3 5 5 — 3 se kBT
N kBT (e_ﬁh/d — 1) kBT

& A &IL ,

N experiment  /

3kl ces : R S
experime;nt' \ '

Einstein theory s A
= »T
T Einstein vanishes

Exponentially with 1/T

scheme 039

Notice that Einstein’s theory says

& _ —Bhw —Bhw 2
T<N>—3Bhwe /(e 1)

= function of (Shw)

Changing the crystal changes w; but with w fixed, Einstein predicts that
TCy/N is a universal function of 7" or § = 1/kgT. That is, Einstein’s
theory predicts a Principle of Corresponding States (see e.g. van der Waals

gases).

e High T limit
Cy — 3Nkg (Dulong—Petit)
e Low T limit (experiment: Cy o< T%)

Cy — 3NkBe_®/T
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Einstein’s theory fails for low temperatures. What is the problem?

Einstein’s model only involves local, rather high frequency motions. Collec-
tive motions at low frequency are ignored. At low temperature these motions

will be more important.

Phonon (vibrations in crystals) dispersion, frequency distribution g(v).

/0 T gw)dv = 3N

/

Einstein

scheme 040

scheme 041

With the general phonon dispersion function one gets

—InQ :/0 {ln [1—e "] + 21]:]:T g(v)dv
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Debye approximation g¢(v) oc v? (from continuum theory)

Normalization

where « is a proportionality constant and the cutoff frequency v, is needed
to have a finite integral. The normalization fixes the constant alpha for a
given cutoff.
P 0<v <y
glv)y=4q ™
0 V> Up

For the energy we get

B — 1T (81nQ)
T )y

. 9NkBT vm hv hV/kBT 2
S /0 (ZkBT + ehv/ksT _ 1) vidv

9NkgT [
= 3B / (f T ) ridx where z = hv/kgT ; u = hy,,
U o \2 e*—1

ON iy, 3 [ &
kbT. = 8” +3NkgTD(u)  where D(u)= 5 /0 exx_1dx

Asymptotic values for D(u)

3 U 3 4
D(U):E/o emx_ldxﬁ% for T'— 0, u — oo
3 (" b
D(u) = — dz — 1 for T'— oo, u—0
us Jo e* —1
Therefore
Nhvy, — 3Nw*hv, (kgT
By WNm ST W (e T -0
2 5 hv,,
E — 3NkgT T — oo (same as Einstein)

and for the heat capacity

oE 9,
CV = (8_T> . = BNkBﬁ_T[TD(u)]

o8



Introducing the Debye Temperature, Op = hlfg, u = ﬁ;*; = e—TD the low

temperature limit of the heat capacity gets

CV —

12Nkpr* (T
©p

3
3 —) x T3 for T—0.

29
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Chapter 3

Summary and Mathematical

Properties

3.1 Microcanonical ensemble
S =kgInQ(E, N,V)

Boltzmann’s legacy, principle of equal weights; equilibrium states character-
ized by E, N, V.

scheme 042

S(E, N,V;no extra constraints) > S(E, N, V;internal constraints)
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The Second Law. Equilibrium maximizes S

Movi
dE =TdS — pdV + ,udN { oving among

equilibrium states

dE =d@Q + dW The First Law; conservation of
energy; heat and work are

TdS = (dQ)rev the two forms of energy transfer

F and S are state functions.

o vy =T (E,N,V) can
be inverted to give F = E(T,V,N). Equilibrium states can therefore be
characterized by T', V', N.

Since Cy = (8—E)N is always positive, T~ = (22

3.2 Canonical ensemble

Equilibrium with 7', V, and N

Pj=ePPi)Q, B=1/kgT
Q(T,V,N) Z e PFi = ¢4 . partition function

A=FE-TS, dA=-5SdT —pdV + pdN ; Helmholtz free energy

E(T,V,N) = (E) = (g(lfg))NV
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Repeat what we already know:

S=S(E,V,N) Entropy as a function of £, V', N
J its differential

o085 0S8 08
45 = (a—E>N,V e (W)N,E v (a—N)V,E aw

— —— ——
/T p/T —u/T

7TdS =dE + pdV — udN

1. dE=TdS — pdV + udN; E = E(S,V,N)
We assume the energy is conserved.
We know empirically that the energy of a system can be changed by
e doing work on the system (W)
e allowing heat to flow into the system (Q)

in mathematical notation
2. dE — (dQ)rev _'_ (dW>rev

o (dQ)ey: differential heat flow into the system

o (dW),ey: differential work done on the system

Keep in mind that work and heat are forms of energy transfer!
You also already know that the mechanical definition of work is the
product of the external force on a body times the distance through

which the force acts:

f
(AW )iy = (force)zAl = — ( orce) AV

area

Remember: positive work done on the system decreases system volume.

f: tension applied

L: length of the
rubber band
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scheme 043

3. (dW)rev = —DPext * AV

external pressure x change of volume of bulk system

By comparing equations 1), 2), and 3)

th
(AW )yey = pdV 4 pdN ... YO
~—— —~— kind of work

one form of chemical work

mecanical work
(dQ)rey = TdS

Recall the example of reversible and isothermal (7= const.) compression of
an ideal gas:

The energy of an ideal gas depends only on 7', so when T is fixed, so is the

energy.
AEid. gas — 0= (Q)rev + (W)rev
Vioers
(W)iev = nRT In _initial
Vinal
Consider now the same two states, but connected by an irreversible path
with constant > py = AT
Dext = P2 Vnal
Vi Vi
(W)irrev = —/ Pext AV = —pext (Ve — V1) # nRT lnv
\%i F

applying constant
Pext

initial volume heat bath

final volume
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Example of 3 different paths between final and initial states.

Aother variables
irrev. path
— »\/
rev. path
T ~ N ’I\ P
~ constant volume,
rev. expansion rev. T change,
with constant p no work
[.WJirrev;é{ W)rev
and
[.W-)revi{ W)rev’

Another example:

65

scheme 044

scheme 045

scheme 046



(W)a > (W)p, however the altitude increase for both is the same (= gain

in potential energy)!

Lesson:

e work is a function of the path

(W) path = /p - fads

e the altitude increase Ah during the trip is not a function of the path

If the change in a property of a system is independent of a path, the property

is called a | State Function|. The change in any state function is independent
of path.

The altitude increase Ah is a state function of the journey and does not

depend on the history of any one particular trip.

Recall that the energy F is a function of the variables defining the equilibrium

state

E=ES,N,V)=E,X) and (AE)eae =0

{

Consider the energy change in a cyclic process

B A
AE:}I{dE:/ dE—i—/ dE =0
A B
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scheme 047

In a cyclic process (AE)cyee = 0 and the work done by the gas or its sur-

rounding must be compensated for by an absorption of heat.

Hence, consider the change in internal energy between two states A and B:
55 OE Xp OF
AE:EB—EA:/ dS(—) +/ dX(—)
Sa oS )« X4 0X )¢

Si

scheme 048

Change in energy on this arbitrary path must equal that of the two step path
since (AE)cycle = 0.
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E(S,X) = E(S,V,N) is called a state function, i.e. it is a real function! By
counter example, however, the fact that W depends on path implies there is

no unique function W!

3.3 Mathematical Properties of state func-

tions

e if a function f(z,y,...) exists, its total differential df is called exact

_(or\ . (of
o= (), (@)

e if a function f(x,y,...) does not exist, the differential is called inezact,

and we denote it by the stroke over d: d

o if f(z,y) does exist (as well as the partial derivatives) the order of
differentiation is irrelevant
02 f B 0 f
0xdy  Oyox
Thus if df = a(x,y)dz + b(z, y)dy, then (Euler reciprocity theorem)

(@).~ (@),

It is satisfied if and only if f(x,y) exists.

Examples

e F is a state function and dF is an exact differential

B
/ dE=Ep — Ex
A

We do not need to know the particular process that leads from A to B

to perform integration.
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e Work is not a state function and dW is an inexact differential.

/ABdW = /ABp(V)dV

Cannot be integrated without knowing the dependence of the pressure

on volume.

With this notion we can write the First Law of thermodynamics

|dE =dQ +dW |

dE : exact differential since F is a function of state
dQ),dW: inexact differentials, they depend upon path

(Q and W are the forms of energy transfer, not functions of state.

3.4 Heat capacity

Since heat flow and temperature changes are intimately related, it is useful

to quantify their connection by introducing | Heat Capacity| It quantifies

the amount of heat added to a system in terms of the resulting increase in

temperature.

If the system is constrained to have V' = const. at constant number of

d@rev
Cv= ( a7 )V,N

d@rev
Cp B ( dT )pN ‘

)

L) n

energy in the following manner: at constant volume no work is done on the

system anddW =0 — dF =dQ

oF
Cv= (a—T)V,N

69

particles, we define

whilst at p = const.

However, one can relate the derivative ( to a derivative of the internal




To define C), in this way, we have to introduce another state function called

[ty

(dE)p N = dQ)pn — (pdV)pn = dQ)p,n — APV )pN
d(E +pV)pn = @Q)pN
H(enthaply) = FE + pV

E, p, V are state functions and so is H.

OH
= (a—T)p,N

3.5 Free energies

Tricks to make life easy. Recall
dE =TdS — pdV +udN = E=FE(S,V,N)
We have also encountered
dA=d(EF-TS)=—-SdT —pdV + udN = A= A(T,V,N)

Look carefully at what has happend here. F is a natural function of S, V,
N; T is the intensive variable that is conjugate to S (and —p is conjugate to

V', and p is conjugate to N).
By subtracting T'S from E, we get A, a natural function of 7', V', V.
Can we switch back and forth between any pairs of conjugate variables?

For example, the natural function of 7', P, N is E —T'S+ pV, which is called
G the Gibbs free energy.
G=FE-TS+pV
dG =dFE —TdS — SdT + pdV + Vdp
= (TdS — pdV + pdN) — TdS — SdT + pdV + Vdp
=-8dT+Vdp+pudN = G=G(T,p,N)
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Notice that you cannot do this switching with non-conjugate variables. Fur-
ther, the new functions formed by switching conjugate pairs contain the same

information as the original function. For example, using F(S,V, N), we get

T(E,V.N) = (55)v

But from A we also get

from which, in principle, inversion gives us E(T,V, N).

E(T,V,N):A:TS:A—T(%> :<M> .
ar ) vy \OUT )y

We get the same thing, but without having to carry out the inversion ex-
plicitely. It is this saving of effort — not having to do an inversion — that

makes it helpful to introduce auziliary functions like A and G.

How did we know that the inversion between E and T was possible?

oF
v = (a—T)N,V -0

i.e. F is a monotonically increasing function of 7.

Because

Ei

N, V constant

scheme 049

71



p, N constant

scheme 050

oF

It was the Second Law that implied the stability criterion, (8_T) ~y > 0
Similarly, look back at the derivation and you could also derive
condition of equilibrium stability
T constant (OE/OT)nyv >0
p constant —(0V/Op)sn >0
—(8V/8p)T,N >0
p constant —(ON/Op)sv >0
—(8N/8,UJ)T7V >0
The chart of auxiliary functions
variables function differential name
S, V,N E dEl =TdS — pdV + pudN energy

T,V,N A=FE-TS dA = —-SdT — pdV + udN  Helmholtz
free energy

T,p,N G=FE-TS+pV dG=—-5dT + Vdp+ udN Gibbs
free energy

S,p, N H=F+pV dH =TdS + Vdp + pdN enthalpy

To exploit what the auxiliary functions can do for us, we need to review some

more mathematics.
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Suppose
f = f(aja y)
df = <g> dx + (g> dy
ox y oy /),
= a(x, y)dz + b(z, y)dy

Since order of differentiation is irrelevant

o0\ _ (b

9y ). -\ Oz y
Expoliting this will give us Mazwell relations.

Also from df, we see (chain rule)
o (20 (01
ox y df oy ), df

= 1= g @ nstant!
=\ 72 Nar), y constant!
in addition, from df, we see
df _ (of\ dv (0f
dy  \ oz , v oy ),

- (@).-(2),&),

To illustrate the use of these things, consider the following:

Given v = (T, p) the equation of state of some gas with v = V/N =1/p.

How does the entropy change if the gas is compressed isothermally from

pressure p; to pressure py?

Answer:

P2 85
A8 = S(Tpuu ) = S ) = [ an ()
p1 ap T,N
We think of S as a function of p, T, and N. p, T, N are a reasonable set of
variables, since p is conjugate to V' and T is conjugate to S. So we have got

one entree from each of the p — =V, S — =T, and u — —N families.
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To examine the derivative, look to the natural function of p, T', INV:
d(E—-TS+pV =-8dT + Vdp + pdN
N————
G

Thus (we have a total differential),

p 7]V T ]),N

Since N is fixed in the derivatives, we can also note

1% ) <8V/N) ( B3 )
e - N[ 2L — N[ =
(aT - ar )y aT ),

So, the problem is now solved

P2 ov
s [Tan(2)
” or),

since (0v/0T), can be calculated from the equation of state.

Example: an ideal gas is compressed v = kg7T'/p.

D2 k
AS:—N/ dp~E = NkgIn 2
P1 p p2

Similarly, AS for changing the volume of an ideal gas isothermally is

v
AS = Nkg 11172

1

You can show this from the preceeding one by computing

\ %}
AS = / (ﬁ) dVv
1% ov T,N

oS

through a Maxwell relation for (W That Maxwell relation is obtained

)1
from the natural function of V| T, N, namely A.
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We are beginning to see how thermodynamics provides inter-relationships
between different macroscopic experiments. For example, heat flow or AS of

a process is related to p — —v — =T measurements.

Here is some more: Consider

as a3 as
S T+ (22 =2 N
5= (5),, 7+ (57),, 2 ()., ¢

Now, divide through by d7" and make use of A =FE —T'S
[ (90 |E-A _ (OE/T _[(0A /T
)y \OT | T vv N\ OT )y T )y

B/T?
__ B 1(oB\ _E
T2 T\IT ),y T2
—_————

to get
ﬁ — lC’ + a_S d_V + a_S d_N
dar — 177V " \ovV )y dT T \ON ), dT

Now hold p and N fixed
(o).~ =2 (av),., (&r)
aT on I T oV TN aT DN
From dA = —SdT — pdV + udN we get (Maxwell relation)

9\ _ (o
WV )ry \OT ),y
So,

(Cp,—Cv) _(Op oV
T —\oT vn \NOT )y

and we get

I

=
—
SIS
~—
—

|®

ap) (31})2
:_N(_ LR
(9T>p ov)p\0T' ),

QT
—_————
_<%)T(@)p stability >0




Thus, we have suceeded at relating C), — Cy to the isothermal compressibility

1 (0v
kp=—— | —
4 v \Op/,
and the coefficient of thermal expansion (0v/0T),.

Here is something else you can show: Let

Kg = 1 (8_V) , adiabatic compressibility
V\op/)gn
The ratio
2 (3,2,
s NS5 (), ()
_ (Ov/0p)r _ (Ov/0p)r
~ (), 60,5, (%), — (), (5
Thus
rr_ Gy
RS N CV

and since C}, > Cy folows kp > kg, another connection between different

experiments.

3.6 Thermodynamics of rubber bands

We need not confine our thoughts to gases. For example, consider a rubber
band

f (tension or force)

R —
L (length)
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In this case

dW = +fdL

We will consider only those processes where the mass of the rubber band

remains fixed; so, we have no counter part to ud/N in the differential for .

Hence, the First and Second Laws at equilibrium give
dE=TdS+ fdL = FE=FE(S,L)

As with gases, T constant and f constant throughout material are conditions

for equilibrium. Stability criteria are conditions like
oS Cy
8L> (8L)
— ] >0 and — ] >0
(3f s of ) r

oL oL
— > 0 implies that — >0
(af)s Y (af>T

oL oL
dL = (a—f)sdf+ <%>fd5

and (note sign!)

Note also that

Here, is how:

So,
(57), - (7). (55), (5)
of ), of ) s 95 ) , \of ) 1
From
d(E—-TS — fL)=—-5dT — Ldf
follows

(37, = (@),

7



Hence,

AN

S \of ) or); Cy
r .. .
——positive due to stability
Cy

(57), > (37), >
of ) of ) ¢

An auxiliary function in this case is

d(E —TS) = —SdT + fdL

from which we see, for example that

95 _ _(or
oL ) N or),
—— ———
related to heat related to

measurements equation of state

f:f(TvL)

We can thus interrelate different macroscopic measurements, and by applying
stability criteria, make some predictions.

What might you expect from the molecular nature of rubber bands?

L L L+AL
- - B ——
TR I s }—bf AR A A RN AN f > P —

PV P TARVARVARVAVAVARVA P e e
non-equilibrium band equilibrium band

stretched equilibrium banc
with tangled polymers with polymers stretched ot

and relatively ordered

with untangled polymers
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e.g. Polyethylene

—CH,

CH—CH, —CH, CH,
i i pum— /

CH+—C(H, CH=—CH, CH=—CH,

CH—CH, CH,
polymers get shorter by

increased disorder
scheme 053
The expanded rubber band is more ordered than the contracted rubber band.

One thing you can verify is that if you pull on a rubber band adiabatically,

its temperature goes up. That is

0_T >0 o 8_T >0
oL ) ¢ bo\or ),

Either one, they are equivalent. To see why, use the chain rule

(o).~ (&), (an),

(0f/OL)g is positive due to stability, thus (g—f)s > 0 holds only if (g—?)s >0

too.

The experimental fact is certainly reasonable in light of the molecular picture
of the polymers. Specifically, stretching polymers removes gauche conform-
ers, the trans conformers have lower energy. The energy therefore released

(into vibrations, for example) causes temperature to rise.
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gauche trans gauche

scheme 054

Quite generally, however, without recourse to molecular models, we can use

the experimental fact, (0T /OL)s > 0, to make a prediction about the sign of

oL Does a rubber band under constant tension
oT f

expand or contract when heated?

Here is what we can do: (use chain rule and definition of heat capacity)
(or), = (), (ar), = (), 7
or) 95),\oT ), o5 ), T
Next, to analyse L(S, f), think about
d(E—Lf)=TdS — Ldf

where we have made use of dE/ = TdS + fdL. We can derive a Maxwell

relation
ory\ oL
of ) g B 95 )
So,
(8L) o (8T> C;
oT s of )¢ T
) — (a_z:) negative according to experiment )
With o s we predict
-+ positive according to stability

oL
(8_T>f <0

30



i.e., heat a rubber band and it should shrink (could be checked by experi-

ment).
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Chapter 4

Chemical Potential and Mass

Equilibrium

4.1 Conditions for equilibrium

region (1)

region (2)

scheme 060

Regions (1) and (2) could have a hypothetical boundary or a real physical
boundary. Examples of the latter: interface between two phases (e.g. liquid—

vapor) or a membrane separating two different fluids.
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At equilibrium, there are Ne(cll) molecules in region (1), and Néczl) molecules in

I‘egion (2). NOW I‘epal‘tition:
1 1 2 2

Nonzero AN, will make S go down or E go up. Either picture leads to the

condition for equilibrium

(1) 2)

p = p

Similarly, for two components, AFE for repartitioning N,’s is
0< A = (1) = ) AN + (1) = 1) ANz + O((AN)?)

and from this follows

Example : Phase equilibria

hd * ™ L] vapor

liquid

|liquid| _  |gas|
u =Hu

scheme 061

The chemical potential of a one component system can be expressed in terms
of T, P;ie. u= u(T,p). Thus, pH9WD (T p) = 1,839 (T p).

T and P of two phases in equilibria must satisfy conditions of thermal and

mechanical equilibrium

TO 7@ . 0@y
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L™

the slope changes right
at that point

uliqm'd

‘ > P
pliquns{T)
Example : Trans-gauche equilibrium
Cl
cl <!
\
.

Here, thinking about mu as a function of 7" and p.

h
pENROT, py) = (T, )

scheme 062

scheme 063

But we have already figured out conformational equilibrium in terms of the

Boltzmann distribution. Somehow, the conditions of equilibrium involving

1’s must be equivalent to the Boltzmann distribution.

Example : Chemical equilibria

(e — W+
P—

85



scheme 064

Need to do stoichiometry

=Y

AB ap
AB

scheme 065

Nig+AN & Ny—AN, Np—AN

Due to stoichiometric constraints on how we can change Nag and Ny, Npg

0 <AFE = uapANap + taANs + npANp
= (pap — papip) AN

Therefore, the condition of equilibrium is

0= pap — pa— B

Generalization

aA+bB+ - cC+dD+---

has the condition of equilibrium

apis +bug + -+ = cuc + dup + -+ -

To exploit these conditions of equilibrium, we need some thermodynamic

relations, and a molecular model.
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4.2 Gibbs—Duhem equation

Recall,
G=FE-TS+pV

is extensive and satisfies (we consider two components)
dG = —SdT + Vdp + ,U/lle + ,LLQdNQ .
SO, G = G(T,p, N17 NQ)

Consider changing system size. Since G, N; and N, are extensive, but 7" and

p are intensive,

NG = G(T,p, )\]\[17 )\Ng) .

Hence
G = i()\G) = iG(T AN, AN)
T T AR AR
= 1 N1 + paNo

Thus, for any A, and thus A =1

G(T,p, N1, No) = 11 Ny + 12Ny
Thinking about pu;’s as functions of T', p and what else?
Now take total differentials

dG(T7p7 N17N2> = dG(/"Lhﬂ'Q)vaNQ)
=SdT + Vdp + /vblle + Mngg = ,ulle + ,MQdNQ + Nld,ul + NQd,UQ

Gibbs—Duhem equation

SAT — Vdp + Nydpy + Nadgig = 0
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For a one component system
Ndp = —-SdT 4+ Vdp
S

dp = ——Ndl + —Ndp

(@) _y_1
op)r, N p

So, the discontinuity of slope at phase equilibrium tells us the discontinuity

of density.

4.3 Partial molar quantities

For an arbitrary extensive quantity Y, we define a partial molar quantity

oY
= (ax)
ONi ) 1N,

Example: partial molar volume

oV
? T,p,Nj;ﬁi

Therefore, the partial molar volume of component ¢ of a system is the differ-

ential change of volume per added number of particles. The process is per-

formed at constant temperature, presure, and amount of particles of other

types.

Y is a function of T', p, N;. Hence,

Y )% Y
= (%) are(5) e+ (5y) an
or ), , ), - ON; ) 1 Nji

Y Y
— <8_> dT + (a_) dp+ ) _YidN; .
or p,N; dp T,N; i

Reuse arguments of extending system by factor A ...
(Recall result for G: G(T',p, N;) = >, jt;[V;)
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to get in general
Y =) YN .

We also see that the partial molar Gibbs free energy is the chemical potential

Mobolfraction as independent variable in a homogenous binary phase.

Ny

No
= — 1—2)=
N1+ Ny ( )

mol fraction T = —
Ny + Ny

Gibbs—Duhem equation

Think of the chemical potentials as functions of 7', p, and the mol fraction x

O O O
T— Ny | ==dT + — e
Sd Vdp + 1(8Td + ap p+ axdx
Oz Oz Opia
N _“ R R — =
+1(8Td +8pd+8d 0
With
oy V ouy S
(&), =~ = (), =%
we get

SAT —Vdp— (51 + S2)dT + (Vi + Vo) dp+ (Nl% + Ng%) de =0 .
~—_—— ~—— x x
S 1%
Therefore,
PR AL/
x x



4.4 1Ideal solution chemical potential

A molecular picture

V=MAv

scheme 066

How many ways can we arrange N solute molecules in the above volume?

ideal = no correlation between solute molecules
MN
)= —
N!

The corresponding entropy is

M 1
S =kgInQ) = Nkp (lnﬁ—l—l) =kgN (ln (WTU) +1>

Consider the solution at £ = const. and V = const.

_ K 05N _ R
ds = TdN = (aN)VE— T—kBlnpAv

So, the configurational contribution to the chemical potential:

Bu = In pAv

Let’s consider now what happens if we reversibly create a particle (solute) in

the solvent. The chemical potential is related to the Helmholtz free energy

_ (04
PN ),y

90



or for AN =1

We know that A = kgT In Q) and therefore

1 1
Ap = _B In Qgolute + B In Qgolvent

Using the Boltzmann formula for the partition functions, we get

—ﬁE-
e BAL — Zje ’

> e
where the sums run over all solvent states with solute fixed. The energy E’j
is from the system with the solute fixed in one cell, and the energy F; is for

the same configuration but no solute present.

e P81 is a measure of the solvation energy, and Ay is independent of Psolute
depends on T" and pgqjyent- Finally, we can define a chemical potential for

an ideal solution, namely

| B = BAp+ In pAv

We are not done yet!

Standard states Can only measure differences in chemical potentials. We

cannot measure absolute chemical potentials.

For example, we can measure u at a particular volume (pressure)
fu = BAL+1InpV +1InAv/V

Remember that the density p has units of 1/volume.

In general
Bu = BAp + In pAv + constant

Consider

B = BAp~+Inp/pgolyvent + 1 Psolvent AV
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Absorb the last term into SAu and define

P _ Neolute ~ Neolute — X,
Psolvent N, solvent N, solvent T N, solute

Thus, the more familiar equation (usually found in textbooks) Raoult’s Law

‘BN = Bu* +In Xy

4.5 Chemical potential and reversible work

For an ideal solution

Bu = BAp + In p + constant

Ap free energy of one fixed solute. It includes the
solvation energy — the free energy change of
the solvent to accomodate one solute.
where p concentration or density of solutes — always with ~ Anideal
respect to a standard state (units!)
constant physically irrelevant constant; its value establishes

convention of standard state (see p).
solution is one in which concentration of solutes is very low — low enough that

different solute molecules are uncorrelated. Thus, p~! must be much larger

than any relevant (molecular length scale)?.

An ideal solution at the molecular scale
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Interested just in a few molecules! Then call those specific few molecules the

solutes, and the whole system is an ideal solution.

Example Isomerization of 1,2 dichloroethane.

First in vacuum

cl <!
\
—» M

scheme 063

Let

AFE = energy of gauche state - energy of trans state

Condition of chemical equilibrium

Mg = [t

or

BApg + In pg + constant = BAp + In py + constant

We use the same standard state, so the constant drops out.

So,
s/ Pt = e P(Bug—Ant)

This is also true in solution!
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Next consider the gas phase Ap.

e PAlrg — Z o BE; _ 9. o~ BAE+E)
all gauche//states j
e Pl — Z e PEi — 1. PE:

all trans//states j
Pg/py =2 e PAE _ —B(AE-kpTIn2)

The common energy F; drops out and in the final equation we have an energy

(AFE) and an entropy (kg7 In2) contribution to equilibrium.

Chemical equilibrium in solution requires an analysis of Ap more general

than that given above. We consider that now.

In the next few remarks, we will work with the canonical distribution law
— energy fluctuates but N is fixed. The remarks are general, however, and

apply equally well when N fluctuates too. Convince yourself that this is true.

Grab onto a few degrees of freedom. We will call them special or tagged
degrees of freedom. Perhaps they are the positions of a few atoms. Held

them fixed, and allow all other degrees of freedom to fluctuate.

tagged degrees of freedom

O 0 le) 0
O O

©0°/e 50 o 6;;)0\50 %50
O O/o 0 OO o O o
©_ro 00 o R0 O
O. 0o O ® O 'e)

o0 (ONNe) O O O O OO
O 0 0 0o OO 00 ©
one configuration anhother configuration
(microscopic state a little later, tagged DOF
of fluctuation) are fixed during evolution

scheme 068
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The resulting partition function (the Boltzmann weighted sum over all fluc-

tuations) is

) J;,...,xn , ,N’V = efﬁEz
o o RAIENDY
fixed coordinates i, with
xl,...,xnﬁxed

Consider the variation of @ w.r.t. the fixed coordinates

81‘1 N Q ; ¢ ( 58ZE1>
(xl,...,xnﬁXed)

Note,

(—0FE;/0x1) = force on degree of freedom 1 when system is in

the ith microscopic state (instantaneous fluctuation)

which allows us to write

8371

olnQ B average force on degree of freedom 1
given that xy, ..., x, are fixed

similar results hold for d1n Q/@xi, 1=2,3,...,Mn.

The integration of the average force yields a work, a reversible work since
for each configuration of the tagged degrees of freedom, all fluctuations are

Boltzmann averaged. Thus the quantity W (z; ...x,) defined by

InQ(xy...2,;8,N, V)= —=pW(xy...2,; 8, N, V)

has the interpretation of a reversible work surface, sometimes called a poten-

tial of mean force or a free energy surface.

Suppose you observe some property, f, which depends explicitely upon the

special coordinates only, i.e., f = f(x;...x,). Its observed or averaged value
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18

(fy =2 fie By Y e
=Y X g ye

x1...Tn Z’//ml,,,xnﬁxed
1

Zrl.“zn e—BW(Ltl-..:Bn)

= 3 flar..xy)e W)

T1...Tn

Alternatively, we could write

(f) = Z flzy. . xpy)Pxy ... xy)

T1...Tn

where P(zy...z,) = probability of oberving the system with the special

coordinates of xy ... x,.

If the x;’s are truly coordinates, we should use an integral rather than a sum

(f) —/dx1~~/dxnf(xl...xn)P(xl...xn)

in which case P(x1...x,) is then the probability distribution (or density) for

T1...Tp.

Comparision of the two results for (f) implies
P(xl - xn) o< e_/BW(xL..:cn)

where the constant of proportionality is the normalization constant.

In summary (This is important = The basis of everything)

exp [—f(reversible work surface forz; ... xz,)]
= Boltzmann weighted sum over all fluctuations with z; ...z, fixed

probability for observing system with the special

(tagged) degrees of freedom at x; ...z,

Note, that e #4 = Q = >, e7PFi is a special case of the above principle.

96



4.6 Free energy calculations

4.6.1 Helmholtz free energy from computer simula-

tions

.. [ dpdpeBH@.T)
A—kBTan(N,v,T)__kBTln(f J dpdre )

N
p, T position and momentum of all particles
[+ [ dpdr integral over all phase space

= all possible realisations of the system Including
H(p,r) =T(p) +V(r) total energy function of the system

N normalization constant
the following integral in the formula for the free energy

we get

A k Tl (f cee fdpdlrleﬁﬂ(pv'r)eﬁ%(pvr))
= KB n

f fdpdfre*ﬁ%(pv"')
The probability density is

e_ﬂ’H(pv"')

e f dpdfre—ﬁH(pﬂ')

A=kgTIn (/ e /dpd’rem'[(p”"))

This quantity is difficult to sample because of

P(p,'l"): f

and we have

H(p,r) = large — PP very large
— P(p, r)very small
H(p, ) = small — HPTIgmall

— P(p,r)large
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Numerical methods (molecular dynamics, Monte Carlo) will sample mostly
states with H small — very bad convergence. It is therefore very difficult to

determine A accurately.

The same is true in experiment. We measure usually AA or derivatives of A
0A 0A/T
— = —p or —/ =F
OV ) 0T )y n

4.6.2 Thermodynamic perturbation

R.W. Zwanzig, J. Chem. Phys. 22 1420-1426 (1954)

We consider two systems X and Y, e.g. ethanol in water and ethanthiol in

water. The energy functions of the systems are Hyx and Hy .

The free energy difference between the two systems is

AA= Ay — Ay = —kgTln &
Qx

This can be computed from

f ...fdpdfre_/B,HY(p’T)
f ...fdpdrre—ﬁ%x(p:r)

f fdpd'l‘e_BHY(p’r)eﬁHX(Pa”’)e—ﬂ'HX(p,r)
f cee fdpdfre—BHx(p,'l‘) )

AA = —kBTln (

= —kBT In (

where (-) x stands for a canonical sampling over distribution of system X.

A completely analogous derivation also leads to

AA = kgTIn <e—B(Hx(P,T)—HY(PJ‘))>Y

with a sampling over the distribution of system Y.
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configurations

AA=Ay — Ax
= (AY—A1)+(A1—AX)

—kBT In (

kg7 In <e—ﬁ(HY(P,r)—H1(p,r))>1 — kgTIn <e—,8(H1(p,r)—HX (p,'r))>X

Qr @
Ql QX

YA b

Solution: intermediate systems

)
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A problem arises if the phase spaces sampled for systems X and Y do not
sufficiently overlap: [[(Hy (p,r) — Hx(p,7))| > kT




Generalization to N systems

AA=Ay — Ax
= (Ay —An) + (Ay — An-1) + -+ (A — Ax)

Implementation: Parametrization of system energy

H()\) with HA=0) =y
HA=1)=Hy
A\AA
AAlx=y]|
0 0!25 075 0!75 T

scheme 071

4.6.3 Thermodynamic integration

We make the assupmtion that the Helmholtz free energy is a continuous

function of a parameter \.

AN = —kpTIn Q(N)
AA=AN=1)— A\ =0)

_ [19AW)

M= [ =TS
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We get

_ TomQWT] L [f —keT 9Q(N)
Q) :N/.../dpdTe—ﬁH(p,r,A)
(9an A) N/ /dpd'r H(p, T, )\)e*ﬂH(p,r,)\)
O\
aA = _La—Q —BH(p,r,\)
(” — BQOA N/ /dpdrm

[ [ (5) - (5),

Final result

Implementation:
oH
24=3(55),

Numerical integration of integral over A. For each integration point \; do a

simulation and calculate the Boltzmann averaged value of %—7/\{

oH 4
(S

AA

scheme 072
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4.6.4 Umbrella sampling

Allows sampling in otherwise seldom visited regions of phase space using a
bias potential W (r).

Define a new total potential function
Viir)=V(r)+W(r)

Choose W (r) in such a way, that you get good sampling close to 7o, e.g.
W(r) = kw(r —r)?

The sampling with V’(r) will result in a non-Boltzmann distribution (w.r.t.
V(r).

Correction of biased sampling:

We are looking for
- f fdpdre_ﬁﬂ(p,"')

The biased average of an observable A calcuated is

(A)bias = [+ [ dpdrAe #H ®m)
bias — f,,.fdpdre,[g%/(pm)

(4)

The biased average for a function Ae®" is

swy [ [dpdrAe PRV [ [ dpdr AePH
<Ae >biaS - / - /
f fdpdre—ﬂH f fdpdre_B’H

The biased average for a function eV is

vy, dpdre W[ e
bias [ [ dpdre=8% [ [ dpdre=5¥

Using the two biased averages we can calculate the unbiased average of the

original function A
<A66W>bias

<eﬂW > bias

(4) =
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Abstract: The role of aqueous solvation on the potential surface of the Sy2 Menshutkin reaction between ammonia and
methyl chloride has been examined by using a combined quantum mechanical and statistical mechanical method. In
the present simulation approach, the reactant molecules are treated by the semiempirical AM1 theory, while the solvent
isrepresented by the empirical TIP3P model. Solute—solvent interactions are evaluated through Hartree—Fock molecular
orbital calculations throughout the fluid simulation. In this paper, it is first demonstrated, by comparison with high-
level ab initio results, that this hybrid quantum mechanical and molecular mechanical (QM/MM-AM1/TIP3P) model
can provide an adequate description of intermolecular interactions between the solute and solvent for the Menshutkin
reaction. The free energy surface in aqueous solution is then determined via statistical perturbation theory with a grid
search algorithm. The results suggest that the solvent effects strongly stabilize the transition state and products. The
computed free energy of activation (26 kcal/mol) is in good agreement with previous theoretical and experimental
estimates. The most striking finding is that the transition state is shifted significantly toward the reactants, with a
lengthening of the C-N bond by 0.30 A and a shortening of the C—Cl bond by 0.15 A. This is in accord with the
Hammond postulate and consistent with previous theoretical studies. Analyses of the simulation results indicate that
the charge separation during the present Type II Sy2 reaction is promoted by-the solvent effect, with a charge transfer
of about 65% complete at the transitionstate. Detailed insightsinto the structural and energetic nature of the differential
solvation of the reactants and transition state are provided.

Introduction

The bimolecular nucleophilic substitution reaction is one of
the most fundamental processes in organic chemistry and has
attracted numerous experimental and theoretical investigations.i-
In his classic work, Ingold classified nucleophilic substitutions
into four categories according to the charge type of the nucleophile,
being negative or neutral, and of the substrate, being neutral or
positive.! This classification has helped qualitatively to explain
the dramatic solvent effect on the rate of SN2 reactions observed
experimentally on the basis of charge distributions of the reactant
and the transition state.!# Quantitative characterization of the
solute-solvent interaction at the molecular level, however, was
only recently made possible, thanks to advances in computer
technology and accurate free energy computational techniques.
In particular, much attention has been paid to the prototypical
Type I Sn2 reaction of Cl- + CH;Cl — CICH; + ClI-, involving
ananionand a neutral substrate in aqueous and organic solvents.>®
To further our understanding of the solvation effect on Sn2
reactions, extension of theory to other charge types is warranted.

t Taken in part from the Ph.D. dissertation of X.X., SUNY, Buffalo, 1993.

® Abstract published in Advance ACS Abstracts, October 1, 1993.
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Much progress has been made in elucidating the intrinsic
properties of gas-phase Sn2 reactions through quantum me-
chanical abinitio calculations. The double-well potential energy
surface for the Type I reaction® predicted by early theoretical
studies was confirmed by the extensive experimental work of
Brauman and co-workers.!%!! In addition, ab initio calculations
provide valuable information on the transition-state (TS) structure
and charge distributions along the whole reaction coordinate.
Recently, these computations have been extended to condensed-
phase simulations using statistical mechanical Monte Carlo and
molecular dynamics techniques.>8 This was led by the calculation
of the reaction profile involving chloride and methyl chloride in
aqueous and DMF solutions.® The striking solvent effect observed
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experimentally was demonstrated by a predicted increase of 15
kcal/mol in activation free energy over its intrinsic (in vacuo)
barrier.5

In the present study, we report the results of a theoretical
examination of a Type II Sy2 reaction, the Menshutkin reaction
in aqueous solution,!:42

H,N + CH,Cl — H,NCH," + CI"

using the combined quantum mechanical and molecular me-
chanical (QM/MM) Monte Carlo simulation method described
previously.!? Several issues are of interest in this reaction. First,
TS structures are generally expected to be different in the gas
phaseandinsolution. Thisisnota serious problem for symmetric
reactions because the solvent effects are the same on both sides
of the TS along the reaction coordinate. Thus, the structural
change is not expected to be considerably large and has been
confirmed by Jorgensen and Buckner for the Type I reaction in
water.5* However, switching to a system consisting of a neutral
nucleophile and substrate (Type II), in which large charge
separation occurs during the reaction, should yield an “uneven”
solvation effect that is accompanied by a reduction of the reaction
barrier and a shift in the TS structure according to the Hammond
postulate.!® In a recent communication, we reported the results
of a study of the Menshutkin reaction using empirical potential
functions.!¥ That work, along with the study of Soli et al.,!’
confirmed the empirical expectation and demonstrated that the
solvent effect can, indeed, significantly modify the position of the
transition state. Consequently, the solvent effect should be
included in the electronic structure calculations to determine the
reaction path in solution. Second, the solvent effect on the
polarization of the reactants is expected to enhance the charge
separation of the Menshutkin reaction over that of the reaction
in the gas phase.!4!3 Although this would be very difficult to
investigate using empirical potential functions, the problem is
naturally solved by the QM /MM method because the solvent
effect is coupled into the electronic structure calculation in fluid
simulations.!31¢ Therefore, additional insights into the solvent
effect may be inferred from the QM /MM simulation. Finally,
it is desirable to locate the minimum free energy path for the
Menshutkin reaction in solution rather than to follow the reaction
path of the gas-phase process.5-%14

In this report, we have extended our study to cover the free
energy surface of the Menshutkin reaction by mapping out the
bond formation and breaking process independently. Theresults
provide new insights into the structure and energetics for the
understanding of Sn2 reactions in solution. In the following,
computational details are given first, followed by results and
discussion.

Computational Details

(a) Intermolecular Potential Functions. Inthe present study, we adopt
a combined QM /MM approach in statistical mechanical Monte Carlo
simulations. The method has been reviewed recently by several authors;
additional details are in ref 12. Here, the fluid system is partitioned into
a quantum mechanical region consisting of the solute molecule, H3N-
CH;-Cl,and a molecular mechanical region containing solvent monomers
which are approximated by the three-site TIP3P model for water.!6:19

(12) For reviews, see: (a) Field, M. J.; Bash, P. A.; Karplus, M. J. Comput.
Chem. 1990, 11,700. (b) Luzhkov, V.; Warshel, A. J. Comput. Chem. 1992,
13,199. (c) Gao, J. J. Phys. Chem. 1992, 96, 537. Methods using continuum
models such as the self-consistent reaction field theory are also relevant but
are not specifically discussed. For recent applications and leading references,
see: (d) Cramer, C. J.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 8305.
(e) Karelson, M. M.; Zerner, M. C. J. Phys. Chem. 1992, 96, 6949.

(13) See, for example: (a) Issacs, N. S. Physical Organic Chemistry; John
Wiley & Sons, Inc.: New York, 1987. (b) Connors, K. A. Chemical Kinetics:
the Study of Reaction Rates in Solution; VCH: New York, 1990.

(14) Gao, J. J. Am. Chem. Soc. 1991, 113, 7796.

(15) Sola, M,; Lledos, A.; Duran, M.; Bertran, J.; Abboud, J. M. J. Am.
Chem. Soc. 1991, 113, 2873.

(16) Gao, J.; Xia, X. Science 1992, 258, 631.

Gao and Xia

Table I. Lennard-Jones Parameters Used in the AM1/TIP3P
Model

atom oA ¢, keal/mol
H;N-CH;-Cl
C 3.4000 0.1000
N 3.0875 0.1615
Cl 4.1964 0.1119
Hc¢ 2.0000 0.0700
Hn 0.0 0.0
Water
[0} 3.1506 0.1521
H 0.0 0.0

Clearly, to compute the energies of the QM solute molecule throughout
the condensed-phase simulation, a computationally efficient method must
be used. Therefore, the semiempirical Austin Model 1 (AM1) theory
developed by Dewar and co-workers!? is employed to form the AM1/
TIP3P force field in this study.!2s° Warshel and co-workers have used
the empirical valence bond (EVB) theory in their study of the Type I SN2
reaction and enzymatic processes.5d:12b

For the QM region, the solute is represented by valence electrons and
nuclei. The restricted Hartree—Fock wave function, ®, is used with a
single Slater determinant of alldoubly occupied molecular orbitals (MOs),
which are linear combinations of a minimum basis set.!”!® The total
effective Hamiltonian of the system is given by!2

Hy=H + I?QM/MM + Hy )

where A° is the AM1 Hamiltonian for the solute molecule, Ay is the
molecular mechanical solvent energy, and Hqm/mm is the solute—solvent
interaction Hamiltonian (eq 2),

Ao = ﬁgM/MM + FI&“«’/MM
S 2eq s MqgZ
(rEepri).
s=1 =1 Tsi s=] m=} Rsm
s i [(am)lz (am)s]
4l —) -\=—) | @
;m-l - le Run

where e is the charge of electrons, g; and Zy, are charges on the solvent
and solute nuclei, S and M are the corresponding total numbers of
interaction sites, and r, and R, are the distances of the solute electrons
and nuclei from the solvent sites, respectively. The Lennard-Jones term
in eq 2 accounts for the dispersion interaction between the QM and MM
regions, which are omitted in the hybrid QM/MM approximation;!é it
contains the only adjustable parameters for the solute (o and ep) in the
present approach. These parametersarelisted in TableI. The combining
rules used for the solute-solvent interaction are oym = (d30m)!/? and em
= (&€m) /2.

The total potential energy in the combined QM /MM force field is
computed using eq 3,

Ey = (B|Hd®) = Eqy + Egvymm + Eg}y/MM +Eyy )

Here, & is the wave function of the solute in aqueous solution, Emy is
the MM pair interaction energy for the solvent molecules enumerated
with the empirical TIP3P potential, and (Eqm + ESM /MM) is determined
through Hartree-Fock self-consistent-field (SCF) MO calculations.
As usual, the intermolecular interaction energy for a water dimer in
the MM region is given as the sum of Coulombic interactions between
all atomic pairs plus a Lennard-Jones term between the two oxygen atoms
(eq 4). The three-site TIP3P model is employed for water, with
experimental geometry held fixed throughout the simulations.!®

ong onb

AE,, = Zz<qm/m) + deol(900/700)'? = (000/700)*]  (4)
7

(b) Geometrical Constraints. Due to the symmetry of the Menshutkin
reaction of H3N + CH;Cl, the three non-hydrogen atoms, N, C, and Cl,

(17) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F; Stewart, J. J. P. J.
Am. Chem. Soc. 1985, 107, 3902.

(18) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A, Ab Initio
Molecular Orbital Theory; Wiley; New York, 1986.

(19) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W,;
Klein, M. L. J. Chem. Phys. 1983, 79, 926.
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are constrained to be collinear along the C; symmetry axis. Dihedral
variations of H3N and CHj groups about the C-N bond are allowed
during the Monte Carlo simulation.2% The bond length and bond angles
associated with the hydrogen atoms are optimized at a fixed H-N-C-H
dihedral angle sampled in the calculation.

(¢) Monte Carlo Simulations. Statistical mechanical Monte Carlo
calculations were carried out in the isothermal-isobaric (NPT) ensemble
at25°Cand 1 atm.20 A cubic box containing 265 water molecules (ca.
20 X 20 X 20 A3%) was used in the free energy surface calculation, whereas
a rectangular box consisting of 321 water molecules (ca. 19 X 19 X 28
A?%) was employed for computing the reaction profile (see below) to allow
adequate sampling at large separation distances along the reaction
coordinate (RC). Inthelatter simulation, the C;symmetryaxisisoriented
to coincide with the z-axis of the water box. Standard Metropolis sampling
procedures were adopted along with the Owicki-Scheraga preferential
sampling technique using 1/(r2 + ¢) weighting, where ¢ = 150 A2, to
facilitate the statistics near the solute molecule.! At least 5 X 10°
configurations were taken in the equilibration stage for each point on the
free energy surface, while 108 configurations were collected to compute
the statistical averages. The solute-solvent interaction energy was
evaluated by single-point Hartree—Fock SCF calculations using the
effective Hamiltonian of eq 1. The intermolecular interactions are
feathered to zero between spherical cutoff distances of 9.0 and 9.5 A for
water-water and solute—water interactions, based roughly on the center-
of-mass separation. New configurations were generated by randomly
selecting a molecule, translatingit in all three Cartesian directions, rotating
it along a randomly chosen axis, and varying the internal rotation. An
acceptance rate of about 40% was maintained by using ranges of £0.11
A and 10° for molecular motions. Volume changes were restricted to
within £100 A2 at every 1625 configurations. Standard deviations are
estimated from averages of blocks 10° configurations.

(d) Free Energy Surface. In order to assess the solvent effects on the
TS structure of the prototypical Menshutkin reaction, H3N + CH3;Cl —
CH;NH;* + CI, in aqueous solution, a two-dimensional free energy
surface was constructed through a grid search method. The two
independent coordinates of the map are C-N distance Rcn and C-Cl
distance Reci. The grid searching was carried out in a rectangular region
of 1.406 A < Rcn < 2.406 A and 1.744 A < Reqy < 2.444 A, while
statistical perturbation theory was used to compute free energy differences
between neighboring grid points.?? Specifically, at a given value of Recy,
a series of perturbation calculations with ARcn = £0.05 A were carried
out to yield a free energy profile as a function of Ren. The relative
heights of two such neighboring profiles (parallel to each other) at an
interval of 0.10 A were determined by another perturbation calculation
with respect to Rcc at a fixed Rey value. Finally, the potential surface
was anchored relative to the free energy at an RC of -2.0 A (see below).
Hence, the whole free energy surface was constructed (Figure 1) through
a total of 87 simulations. The numerical results are summarized in the
supplementary material.

We note that Warshel and co-workers introduced an elaborate method
that employs a mapping function to drive the reactant state to the product
state.5412523 The free energy of activation for the reaction is then recovered
by an umbrella-sampling-type treatment,2¥ making use of the energy
gap, Ae, between the products and reactants on the mapping function
potential surface as the reaction coordinate.8423® The method is
particularly advantageous for use with the EVB approach, which has
been applied to many chemical and biological systems by these authors.2?
The method, of course, can be used with the MO approach as described
inref 12b. Effectively, the method gives the probability of reaching the

(20) All simulations were performed using (a) MCQUB (Monte Carlo
QM /MM at University at Buffalo, Gao, J., SUNY at Buffalo, 1992) and (b)
BOSS (Version 2.9; Jorgensen, W. L., Yale University, 1990) programs. (c)
The quantum mechanical energy was evalulated with MOPAC (Stewart, J.
J.P. MOPAC, Version 5; Quantum Chemistry Program Exchange 455, 1986,
Vol. 6, No. 391,

(21) (a) Owicki, J. C.; Sheraga, H. A. Chem. Phys. Lett. 1977, 47, 600.
(b) Owicki, J. C. ACS Symp. Ser. 1978, 86, 159. (c) Jorgensen, W. L.; Bigot,
B.; Chandrasekhar, J. J. Am. Chem. Soc. 1982, 104, 4584,

(22) Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420.

(23) (a) Warshel, A. J. Phys. Chem. 1979, 83, 1640. (b) Hwang, J.-K.;
Warshel, A. J. Am. Chem. Soc. 1987, 109, 715. (c) Warshel, A.; Sussman,
F.; Hwang, J.-K. J. Mol. Biol. 1988, 201, 139. (d) Warshel, A.; Agvist, J.
Annu. Rev. Biophys. Biophys. Chem. 1991, 20, 267. (e} Warshel, A. Curr.
Opinion Struct. Biol. 1992, 2, 230. (f) Warshel, A. Computer Modeling of
Chemical Reactions in Enzymes and Solutions; Wiley: New York, 1991,

(24) (a) Patey, G. N.; Valleau, J. P. J. Chem. Phys. 1975, 63, 2334, (b)
Valleau, J. P.; Torrie, G. M. In Statistical Mechanics, Part A: Equilibrium
Technigues; Berne, B. J., Ed.; Plenum: New York, 1977; p 169.

J. Am. Chem. Soc., Vol. 115, No. 21, 1993 9669

/x

Figure 1. Schematic representation of the algorithm used in calculating
the free energy map. X represents the C~Cl distance, and Y is the C-N
separation in the Menshutkin reaction. In the first step, free energy
profiles in the Y direction are constructed by perturbing Y with fixed X
values. These profiles are then connected by perturbations with respect
to X.

transition state from the reactant state, while the energy of the transition
state (which is defined by Ae) results from a distribution of solute
geometries in solution, Thus, structural constraints are not involved in
these calculations, though the mapping function provides an energetic
restriction. On the other hand, the present grid approach, as in many
applications reported in the literature,>S yields the potential of mean
force for the reaction if a one-dimensional reaction coordinate is used or
the solvent-averaged free energy surface with a multiple-dimensional
reaction coordinate.

Recently, Pearlman and Kollman proposed a method for establishing
the free energy surface using statistical perturbation theory.2 They
suggested perturbing the two independent variables, the dihedral angles
in their study, in multiple directions. Consequently, several free energy
changes can be obtained from a single fluid simulation. This would,
indeed, be computationally efficient if empirical potentials are used because
the time-limiting stepis the configurational sampling in those simulations.
However, the major cost in the hybrid QM /MM method is the quantum
mechanical MO calculations. Furthermore, multiple-direction mutations
over the present double-wide sampling26 will also significantly increase
the memory requirement in the combined QM /MM method. Thus, the
grid search in the present study is limited to double-wide sampling.26

Gas-Phase Reaction

(a) Potential Surface in the Gas Phase. Inour previousstudy,
the transition-state structure for the Menshutkin reaction of HsN
+ CH;Cl — CH;NH;* + CI- was located through ab initio
molecular orbital calculations at the 6-31 + G(d) level using
GAUSSIAN 90.27 A minimum energy path (MEP) was then
determined by energy minimizations at different values of the
reaction coordinate (RC) defined by!4

where Rccy and Rey are respectively the distances of Cl and N
from C, and RC, is the difference between the C—Cl and C-N
separations at the saddle point. A C;,symmetry was maintained
during the minimizations. Correlation energies were obtained
by single-point energy computations at the MP4SDTQ/6-31 +
G(d) level for all structures considered. The gas-phase free energy
profile was constructed using standard procedures by including
zero-point energy and entropy corrections based on the 6-31 +
G(d) vibrational frequencies.!* In these calculations, ab initio
vibrational frequencies were scaled by a factor of 0.89, and the

(25) Pearlman, D. A.; Kollman, P. A. J. Am. Chem. Soc. 1991, 113,7167.

(26) Jorgensen, W. L.; Ravimohan, C. J. Chem. Phys. 1985, 83, 3050.

(27) Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foreman, J. B.;
Schlegel, H. B.; Raghavachari, K.; Robb, M.; Binkley, J. S.; Gonzalez, C.;
Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker,
J.; Martin, R. L.; Kahn, L. R,; Stewart, J. J. P.; Topiol, S.; Pople, J. A.
GAUSSIAN 90; Gaussian Inc.: Pittsburgh, PA, 1990.
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Table II. Computed and Experimental Energies for the Menshutkin
Reaction in the Gas Phase at 25 °C (kcal/mol)

species AH (AM1) AG (MP4/6-31+G*)* AG (expt)®
H;N + CH;Cl 0 0 0
[HsN-CH;-Cl]* 50.0 46.7
CH;NH;* + CI- 137 119 110

a Reference 14.

resulting vibrations that are lower than 500 cm-! were treated as
rotations. In addition, the normal mode along the reaction
coordinate, which becomes imaginary at the TS, was ignored.
The computed free energy of reaction is in good agreement with
the experimental data (Table II).!142® It should be pointed out
that the reaction path calculated this way is not necessarily the
steepest descent path (SDP) due to the restriction of eq 5. The
SDP or the intrinsic reaction coordinate (IRC) may be obtained
through the reaction-path-following procedure incorporated in
GAUSSIAN 50.

The abinitio free energy profile described above has been used
tocompute the potential of mean force (pmf) for the Menshutkin
reaction in aqueous solution through Monte Carlo simulations
with fitted empirical potential functions.!* Although the com-
puted energetic results are in good agreement with the available
experimental data, there is concern with the predicted transition-
state structure in water because of the dramatic solvent effect.!415
Inthe previous empirical approach, it was not possible to determine
a priori the solvent effect on the change of the reaction profile
in solution. The solvation free energy has to be evaluated
separately and added to the free energy profile in the gas phase.
Consequently, the maximum point on the free energy profile in
solution will always be along the gas-phase MEP. Hence, the
“TS” structure obtained this way is not necessarily the true saddle
point on the free energy surface in solution. A proper treatment
of the solvent effects on the TS structure should couple the solute—
solvent interaction and the chemical process simultaneously and
consider a two-dimensional free energy surface by treating both
bond formation and breaking processes.

Fortunately, the combined QM/MM-AM1/TIP3P Monte
Carlo simulation method provides a viable solution, and it is
adopted in this study. To ensure that the AM1 method is
appropriate to describe the Menshutkin reaction of H;N + CH;-
Cl, structural and energetic results are compared with the ab
initio 6-31 + G(d) findings (Table Il and Figure 2).14 Geometric
variables for the reactant and product molecules predicted by the
AMI1 model are in excellent agreement with predictions by ab
initio calculations at the 6-31 + G(d) level. Thelargestdeviations
areonly 0.04 A for the bond lengths and 1.3° for the bond angles.
On the other hand, the AM1 model yields a much tighter TS
structure than the ab initio approach. At the transition state, the
C-N and C-Cl distances are 1.899 and 2.474 A at the 6-31 +
G(d) level, which are 0.24 and 0.23 A longer than the AM1
values. In addition, the Walden inversion at the methyl group
is about 3.8° more advanced in the AMI1 structure. However,
the ab initio geometric parameters appear to be somewhat
overestimated for the Menshutkin reaction in view of the results
for the SN2 reaction of Cl- + CH;Cl, where the two C—Cl distances
are 2.383 A at the TS.5 In any event, since the primary interest
of the present study is the solvent effect on the change in TS
structure, it seems to be reasonable to use the AM1 geometry in
fluid simulations. An alternative approach would be to use the
ab initio potential surface for the Menshutkin reaction in the gas

(28) Computed from standard free energies of formation: -3.91 (NH3),
-14.38 (CH;Cl), -57.40 (CI-), and 149.2 (CH3;NH;%). JANAF Thermo-
chemical Tables, 3rd ed.; U.S. Government Printing Office; Washington D.C.,
1971. J. Phys. Chem. Ref. Data Suppl. 1982; Vol. 11, 1985; Vol. 14. The
value for CH;NH;* was calculated from the process CH;NH,; + H* — CHj-
NH;*: Aue, D. H.; Webb, H. M.; Bowers, M. T. J. Am. Chem. Soc. 1976,
98, 311. Lias, S. G,; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data
1984, 13, 695.
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Figure 2. Optimized AM1 and 6-31 + G(d) (in parentheses) geometries:
bond lengths in angstroms and angles in degrees.
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Figure 3. Contour of the heat of formation for the Menshutkin reaction,
H;N + CH;3;Cl— CH;3;NH;* + Cl-, in the gas phase determined by AM1
calculations. The contour level is 2 kcal/mol. Values higher than 60 or
less than -25 kcal/mol are not shown. Monte Carlo simulations are
carried out within the rectangular region.

phase, supplementing solvation free energies evaluated with the
AM1/TIP3P model.

The AM1 energy contour for the reaction H;N + CH;Cl —
CH;NH;* + CI- in the gas phase is shown in Figure 3. The
feature of a shallow minimum for the product ion pair predicted
by ab initio calculations is also revealed by the AM1 results.1415
Notethat althoughstandard enthalpies are computed in the AM1
geometry optimization, the numerical results are actually in good
agreement with free energy changes predicted at the MP4SDTQ/
6-31 + G(d) level with 6-31 + G(d) vibrational frequencies (Table
II). Itappearsthatthe AM1 results without entropic corrections
provide a reasonable approximation to the ab initio free energy
profile and thus will be used in the present study (see below).

(b) Bimolecular Interactions. The most crucial element in the
simulation of chemical reactions in solute is the reliability of the
method for computing intermolecular interaction energies at
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Figure 4. Structural arrangements of monohydrated clusters of [Hjs—
CH;-Cl].

different stages of the reaction; of course, it is, too, important for
the solvent effects and associated boundary conditions to be
correctly incorporated into the quantum Hamiltonian.!? Con-
sequently, geometries and interaction energies for solute~water
complexes at different values of Ren and Reg are computed at
theabinitio 6-31 + G(d) level and are compared with predictions
from the QM/MM model, through which the Lennard-Jones
parameters (eq 2) are determined. Values of Rcn and Regy are
chosen along the 6-31 + G(d) MEP corresponding to RCs of
-1.5,-1.0, -0.5, -0.25, -0.1, 0.0, 0.1, 0.25, 0.5, and 0.75. The
abinitio results for these bimolecular complexes with water have
been used to derive the empirical potential function employed in
our previous study of the Menshutkin reaction in water.!* At
each of the selected points, two or three configurations of the
solute—water complex are considered. Figure 4 depicts the
structural arrangement of these bimolecular complexes. Structure
a specifies the hydrogen-bonding interaction between the am-
monium hydrogen and the oxygen of water, while complexes b
and ¢ denote the open and bifurcated forms between water and
CL. In all geometry optimizations (ab initio, QM/MM, and
empirical), monomer geometries are fixed at the 6-31 + G(d)
and experimental values for the reactants and water, respectively,
while hydrogen-bonding parameters that are optimized are
indicated in Figure 4. At the 6-31 + G(d) level, complex a has
the strongest binding energy along the whole RC, whereas complex
¢ forms the weakest complex of the three structures considered.

The ab initio interaction energies are first compared in Figure
5 (top) with those predicted by the empirical potential function
usedinref 14. Asexpected, hydrogen-bonding interactions exhibit
a gradual increase along the reaction coordinate. Excellent
agreement is obtained with a root-mean-square (RMS) deviation
of 0.4 kcal/mol between the two methods; however, the param-
etrization procedure was laborious and required a cubic spline
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Figure 5. Comparison of the solute-solvent interaction energies predicted
by the potential functions (top) and by the AM1/TIP3P modetl (bottom)
vs the 6-31 + G(d) values. A line of slope = 1.0, indicating perfect
agreement, is shown. All energies are in kilocalories per mole.

technique to specify the changes of the potential function
parameters along the RC.14 It is perhaps not even practical to
derive such empirical potentials for the reaction surface considered
here because the empirical parameter fitting would require
consideration of bimolecular interactions spreading over the entire
potential surface.! In contrast, the solute—solvent interaction is
naturally determined in the combined QM /MM treatment.12:16
Figure 5 (bottom) correlates the QM /MM prediction and the ab
initio6-31 + G(d) results. Inthesecalculations, the solute, [HsN—-
CH;-Cl], is treated quantum-mechanically, while water is
represented by the TIP3P model. The accord is good for an
energy range of —1 to —12 kcal/mol; the overall RMS deviation
is 0.5 kcal/mol. Large deviations between the QM /MM and
6-31 + G(d) results are mainly from complex ¢, without which
the RMS deviation would be 0.4 kcal/mol. The agreement
demonstrated here provides strong support for the use of the
QM /MM method to study the Menshutkin reaction in aqueous
solution.

Free Energy Surface in Aqueous Solution

The principal goal of the present study is to determine the
solvent effect on the potential surface of the Menshutkin reaction
in water. This can be achieved by using statistical perturbation
theory in Monte Carlo or molecular dynamics simulations. Itis,
of course, straightforward to compute the potential of mean force
for the reaction along a predefined one-dimensional reaction
path;514 however, the construction of the potential surface requires
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Figure 6. Computed free energy surface for the Type II Sn2 reaction
[H3N-CH3~Cl] in aqueous solution as a function of C-N and C-Cl
separations. The transition state is marked by an X, while the minimum

energy path defined by eq 5 is indicated by the curve across the diagram.
Energies are given in kilocalories per mole, and distances are in angstroms.

knowledge of relative free energies of all grid points (Figure 1)
on the two-dimensional map.2® This is a substantial undertaking
in computational effort, especially with the use of the combined
QM/MM potential. Consequently, emphasis is centered on the
region indicated in Figure 3, where bond forming and breaking
in the Menshutkin reaction take place. The results are shown in
Figure 6, in which the saddle point at Rey = 1.96 A and Reg
=2.09 A is marked by an X, while that in the gas phase is indicated
by an O.

Several technical points should be addressed before the results
are discussed further. First, in the present QM /MM approach,
itis possible to decompose the computed total free energy change
between two adjacent grid points into the intrinsic (gas-phase)
contribution and the free energy of hydration.?® This is accom-
plished by writing the quantum mechanical energy of given C-N
and C-Cl distances Equ(Ren,Rea) (€q 3) in terms of the gas-
phase energy and an energy penalty required to polarized the
electron distribution in solution;!62

Equ(RcnsRec) = Eogns(RCN’RCCl) + AE gy (RensRec)

(6)
Here, E°gy(RenRea) = (B°|H°qu(RensRea)|®° ), and Equ-
(RensRecn) = (B|H° gu(RenyRean)|®), which are the electronic
energies of the reactants in the gas phase and in water. AEgiq
is the electron distortion energy due to solute—solvent interac-
tions,!6-2 and ®° and & are the wave functions of the solute in
the gas phase and in water, respectively. Thus, the solvation free
energy for the Menshutkin reaction can be determined by
subtracting the gas-phase potential (Figure 3) from the aqueous
free energy surface (Figure 6) obtained via the QM/MM
simulations. It should be emphasized that the combined QM/
MM approach has the advantage of taking into account of the
solvent polarization effects that are partially reflected by the
AEg term.'® Generally, this is of great concern if pairwise,
empirical potential functions are used.

Second, the enthalpy change computed with the AM1 method
is used here to approximate the free energy surface for the reaction
of H3N + CH;Cl in the gas phase. Table II shows that the
approximation is quite reasonable since the estimated enthalpy
of activation (50 kcal/mol) is in reasonable accord with the free
energy predicted at the MP4SDTQ/6-31 + G(d) level (47 kcal/
mol). However, the AM1 method overestimates the energy of
reaction for the Menshutkin reaction by 18 (27) kcal/mol
compared with the ab initio (experimental) data.?® The dis-
crepancy is largely due to the poor performance of the AM1

(29) Gao, J. J. Phys. Chem. 1992, 96, 6432.
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Figure 7. Potential of mean force for the Menshutkin reaction in water

(solid curve) and in the gas phase (dashed curve). Thereaction coordinate
is the minimum energy path shown in Figure 6.

theory for the chloride ion, whose heat of formation is predicted
to be 18.2 kcal/mol higher than the experimental number.!? This
difference is expected to be fully transferred into the results from
the QM /MM Monte Carlosimulation; however, it is not expected
to affect the energetics in the region before/near the transition
state.

Finally, a major concern in the present study is the choice of
the independent variables for the reaction surface. A linear
approach of the nucleophile to CH;Cl is assumed, which appears
to be reasonable; however, a full description of the reaction surface
should also include the angular averaging of the nucleophilic
attack. Extension beyond the present two-dimensional surface
that treats the C-Cl and C-N variations independently is
unfortunately beyond our current computational capability. Note
that classical trajectory studies of the Type I SN2 reactions with
a box of solvent molecules have been carried out by Gertner et
al.”® and by Hwang et al,% while Tucker et al® used a
multidimensional transition-state theory, but included only a few
solvent molecules. Itisofinterest to perform similar calculations
using the present QM /MM approach.

The most striking finding in Figure 6 is the shift of the TS
structure that accompanies a dramatic solvent stabilization of
the products. This finding is in good agreement with the prediction
based on the Hammond postulate.!*> The structural change
features a lengthening of the C-N distance of 0.30 A from its
gas-phase value of 1.66 A and a decrease in the C—Cl bond length
by0.15 A (2.09 Ain water). Therefore, the TS of the Menshutkin
reaction occurs much earlier in aqueous solution than in the gas
phase. For comparison, structural changes predicted in our
previous investigation using empirical potentials are +0.15 and
-0.10 A for Rcy and Recy, respectively.* However, that work
differs from the present investigation in two ways: (1) there is
no relaxation of the electronic structure allowed during the
simulation and (2) the gas-phase MEP is held fixed without
consideration of the symmetric stretch along the reaction path.5
The structural change is entirely due to solvation without
consideration of electronic structure relaxation.!4 The present
QM /MM method, on the other hand, allows electronic relaxation
of the reactants on a two-dimensional free energy surface in
aqueous solution through the quantum Hamiltonian.!¢ Conse-
quently, a much more dramatic solvent effect is observed. Note
that a similar Menshutkin reaction involving H3;N and CH;Br
has been studied by Sold et al., using a continuum self-consistent
reaction field method in ab initio molecular orbital calculations.!$
They found similar qualitative features for the TS structure when
a dielectric constant of 78 was used to represent the aqueous
solution.

Figure 7 illustrates the pmf along the reaction path shown in
Figure 6 for the Menshutkin reaction, which has been extended
by additional calculations along the path leading to the reactants
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Figure 8. Free energy of hydration for the Menshutkin reaction in water.

Energies are given in kilocalories per mole relative to the reactants at an
RC=-2A

and products. The RC of Figure 7 is defined by eq 5, but the
TS structure in aqueous solution (Figure 6) is used to specify the
reference state for RCy. In Figure 7, the pmf is zeroed at RC
= -2,0 A, which is virtually flat for RC| = 1.0 A, suggesting that
the SCF-type calculation can provide reasonable estimates for
the energetics for the entire Menshutkin reaction, including the
entrance and exit channels. It should be mentioned that the
potential surface shown in Figure 6 is also anchored relative to
this point (RC =-2.0A). Thecalculated free energy of activation
is 26.3 £ 0.3 kcal/mol in water. Experimental data do notappear
to be available for this particular system, perhaps due to practical
difficulties in using gaseous CH;Cl to carry out these experiments;
however, the result is in accord with the experimental activation
energy (23.5 kcal/mol) for a similar reaction between H;N +
CH;l in water30 and the previously computed value of 25.6 kcal/
mol.!4 The agreement further supports the utilization of the
combined QM/MM-AM1/TIP3P potential in the present study.
For comparison, an activation energy of 8.3 kcal/mol was
predicted by Sold et al. for H;N + CH3Br, which appears to be
too small,!$ indicating that specific consideration of solute-solvent
interactions is important for the present type II Sn2 reaction.

Figure 7 also gives the free energy of reaction, AGyx,, in water
(-18 % kcal/mol), which represents a solvent stabilization of
about 155 kcal/mol relative to the gaseous process. The latter
value is in exact agreement with the prediction of ref 14. The
experimental estimate of AG, from a thermodynamic cycle,
using free energies of hydration and standard free energies of
formation, is about —34 £ 10 kcal/mol.!* As mentioned above,
the AM1 model overestimates the heat of formation of Cl- by 18
kcal/mol.!'” If the experimental value were used, the computed
reaction free energy would be —36 kcal/mol. The calculations
by Sold et al. yield values of -27 to —44 kcal/mol with different
basis sets.!s

A detailed consideration of the free energy surface sheds light
on the nature of the Menshutkin reaction in water. The attack
of H3N toward the substrate leads to a charge separation to yield
methylammonium and chloride ions. The process is extremely
unfavorable in the gas phase due to Coulombic interactions.
Indeed, Menshutkin reactions have never been reported in the
gas phase.’! However, in aqueous solution, the reactants become
better and better solvated as the reaction proceeds, eventually
leading to an exothermic process.!#2 The contour of the free
energy of hydration is depicted in Figure 8, which shows a
continuous enhancement of the reaction toward products.
Therefore, the balance between the increase in energy due to

(30) (a) Okamoto, K.; Fukui, S.; Shingu, H. Bull. Chem. Soc. Jpn. 1967,
40,1920. (b) Okamoto, K.; Fukui, S.; Nitta, I.; Shingu, H. Bull. Chem. Soc.
Jpn. 1967, 40, 2354,

(31) Abraham, M. H. Prog. Phys. Org. Chem. 1974, 11, 1.
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Figure 9. Comparison of the average charge transfer in aqueous solution
(solid curve) and in the gas phase (dashed curve) along the reaction
coordinate for H3N + CH;Cl. Partial charges for the leaving group (Cl)
are given in electrons. Standard errors for the computed atomic charge
in water are about 0.005 e.

charge separation during the reaction and the favorable solvation
effects result in a shift in the position of the transition state and
a reduction of the free energy of activation. Analogously Sold
et al. used a Shaik-type state correlation diagram to rationalize
the solvent effects on the change of the TS structure.!532 It is
also interesting to notice that the pmf in Figure 7 corresponds to
aunimodal energy profile in aqueous solution, which is consistent
with the traditional notion of Sn2 reactions and with the prediction
from the empirical approach.l:1415

Differential Solvation on the Reactants and the Transition
State

(a) Atomic Charges. Additional insight into the solvent effect
can be obtained by analyzing the extent of charge transfer during
the reaction in the gas phase and in aqueous solution. The
computed Mulliken population charges for the leaving group (Cl)
along the reaction path of Figure 7 for both the gas-phase and
the aqueous processes are shown in Figure 9, since it gives a good
indication of the charge development during the reaction. Charge-
population analyses have been performed by Bash et al.% and by
Hwang et al.¢ in their molecular dynamics calculation of the
reaction, CI- + CH;3;Cl — CH,Cl + CI-, using the combined
AM1/TIP3P potential and an EVB approach. Similar cal-
culations have been performed for other systems.”!12b:14.33 [p
contrast to the findings by Bash et al. for the Type I process,
where charge transfer in water lags behind the process in the gas
phase, the Type II reaction exhibits a solvent-promoted charge
separation due to stabilization by interacting with the solvent
molecules. Thisis, of course, consistent with the observed solvent
effect on the activation energies for these reactions. For the
Menshutkin reaction, a charge separation of more than 65% at
the transition state in water is predicted from the QM/MM-
AM1/TIP3P simulation, whereas it is only about 50% in the gas
phase. It should be pointed out that although the Mulliken
population analysis only gives a “rough” estimate of the charge
distributions, the qualitative trends are still informative. Inter-
estingly, the partial charge used in the empirical potential is about
0.7 e on the chlorine atom at the TS.!4

(b) Energy Distributions. Details of the solute—solvent inter-
action are provided in Figure 10, which shows the distribution
of pairinteraction energies between the solute and water molecules.
Three distributions, corresponding to the reactants (RC =-2 A),
TS (RC = 0 A), and products (RC = 2 A), are shown. As
expected, the neutral reactant molecules interact weakly with
the solvent without any specific structural features, while the

(32) Shaik, S. S. Prog. Phys. Org. Chem. 19885, 15, 197.
(33) (a) Cramer, C. J.; Truhlar, D. G. Science, 1992, 256, 213. (b) Tapia,
Q.; Colonna, F.; Angyan, J. G. J. Chim. Phys. 1990, 87, 875.
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Figure 10. Computed solute~solvent energy pair distributions for the
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curve). The ordinate gives the number of water molecules bound by the
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Figure 11. Computed Cl-O radial distribution functions. Dashed curves
are for the reactant, solid curves are for the transition state, and dotted
curves are for the product. This convention is used throughout.

striking pike centered at Eip, = 0 kcal/mol is due to interactions
with distant water molecules. Although ammonia is a good
hydrogen bond acceptor, the close proximity of the substrate
prevents water from forming a hydrogen bond to the lone pair
of electrons on the nitrogen atom. On the other hand, it is well
known, both from gas-phase microwave experiments and theo-
retical investigations, that ammonia is a poor hydrogen bond
donor.?* The pair energy distribution is thus consistent with
bimolecular interactions shownin Figure 6. AtRC=-2A (Ren
=3.5A), the best reactant—water interaction energy is 2.6 kcal/
mol. For the transition state, a hydrogen-bonding band begins
todevelop (solid curve in Figure 10). The bestinteraction energy
from Figure 10 for the TS is —7.6 kcal/mol. Finally, two low-
energy bands are clearly seen for the product ion pair (dotted
curve). Thelowest energy band can be assigned to water molecule
solvating the ammonium ion, while the second peak is for the
chloride ion—-water complex. In fact, the low-energy bands can
nearly be superimposed with pair energy distributions for CHj;-
NH;* and CI- obtained from separate simulations.
Integration of the dotted curve to—12.0 kcal/mol yields about
3.7 water molecules, whereas integration of the second band from
—12.0 to -8.0 kcal/mol reveals another 5 water molecules. The
total number of the water molecules resulting from the first and
second peaks is 8.7, which consists of approximately three CH;-
NH;*—water pairs and six Cl--water pairs. An important
observation is that the number of strong hydrogen-bonding

(34) (a) Nelson, D. D, Jr,; Fraser, G. T.; Klemperer, W, Science 1987,
238, 1670. (b) Del Bene, J. E. J. Phys. Chem. 1988, 92, 2874. (c) Frisch,
M. J.; Del Bene, J. E.; Binkley, J. S.; Schaefer, H. F., II1 J. Chem. Phys. 1986,
84, 227%.
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Figure 12, Computed CI-H rdfs.

interactions increases from O for the reactants at RC = -2 A to
about 9 for the product ion pair. Itis noteworthy torecall findings
for the Type I reaction of CI-+ CH;Clin water, where the number
of hydrogen bonds is roughly constant along the whole reaction
path.® The differential solvation for the reactants and the
transition state in that study is due to variations in the strength
of the hydrogen bonds.’ In contrast, increases both in the total
number of hydrogen bonds and the strength of interaction energies
are critical to the stabilization of the TS and products for this
Type I1 SN2 reaction in aqueous solution.

(c) Radial Distribution Functions. The solute-solvent structure
can be further characterized by the radial distribution functions
(rdfs) shown in Figures 11-15. In these figures, the first atom
for an xy distribution, gy,(r), refers to a solute atom, and the
second atom is either the hydrogen or the oxygen of water. The
rdf g,y (7) gives the probability of finding an atom y at a distance
r from atom x. Here, the dashed, solid, and dotted curves
correspond respectively to the reactants (RC = -2 A), TS (RC
= 0 A), and the products (RC = 2 A) in aqueous solution.

The CI-0 and CI-H distributions in Figures 11 and 12 reveal
the progress of hydrogen-bonding interactions between chlorine
and water during the reaction. The positions of the first peaks
in the C1-O rdfs (Figure 11), are 4.0, 3.6, and 3.2 A for the
reactant, TS, and product, respectively, indicating strengthened
interactions with the solvent in the series. The trend is unam-
biguously demonstrated by the CI-H rdfs in Figure 12 by the
appearance of the hydrogen bond peak at 2.4 A for the transition
state and the striking first peak at 2.3 A for the product chioride
ion. The reactant methyl chloride shows no hydrogen-bonding
interactions between Cl and water, consistent with previous
findings by Chandrasekhar et al. using empirical potential
functions.’® Note that for the product ion-pair structure, there
is also a well-defined second solvation shell centered at 3.5 A in
the CI-H rdf, while the third peak near 5 A can be assigned to
water molecules forming hydrogen bonds with the ammonium
ion. Integration of the first peaks for the product and TS to their
minima at 3 A reveals 6.6 and 3.1 nearest neighbors forming
hydrogen bonds with the chlorine atom. This is in accord with
the prediction based on the integration of the pair energy
distributions, where the number of hydrogen bonds to the chlorine
atom is estimated to be about 6 for the product.

Similar trends exist for hydrogen-bonding interactions between
the nucleophile H3;N and water, In the ammonia HN-O rdfs
(Figure 13), there is no strong interaction between the ammonia
hydrogen and the oxygen of water (dashed line), while a shoulder
in the distribution at the hydrogen-bonding range occurs for the
transition state (solid curve). Integration of the sharp first peak
centered at 1.8 A for the product gives 1.0 hydrogen bonds. Thus,
there are a total of 3 water molecules hydrogen-bound to the
ammonium ion. The progression of hydrogen bonding with the
ammonia group is also indicated by the N-O rdfs given in Figure
14. Note that the location of the sharp first peak for the product
ion pair (2.8 A) is about 1 A (N-H bond length) longer than the
first peak in the Hy—O rdf.
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Figure 15. Computed C-O rdfs.

The C-O (Figure 15) rdfs may give some indication of the
change in solvation at the methyl group that is being attacked
by the nucleophile. However, no special features exist in these
plots, especially for the reactant and transition state. Note that
a strong first peak is shown in the C-O rdf for the product. This
is perhaps due to electrostatic interaction between the ammonium
ion and water, which have been observed for hydrophobic cations
in water.3® Comparing gno (Figure 14) with gco (Figure 15),
two differences are apparent: (1) the distances in the carbon—
water oxygen rdfs are much longer than those in the nitrogen—
water oxygen rdfs and (2) the change in the rdf on going from
the reactant to the product is less dramatic for gco than for gno.
Both observations suggest that theinteraction between the methyl
group and water is weak throughout the reaction.

Conclusions

A comprehensive study of the Type IT Sn2 reaction between
H;N and CH;Clin aqueous solution has been carried out through

(35) Jorgensen, W. L.; Gao, J. J. Phys. Chem. 1986, 90, 2174.
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statistical mechanical Monte Carlo simulations using the com-
bined quantum mechanical and molecular mechanical AM1/
TIP3P potential. The endothermic Menshutkin reaction in the
gas phase is strongly enhanced by the influence of aqueous
solvation. This stems from the fact that a charge separation is
developed in the course of the reaction, giving rise to favorable
solvent stabilizations. The reaction becomes exothermicin water.
The computed free energy of activation and free energy of reaction
are in good agreement with experiment.

A major thrust of the present study is to characterize the solvent
effect on the potential surface and the transition-state structure
for the Menshutkinreaction. Thus,a two-dimensional free energy
surface has beendetermined. The presentstudy hastheadvantage
of taking into account the effect of solute electronic structural
relaxations, while the symmetric stretch along the reaction path
is being considered through the grid search. In accord with
previous theoretical studies and the empirical expectation ac-
cording to the Hammond postulate, an early transition state is
predicted in aqueous solution for the type II Sy2 reaction, with
adramaticincrease in the C—N distance by 0.30 A and a decrease
in the C-Cl separation by 0.15 A at the transition state. When
the gas-phase minimum energy path was used to approximate
the reaction path in water, the change for C-N and C-Cl was
predicted tobe +0.15and—0.10 A, respectively.!4 Clearly, solvent
effects should be included in electronic structure calculations for
asymmetric reactions in condensed phases. The combined QM/
MM simulation method as demonstrated here and in other works
provides a viable approach.

The present calculations also illustrate the power of the
combined QM /MM Monte Carlosimulation method in providing
both qualitative and quantitative insights into the solvent effects
on chemical reactions. Inthe past decade, computer simulations
have greatly enhanced our understanding of chemical processes
and intermolecular interactions in solution. These techniques
have been extended to enzymatic reactions. In the past, these
calculations were performed primarily with the use of effective
pairwise potential functions. Although the classical approxi-
mation is quite reasonable and can provide valuable information
on solute—solvent interactions, the coupling between the solvent
charge distribution and the solute electronic polarization, which
is of central importance for reactions involving heterolytic bond
cleavage,:12is not specifically considered. Further, itis generally
not practical to fit parameters for a potential surface such as the
one studied here. Using the combined QM /MM approach, we
anticipate that a variety of chemical processes, both in solution
and in enzymes, will be investigated with ease.
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4.7 Chemical equilibrium in a solvent

Application of the reversible work principle to isomerization

CH, CH, CH, ¢ :dihedral angle
\ — N\
CH 2—C<1 ) CH——CH, .\)
CH,

scheme 074

Potential energy function

AV ()

AE

scheme 075

V(@) = reversible work surface for nuclei when molecule is in vacuum. It is
the Born—Oppenheimer surface obtained by averaging over electronic fluctu-

taions, i.e. solving the Schrédinger equation.

In a solvent, the reversible work surface for ® is V(®) + AW(®P), where

AW (®) = solvent contribution to free energy, i.e.
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AW (®) + AW (®') reversible work or free energy change
at constant N, V., T
for solvent to accomodate a change of solute

conformation from ®' to ®.

Accordingly the distribution function for ® is
P(®) oxx e PW(®) = ¢=BV(®)o—FAW(2)
X P(®)gse PAV®)

with the gas phase distribution P(®)g.s ox e #V(®),

APgns[qb)
2 ¢
scheme 076
Thus, the equilibrium constant Kx = );—f is given by

X
Te_o / dPP(®)gase P2V®) / dPP(D)gase AV ()
Xt g+ J t ,

integration over integration over

gauch+ region trans region

assume P(®)gs is highly localized near the maximums

~ (ﬁ) o BIAW (2/37) - AW (0)]

~~

this factor is the solvent
shift of Kx
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Another application — Cundall’s experiment (1895) dimerization of NOs.

scheme 077

The condition of chemical equilibrium (constancy of chemical potentials) in

this case is (since there are 2 NOy groups)

2IUN 02 = MNy04
Therefore,

(Boltzmann weighted sum over all
e 2Puno,

fluctuations with 2 NO, groups ) Q(2N O, + solvent)

Boltzmann weighted sum over all ~ Q(pure solvent)
fluctuations with no NOy groups

* The overwelming majority of these fluctuations are those with the 2 NO,

groups far apart. This is why p for 2 NOy’s is twice p for one NOs.

and similarly
Q(N204 + solvent)

e Bunyo, —
Q(pure solvent)

The chemical potential for the two species is

Buno, = BApno, +1npno,
B:U/N2O4 = BANN204 +1In PN204

The Ap’s are independent of the concentrations of tagged molecules (NOs
and NyOy). Therefore,

2BAMN02 +In p?VOQ = ﬂA,uN204 +In PN>04
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or equivalently

= exp{_B[A:uN2O4 - AMNoz]}

We see that K is a constant in the sense that it is independent of the con-

centrations of the tagged species.

This is the Law of Mass Action.

Now, what can we say about solvent effects?

o

reversible work to do thisis L=2.3A
the change in A U's

scheme 078

Assume the chemical bond is very localized and that the NOy groups do not
change significantly during association. The reversible work principle then

gives

K % Ky exp{~BIAW(L) — A (c0)])

To compute solvent effects, we need to compute AW’s.
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4.8 Models for solvent contributions to re-

versible work surfaces

4.8.1 Packing effects, excluded volume

van der Waals diameter

solvent
n-butane

scheme 079

Volume excluded to solvent depends upon conformation of solute, and also

the size and shape of the solvent molecules.

Space filling models: cloud shell species cannot overlap without high energy
cost (due to Puli’s exclusion principle) — high energy compared to kg7T'. The
radius of closest approach is the van der Waals radius or 1/2 the van der

Waals diameter.

For a solvent of diameter o, = 3A, the trans conformer picture above excludes
a volume of about 315A3; and the gauche excludes a volume of roughly 30247,

The excluded volume of gauche is thus about
10A° /molecule ~ 0.061/mol

smaller than that of trans when o, = 3A.

To estimate the free energies associated with changes in excluded volume,
consider packing and fluctuations of hard spheres, the simplest model of
excluded volume effects — sufficient if excluded volume is most important,

and shape effects are not so significant.
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Let (HS: hard sphere),

o diamter of solute
O diameter of solvent
s (N)/V = density of solvent

o0 =0, =0 no interactions

BApns(o,04; ps0°) = Bluns(0, 0s; pso2) — pas(no interactions)]
= excess chemical potential (over that of the ideal gas)

for a hard sphere solute of infinite solution

scheme 080

A region of the hard sphere solute-solvent mixture in an allowed configura-

tion. What would be an example for a forbidden configuration?

Zj e~ B(E;+AEj)

Zj e PE;s

number of allowed configurations with solute inserted

e PAuns —

number of allowed configurations without solute
with sums over all configurations of solvent, £ energy of solvent in con-
figuration j with no solute presence, and AE; is the energy of solvent in

configuration 5 due to presence of solute.

The last equation is true, because for hard spheres, Boltzmann factors are 1

or 0 only, and independent of temperature.
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1 — energy is 0 (no overlap)

0 — energy is oo (overlap)

Hey, this is an entropy calculation! There is actually no energy effect in the

hard sphere model!

The ratio givin e #2##s has been studied numerically with computers which
perform explicitely the Boltzmann weighted sums over fluctuations. Th re-

sulting BAugs has been fit empirically to the following formula:

BApas = (1 — 1) 73 (51 + s9n* + s31°) + s41n(1 —n)
n=(7/6)pso . s =si(0,0,)
s1= 37+ 67" =7’
53 = 3(—27 = 37° +27°)
ss=3(v+7" ="
s4 =372 -2 -1
v=o0/os

One way to use this information:

sphere of diameter o excludes volume 7 /6[o + o,]?

e estimate V' (®) = volume excluded by solute in conformation ®.
e let o(®) be the diameter satisfying V(®) = n/6[o + o,]?
o use fu(®) ~ BAuns(0(P), 05, ps07)

Applied to disubstitued ethane
Cl 3
W
\
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scheme 063

This procedure predicts (precise number depends upon system under inves-
tigation)

BAp(trans) — SAu(gauche) =~ 0.5 — —1
— Xg
=3

These results often agree well with experiment. But there is something else

05tol

KX - KX,gas €

going on too!

4.8.2 Electrostatic effects

Solvation of charge distributions Here, we think about the energetics
of charges coupled to a neutral fluid with charge density fluctuations — a

polarizable system, a dielectric.

scheme 081
The charge ¢ exerts an electric field, €, on the material that solvates it.

m = dipole of the polarizable system.

—

The coupling of a dipole to an electric field gives an energy F = —m - €.

A polarizable system or a dielectric is a material for which an applied electric

field induces a change in polarization, i.e., a change in dipole moment.
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Drude model A simple harmonic model.

\(m)

1
i
+ »Om

scheme 082
om is the deviation of dipole from its average value in uperturbed system.

k(om)?

1
2
%k(ém)z —edm — e(m)g

The last term £(m) is constant and we need not think about it further.

We see that the induced dipole in Drude model is
(5m) 1
m)e = ae = —¢€
k
This is the definition of polarizability a. The result for the Drude model we

get from the equilibrium condition for the perturbed system dV (m)/ddm =

0.
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Another way to look at it: Boltzmann averageof dm This is ther-
modynamic perturbation theory.

d(s —BVo(m)+Bedm 5
(6m), = [ d(ém)e m
T d(8m)e—BVotm)+Bebm

series expansion of %™

S — [ d(0m)e ™ (1 4 Bedm + - -+ )dm
e = T Sm)e PR (1 + Bedm 1)

/d(ém)e_ﬂVO(m)(Sm x (dm)g = (m — (m))o =0

(6m). = eB{(6m)*)o + O(&?)

There, independent of the precise form of Vy(m), we have

o = B((0m)*)o

This is another fluctuation response formula. It says
d(m)
dm)?)o =
(6= (252

(o5 = 20

e=0

which is analogous to

Actually, in 3 dimensions, the answer is

o = B{(om-)0 = G5 ImPo

where dm, is dm in direction of the field and we assume that without field

on, the system is isotropic (factor of 1/3).

For the harmonic Drude model, {(dm)?)y = Bik, which you can easily check.

The average energy due to coupling between a charge and a polarizable sys-
tem is (—(g,0m)), where ¢, is the electric field which charge ¢ exerts on

polarizable system.

—(g0m) = —&4(om)e, = —Be((6m)*)o
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Region of fluid with dipole fluctuations & m for each
molelclule. Note: fluctuations in this region are
coupled to those in other regions.

scheme 083

Ay = energy change due to adding the charge ¢ to the system
® 4rq?ridr
~BomPop [ T

4
. r

Q

This is —fe2((dm)?)o with e, = % replaced and integrated over all space
outside charge with o the size of charge. The result of integration is

2

Ap = —4mBp((6m)*)o=

e The energy to solvate a charge is favorable (see minus sign!).

e Solvation energy becomes more favorable as ¢ goes up and o goes down

(= high charge in small volume)

e 47Bp((dm)?)¢ is a property of the solvent. This property of the solvent
is 1 — 1/¢, where € is the dielectric constant.

Dielectric constant ¢ The relation between electric displacement field 5,
electric field £ and polarization density P

=D —47P = ¢&— 4nP
or

P= polarization density or dipole per unit volume

= [(e = 1) /4x]e

123



In a dilute gas (uncorrelated molecules), just add up separately the induced

dipoles of each molecule per unit volume.

In that case

(V)

e—1= 47r7a = 47 Bp((dm)*)o

These observations suggest

e
Apr —(e— 1); 7
which is correct for solvation of a charge by a gas. For a dense fluid, however,
we must account for dipolar coupling between different regions; this leads to
the Debye—Langevin equation:
e—1

4re

1 2
s (1)
€ g

Born’s charging formula for the solvation energy of a charge in a dielectric
fluid.

~ Bp{(6m)*)o
Thus

The general idea we have illustrated here is the idea of a reaction field.

field imposed by solute

impurity or solute solvent environment

solvent response

scheme 084

The solvent responds or reacts to the imposed field thus creating a reaction
field that interacts back with solute.

Consider now a dipolar solute
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field proportional to 772 ﬁ

o m field induces a dipole
(m)~p field~xpm

reaction field prop. to pfh _l

scheme 085

energy of 1 in the reaction field = —7 - [reaction field] ~ — - [api] /o

Distance dependence of dipole field oc 1/r3.

The detailed reaction field calculation in this case yields

8(e — 1)22

Ay = —
H 2¢ +1 o3

Debye’s formula for the solvation energy of a dipole in a dielectric fluid.

These formulas for solvation of charge distributions treat the solvent as a
dielectric continuum (neglecting molecular structure of solvent) which reacts
linearly to applied electric field. A nonlinear theory would have to use

1
(0m)e = ae + 5)(52 +---

Another view of the Born solvation formula Consider two ions far

apart
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scheme 086

Reversible work surface is (Coulomb’s law in a dielectric)

2

w(r) = L 4 constant
er

We can write this as a direct interaction term plus the solvation contribution

with dielectric screening

w(r) = q; — (1 - %% + w(00) ((a))

Consider just the solvation part, as if direct interaction did not exist

Ap(r) = solvation energy for two ions fixed in solution a distance r apart

= 2Apq + [w(r) — w(o0)] (b))
where Ay, is the solvation energy of an independent ion.
Assuming linear response of solvent
Ap, = —¢*f , f = factor independent of ¢ ((c))

Further
Aty ~ Aplo) (@)

Combine (a), (b), (c), and (d) to get

fa-1/0s

Test of Born theory What can be measured? Enthalpy changes, AH, can
be determined — relative to a standard or reference state — through caolorime-

try.
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Hess’ Law; enthalpy is a state function.

Hy+Cly — 2HCl  AHy= H(2HCl) —H(H,) — H(Cly)

s \a J
v~

enthalpy = Ostandard states
per mole  of the elements

HCL™S HY +CI” (aq.);  AHy = H(H";aq) + H(Cl;aq) — H(HCU)

AH,

+ AH, = enthalpy per mole of Cl~ relative to enthalpy of H"
Partial molar enthalpies are related to u’s

h;, s; : partial molar enthalpy, entropy for species i

().,
T ), s ’

Thus,
o) 11
or T Tt T T
3(ui/T)
2
h;y =T —ar
According to Born
I(pBorn/T) O 1 e?
—or  or| 1o Y9
B e? 1 T Oe
AH(CZ ) = —0_017 |:1 — g — 6—26—T:|

Estimate ionic radii from colvalent radii of cations and bond length of the

salts

127



om
/covalent radii of cation M=T

o l2=l,—o,l2

A
) J

scheme 087

Enthalpies of hydration for ions relative to that of H*, choosing AH(H™; aq) =
—260 kcal/mol. (Alexander A. Rashin and Barry Honig, J. Phys. Chem 89,
5588 (1985))

-60
-70}
-80}
90k
=100

-nor

A H Keal/mole

-l2or

-|30»

-140 -

-180
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scheme 088

Look at the size of those enthalpies. Do you remember that the NaC'l bond

strength was about 80 kcal/mol. No wonder NaCl disolves in water.
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Figure 2. Correlation between the dissociation energies of the O,—H and
O,*-H groups and the charges located on the ion bonded to the O,
oxygen calculated for clusters O;Al,004(OH);oH,X (where X stands for
H, Li, Na, and K atoms).

acidity of the skeletal O,—H groups decreases in the order H >
Li > Na > K.

These results thus indicate that the acidity of the skeletal
hydroxyl groups is determined by the actual charge localized on
the zeolite skeleton, in addition to a number of other factors (Si:Al
ratio, structural characteristics, etc.); thus, this acidity depends
on the amount of electron density transferred from the skeleton
to the ions compensating its negative charge. It follows from the
calculation that this transfer is smaller for the cations than for
H ions forming the hydroxyl groups (in fact, ab initio calculations
predict very small transfer of electron density to the cation®).
Together with the fact that the acidity of the skeletal hydroxyl
groups decreases with increasingly negative charge on the zeolite
skeleton, this fact leads to the following general conclusions: (i)
the acidity of the skeletal hydroxyl groups of the purely H form
of the zeolite is always higher that that of these OH groups in

J. Phys. Chem. 1985, 89, 5588~5593

the indentical (structurally and with the same Si:Al ratio) zeolites
containing both the OH groups and cations compensating the
negative skeletal charge; (ii) for various types of cations localized
to the same degree (the same degree of decationization) in the
same zeolite, the acidity of the skeletal OH groups decreases with
decreasing electronegativity of the cation.

The same conclusions may be drawn by using Sanderson’s
model of electronegativity.’-3! If the acidity of OH groups is
characterized by the charge located on their H atoms (acidity
increases with increasing charge), then for zeolites with the overall
formula H, X, _,SigsAlys0;54 (Where X is a monovalent cation and
0 < n < 96) the average partial charge on the H atoms is given?’
as

B (So*SaSsiSu*Sx! ™) - Sy
2.085y!2

where S is the atomic electronegativity of individual atoms and
x = n/96 is the degree of decationization. As for the cations
studied the electronegativities decrease?” in the following order:
Sy (3.55) > 81, (0.74) > Sy, (0.70) > Sk (0.56), it is apparent
that this approach results in the same conclusions as mentioned
above.

Finally, it should be noted that the terminal OH groups of the
clusters with individual cations exhibit similar behavior as the
skeletal OH groups. For the ions studied, the acidity of these
terminal OH groups increases in the order K < Na < Li < H,
as indicated by the charges calculated on their H atoms (which
increase), as well as by the values of the O~H bond orders (which
decrease).
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Reevaluation of the Born Model of Ion Hydration

Alexander A. Rashin’ and Barry Honig*
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In this paper we demonstrate that the Born theory provides an accurate means of calculating the solvation energies of ions
in water. The well-known equation AG,® = —(¢*/2r)(1 — 1/D) is rederived in a somewhat modified form ( is a radius and
D is the dielectric constant), and it is found that the value of r most consistent with the model is the radius of the cavity
formed by the ion in a particular solvent. The failures of the Born theory are attributed to the use of ionic radii rather than
cavity radii. The ionic radii of anions are shown to be a reasonable measure of the cavity size, but for cations we argue,
based on electron density profiles in ionic crystals, that covalent radii rather than ionic radii must be used. When these measures
of cavity size are introduced into the Born equation, experimental solvation energies are fairly well reproduced. Moreover,
the addition of a single correction factor into the model, an increase of 7% in all radii, leads to excellent agreement with
experiment for over 30 ions ranging in charge from 1-to 4+. This need for corrected radii may be due in part to an increase
in cavity size resulting from packing defects and to our neglect of dielectric saturation effects. However, it appears that
dielectric saturation is not a dominant factor since the model works quite well for polyvalent ions where saturation effects
should be strongest. Applications of the Born method to the transfer of ions between different solvents are discussed, and
the relation of our results to detailed simulations of ion—solvent interactions is considered.

Introduction

The Born theory,! proposed over 60 years ago, has provided
a useful and intuitively simple method of estimating the solvation
energy of ions. Interactions between the ion and solvent are

*Present address: Department of Physiology and Biophysics, Mount Sinai
School of Medicine, One Gustave L. Levy Place, New York, NY 10029,

0022-3654/85/2089-5588801.50/0

assumed to be electrostatic in origin with the ion viewed as a
charged sphere of radius r and the solvent as a dielectric continuum
of dielectric constant D. The electrostatic work associated with
charging the ion immersed in the dielectric continuum is then given

by

(1) Born, M. Z. Phys. 1920, 1, 45.
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Reevaluation of the Born Model of Ion Hydration
W = ¢*/2Dr (1)

where g is the net charge of the ion. The free energy of trans-
ferring the ion from vacuum to a medium of dielectric constant
D is just the difference in the charging energies, i.e.

2
AGS°=—%(1—%) @)

It has been traditional to use ionic radii derived from crystal
structures to evaluate eq 2 (i.e., to set r = riy,;c), and under this
assumption qualitatively reasonable results can be obtained.? For
example, as predicted by eq 2, the solvation energies of halide
anions and alkali cations are inversely related to the ionic radius.
However, Latimer et al.? found that it is necessary to add 0.1 A
to the ionic radii of anions and 0.85 A to the ionic radii of cations
to make the Born equation fit experimental data on a series of
alkali halide salts. They provided a qualitative justification for
these corrections in terms of the distance from the center of the
ion to the center of the nearest water dipole. While this “adjusting”
of parameters may be viewed as evidence for the failure of the
theory, it is rather remarkable that such a crude electrostatic model
works at all and yields rather good agreement with experiment.
Furthermore, the correction required for halide ions is small
enough to suggest that the theory has the potential to yield rea-
sonably accurate results.

With this possibility in mind, we have in this paper reevaluated
the assumptions implicit in the Born model. We find (in agree-
ment with standard practice) that the use of ionic radii for anions
is consistent with the model but that it is inappropriate to use the
ionic radii of cations in eq 2. Rather, we demonstrate that covalent
radii provide a logically consistent choice of r for cations. Since
the covalent radii of cations are on the order of 0.6-0.8 A larger
than the corresponding ionic radii, our results provide a
straightforward quantitative explanation for the correction applied
to cations by Latimer et al.> Moreover, we demonstrate that the
Born theory in its simplest form provides an accurate means of
estimating solvation energies in water.

Detailed descriptions of various attempts to improve the Born
model appear in a number of excellent reviews (see e.g. ref 2 and
4-7). In the following we briefly discuss the physical basis of
the various corrections that have been introduced. As pointed
out by Born,! the free energy, AG,°, of bringing a charged sphere
from vacuum to a dielectric continuum is equal to the sum of the
free energies of the following three processes: (1) stripping the
sphere of its charge in vacuum, AG,°; (2) transferring thé un-
charged sphere from vacuum into the solvent, AG,°; and (3)
recharging the sphere in the solvent, AG,°. In the original Born
theory, AG,° was assumed to be zero, and thus, only the charging
and discharging terms contribute to the solvation energy. These
lead directly to eq 2.

Equation 2 has only one parameter, the radius », which is
generally set equal to the ionic radius. As pointed out above, the
use of ionic radii leads to an overestimate of experimental solvation
energy of anions, and in particular, the calculated solvation energy
of cations can be almost 100 kcal/mol greater than the experi-
mental values.2 If the Born model is to be retained, there are,
in principle, three ways to reduce the calculated solvation energies:
(1) Increase the effective radius used in eq 2. (2) Decrease the
effective dielectric constant of water. (3) Add a correction term
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to account for AG,°, the energy of transferring the neutral sphere
from vacuum to water.

Latimer et al.’ were able to fit experimental solvation energies
to the Born equation by increasing the effective radius of the ions.
Stokes® suggested the use of van der Waals radii for calculating
the charging energy in vacuum while retaining ionic radii for the
ions in water. Since it is the vacuum term that makes the largest
contribution to the solvation energy (due to the 1/D term in eq
2), the use of van der Waals radii which are larger than ionic radii,
particularly for cations, produced improved agreement with ex-
periment. While Stokes was the first to question the use of ionic
radii in the Born expression, we will demonstrate below that the
same radius should be used in vacuum and in water and that van
der Waals radii are not the optimal choice.

Most attempts to improve the Born model have been based on
a reduction of the effective dielectric constant of the solvent.>1?
The justification for this procedure, suggested by Noyes,’ is that
dielectric saturation occurs in the vicinity of the solvated ion, and
thus, the effective dielectric constant in this region is less than
80. However, we will demonstrate that the Born model produces
satisfactory agreement with experiment even if the effects of
dielectric saturation are ignored. In fact, our results suggest that
the effects of dielectric saturation are relatively small, even for
multivalent ions.

The third approach that has been used to refine the Born model
is to explicitly account for AG,°, the energy of transferring the
discharged ion from vacuum to water.>#-1013 While this term is
likely to make some contribution, the magnitude of the effect is
small,*® and it cannot by itself account for the large discrepancies
between predicted and experimental solvation energies.

It should be pointed out that there has been considerable
progress in the explicit simulation of ion-water interactions.!*!7
However, there still remain significant discrepancies between
theoretical and experimental solvation energies, due in part to the
various approximations (e.g., cutoffs, periodic boundary conditions,
potential functions) that are used in the simulations. Thus,
continuum models retain their value both as a simple means of
calculating solvation energies and as a source of insight into the
results of detailed simulations.

A Revised Born Model

Rederivation of the Born Equation. In this section we re-
consider the Born cycle by breaking up the discharging and
charging processes into a number of discrete steps. This will allow
us to arrive at an unambiguous definition of the radius to be used
in eq 2. We will carry through the derivation for the case of a
cation; the derivation for anions is completely analogous. It should
first be pointed out that since discharging a cation involves adding
an electron to the ion, the total electrostatic energy actually
involves a nuclear-electronic attraction term in addition to the
positive self-energy of the electronic shell itself. However, the
spherical symmetry of the ion makes it possible to describe the
situation in terms of discharging a shell of positive charge so that
the nuclear attraction term need not be treated explicitly.

The classical expression for the electrostatic work involved in
discharging a cation in vacuum! is just

AG\® = -¢’/2R,, (3)

where R,, is the orbital radius of the neutral atom. (Note that

(2) Bockris, J. O'M.; Reddy, A. K. N. “Modern Electrochemistry”; Plenum
Press: New York, 1977; Vol. 1.
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it is the orbital radius rather than the ionic radius that enters into
the expression because the electron is added to this orbit during
this discharging process.)

Transferring the neutral atom into the solvent produces a cavity
of radius R,_ (ac denotes atomic cavity). R,. will in general be
larger than R,,. The energy of recharging the cation in the solvent,
AG;°, may be divided into three separate contributions: (a) AG,°,
the energy of dispersing the electron from R,, to R, in vacuum;
(b) AG3,°, the energy of dispersing the electron from R, to infinity
in water; (c) AG,.°, the work associated with the shrinking of the
cavity around the ion to the ionic cavity radius, R;. (R < R,.).
Thus

AGSac + AG3b° = qZ/ZRao - qz/ZRac + q2/2DRac (4)

AG,° is just the difference in the electrostatic energy of a spherical
shell of charge between R, and R;, when filled with vacuum or
with the dielectric medium. This can easily be shown to be

AG,° = ¢*/2R,. - q*/2R,. + ¢*/2DR;. - ¢*/2DR,. (5)
Thus
AGy® = ¢*/2R,, — ¢*/2Ric + ¢*/2DR; (6)
and
AG® + AGy® = (¢2/2R)(1/D - 1) M

Equation 7 is just the Born expression with the ionic cavity
radius appearing explicitly in the denominator. It should be
pointed out that due to a cancellation of terms only the cavity
radius in the solvent appears in the final expression (eq 8). Note
that this radius would in general be expected to change in different
solvents.

The Ionic Cavity Radius. Equation 7 states that the appropriate
radius to be used in the Born expression is the radius of the cavity
formed by an ion in a particular solvent. This is also quite rea-
sonable on intuitive grounds since it is at this distance from the
ion that the dielectric constant becomes different than that of
vacuum and the medium actually begins. We are left then with
the problem of arriving at appropriate values of the cavity radius
for both cations and anions.

It seems plausible to define the ionic cavity as a sphere which
contains a negligible electron density contribution from the sur-
rounding solvent. Analysis of electron density distributions in ionic
crystals'® (see e.g. Figure 1) reveals that the electron density due
to positive ions begins to become significant at a distance of about
the ionic radius from the center of the anion. It thus provides
a reasonable measure of the cavity radius formed by an anion.
The situation is quite different for cations. The ionic radius of
the cation does not extend out to the high electron density region
of the bound anion. In fact, due to quantum effects,'>?0 the
electron cloud of the anion is unable to significantly penetrate the
empty valence orbital of the cation. As a result, the electron
density of the anion begins to become significant at a distance
from the nucleus of the cation corresponding approximately to
the orbital radius of its valence electron. This radius provides a
far more accurate measure of the cavity size formed by a cation
than does the ionic radius. Since orbital radii correspond closely
to covalent radii, which are experimentally determined quantities,
we propose the use of covalent radii as a reasonable and convenient
estimate of the radius to be used in the Born equation as applied
to solvated cations. As discussed above, the ionic radius constitutes
a good estimate for the cavity radius formed by solvated anions.

Analysis of electron density maps demonstrates that the covalent
radii of cations and the ionic radii of anions are closely related
and provide a useful first approximation of the cavity radius

(18) Gourary, B. S.; Adrian, F. J. Solid State Phys. 1960, 10, 127.

(19) Slater, J. C. J. Chem. Phys. 1964, 41, 3199.

(20) Vainshtein, B. K.; Fridkin, V. M.; Indenbom, V. L. “Modern
Crystallography”; Vainshtein, B. K., Ed.; Nauka: Moscow, 1979; Vol. 2.

(21) “Lang’s Handbook of Chemistry”, 11th ed.; Dean, J. A., Ed;
McGraw-Hill: New York, 1973.
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Figure 1. Electron density distribution in LiF crystal along the line
connecting the centers of the fluoride ion (point A) and lithium ion (point
E).!* Segments AD and DE correspond to ionic radii of F and Li. CD
=0.32 A, BD = 2CD, AE = 1.96 A, and DE = 0.6 A.*

TABLE I: Internuclear Distances in Alkali Fluorides, the Radii of
Cavities Formed by Alkali Ions, and Their Covalent Radii

Li*  Na*t K* Rb*  Cs*

internuclear distance® 1.96 231 269 284 3.05

cavity radii? 1.24 1.59 1.97 2,12 233
covalent radii* 1.23 157 203 216 235

9Calculated by setting the hard-core radius of F~ equal to 0.72 A
(see text).

formed by the respective ions in salt crystals. Figure 1 plots the
electron density distribution in LiF'® which is clearly quite sym-
metric about the minimum, defined by point C. The ionic radius
of F~ corresponds to the segment AD. The electron density due
to Li* begins to rise steeply at point D, which as discussed above
is the justification for using ionic radii to define the cavities formed
by anions. In order to obtain an internally consistent definition
of the cavity formed by cations, we use the electron density at
point D, which corresponds to the jonic radius of F, to define the
electron density at the boundary of any ionic cavity. Point B has
the same electron density as point D, and thus, the segment EB
defines the cavity formed by the Li* ion. This is found to be 1.24
A which is close to the covalent radius of Li of 1.23 A. The
segment AB, equal to 0.72 A, may be viewed as defining a “hard
core” of the F~ ion beyond which the cavity formed by the cation
begins. If we use this value in all alkali fluoride salts, it is possible
to obtain a consistent measure of the cationic cavity radii by
subtracting 0.72 A from the internuclear distance.

In Table I, the cavity radii-obtained in this way are compared
to covalent radii. The remarkable correspondence between the
two values strongly supports our suggestion that covalent radii
be used to define the cavity radius of cations. Moreover, it
demonstrates that the ionic radii of anions and the covalent radii
of cations measure the same property, i.e., the distance from the
nucleus at which the electron density of the surrounding medium
begins to become significant. This then provides the underlying
justification for the use of these values in the Born equation.

It should be pointed out that previous attempts have been made
to use electron density maps as a basis for defining ionic radii.
In particular, Gourary and Adrian'® equated ionic radii to the
distance between the point of minimum electron density (point
C in Figure 1) and the center of either ion. The radii so defined
removed the asymmetry in the solvation energies of positive and
negative ions but did not produce accurate agreement with ex-
perimental values.?? In contrast to the radii of Gourary and
Adrian,'® the sum of the radii used in this work is not equal to
the internuclear distance. This is reasonable since we are in-
terested in obtaining cavity radii and both the anion and cation

(22) Blandamer, M. J.; Symons, M. C. R. J. Phys. Chem. 1963, 67, 1304.
(23) Gold, E. S. “Inorganic Reactions and Structure”; Holt, Reinhart and
Winston: New York, 1960.



Reevaluation of the Born Model of Ton Hydration

TABLE II: Experimental and Theoretical Values of the Heats of
Solvation of Salts (in kcal/mol)®

salt AHpy  AHgiq

% error  AH4(cor) % error

LiF -2452  -261.0 6.4 -243.9 0.5
Cl -211.2 -227.7 7.8 -212.8 -0.8
Br -204.7 -221.1 8.0 -206.6 -0.9
I -1949 2117 8.6 -197.9 -1.5
NaF -2178 -231.6 6.3 -216.4 0.6
Cl -183.8  -198.3 7.9 -185.4 -0.9
Br -177.3  -191.7 8.1 -179.2 -1.1
I -197.5 -182.3 8.8 -170.4 -17
KF -197.8  -207.5 49 -194.0 1.9
Cl -163.8 -174.2 6.4 -162.9 0.5
Br ~157.3  -167.6 6.5 -156.7 0.4
I -147.5 -158.2 7.2 -147.9 -0.3
RbF  -1927 -202.6 5.1 ~189.3 1.8
Cl -158.7 -169.3 6.7 -158.3 0.2
Br -152.2 ~162.7 6.9 -152.4 -0.1
I -1424 -1533 7.6 -143.3 -0.6
CsF -1869 -196.4 5.1 -183.5 1.8
Cl -152.9 -163.1 6.7 -152.4 0.3
Br -146.4 -156.5 6.9 -146.2 0.1
1 -136.6 -147.1 7.7 -137.5 -0.7

9The experimental values are from ref 2. The enthalpies of the salts
are sums of the solvation enthalpies of the individual ions calculated
according to eq 8 with radii taken from ref 21 and 23 (for halogens).

share a common low electron density region (segment B-D) as
part of their cavities. Thus, cavity radii will always sum to values
larger than the internuclear distance.

Results and Discussion

Solvation Enthalpies of Ions in Water. Since the free energies
of solvation of individual ions cannot be measured directly, eq 2
cannot be tested for individual ions. However, the enthalpies of
solvation of various salts are known and can be compared to
theoregica] values obtained from the Born expression for the en-
thalpy

AH = —|1~-—-—= — 8)
where T(8D/3T)/D = -1.357 for water at 298 K.> Table II
compares calculated and experimental values of the enthalpies
of solvation of alkali halide salts. As can be seen by comparing
columns two and three, the agreement between theory and ex-
periment, even with uncorrected radii, is quite good. This level
of accuracy has not been obtained previously from the uncorrected
Born expression. It appears then that the Born expression works
quite well, even if dielectric saturation is ignored.

As can be seen from Table II, the calculated results are con-
sistently larger than the experimental ones by about 10-15
kcal/mol. This error might be attributed to the inherent limi-
tations of the theory, but the fact that it is so systematic suggests
that it is due to an identifiable factor. One possibility, the neglect
of dielectric saturation, will be discussed below. However, perhaps
the most straightforward explanation is that anionic radii and
covalent radii for cations underestimate the cavity size. Indeed,
as is evident from Figure 1, the electron density of the atoms
surrounding the central ion continues to increase at distances from
the nucleus that are greater than these radii. Moreover, the
problem of packing bound solvent molecules would be expected
to expand the cavity somewhat. Thus, it seems quite reasonable
to expect that the cavity radii that best fit the Born model be
somewhat larger than those defined above. In order to obtain an
optimal fit to the experimental results of Table II, we have defined
corrected Born radii by increasing each ionic and covalent radius
by 7%. The corrected enthalpies of solvation obtained from these
radii deviate from the experimental values by a maximum of only
4 kcal/mol.

In order to test the reliability of our modified Born model, it
is necessary to compare calculated and experimental solvation
energies for ions not included in our original sample (Table II).
Since experimental values for isolated ions cannot be determined
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Figure 2. Comparison of experimental (dots) and predicted (solid line)
enthalpies of ion hydration. The enthalpies are given per unit charge.

directly, we base our comparison on the relative heats of solvation,
AH, (relative to H* ions).
These are defined by?

AH(X7) = AHu(X7) + AH,,(HY) &)
AFlrel(l\'r'.) = AIfabs(l\'f'-) - AHabs(H+) (10)

where X~ and M* denote respectively anions and cations and AH,
denotes absolute heats of hydration.

The fourth column in Table III contains experimentally de-
termined relative heats of hydration for 31 ions. By calculating
the absolute heat of solvation for each ion from the Born ex-
pression, we can obtain from eq 9 and 10 a value of AH,, (H*)
which is appropriate for each ion. Since the heat of solvation of
a proton must be a constant, the variation in the calculated values
for AH,,(H") is a test of the internal consistency of the model.
We find for alkali and halide ions that AH,, (H") varies between
-260.00 and -264.3 kcal/mol with a mean value of -262.18
kcal/mol. Thus, to within 1%, AH,(H*) is constant.

As another test of the model we use the value of —262.18
kcal/mol for the solvation energy of a proton and the experi-
mentally determined values for relative solvation energies to obtain
a series of solvation enthalpies of the individual ions. These are
listed in Table III and plotted as a function of the corrected radius
in Figure 2. There appears to be excellent agreement between
the experimental values and the straight line derived from eq 8.
Thus by introducing only one adjustable parameter into the Born
model, we have successfully reproduced experimental results for
31 ions. Previous attempts to improve the theory have involved
the use of more parameters and have not in general considered
as large a number of ions.2*

Some of the ions for which the relative heats of hydration are

(24) Since the “covalent radius” of ammonium is not a well-defined
quantity, we have obtained a measure of the cavity radius from the following
procedure. The Na*—oxygen internuclear separation in water is approximately
2.35 A5 Since the Na* cavity radius is 1.68 A, the “hard-core” radius of the
oxygen is approximately 0.67 A. Since a typical NH,*-O hydrogen bond has
a length of 2.8 A, the cavity size of ammonium is 2.13 A as listed in Table
1v.
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TABLE IIL: Cavity Radii and Hydration Enthalpies

985

Rashin and Honig

ion corrected radius,? A AH, 0, keal/mol  AH,,,* keal/mol AH ¢ keal/mol % error’ AH,p (H*),? keal/mol
Li* 1.316 -126.7 136.34 -125.8 -0.7 -263.0
Na* 1.680 -99.3 163.68 -98.5 -0.8 -263.0
K* 2.172 -76.8 183.74 -78.4 2.1 -260.5
Rb* 2.311 ~72.2 188.8 -73.4 1.7 -261.0
Cs* 2.514 -66.3 194.6 -67.6 1.9 -260.9
F 1.423 -117.2 -381.5 -119.3 18 2643
cr 1.937 -86.1 -347.5 -85.3 -0.9 -261.4
Br 2.087 -19.9 -341.0 -78.8 -1.4 -261.1
r 2.343 712 -331.2 -69.0 -3.1 ~260.0
Cu* 1.252 ~-133.2 118.7 -143.5 7.2
Ag* 1.434 -116.3 147.1 -115.1 -1.1
Cu’ 1.252 -532.8 19.9 -504.5 -5.6
Mg?* 1.455 -458.4 62.0 -462.4 0.9
Ca?t 1.862 ~358.3 140.8 -383.6 6.6
Sr?+ 2.054 -324.7 176.1 -348.3 6.8
Ba?t 2.119 -314.8 210.1 -314.3 -0.2
Zn* 1.338 —498.7 32.8 -491.6 -1.5
Ca? 1.509 -442.1 89.8 -434.6 -1.7
Hg™* 1.541 -432.9 85.0 -439.4 1.5
APt 1.338 -11227 3316 -1118.1 -0.4
Sci* 1.541 -974.1 -153.3 -939.8 -3.6
Y3+ 1.733 ~865.8 -82.1 -868.6 0.3
La*t 1.808 -830.0 -2.5 -789.0 =52
Ce** 1.761 -1515.0 -508.0 -1556.7 2.7
Ce** 1.761 -852.2 -67.0 -853.5 0.2
Ga’* 1.338 -1122.1 -337.6 -1124.1 0.2
In* 1.605 -935.1 -199.9 -986.4 5.2
NH%*¢ 2.130 -77.9 185.0 ~77.2 -1.0
OH- 1.498 -111.3 -371.0 -108.8 =23
S+ 1.969 -338.8 -849.4 -325.0 -4.2
SH™ 1.969 -84.7 -341.0 -78.8 =15

aThe radii are taken from ref 21 and 23 (for halogens) increased by 7% (see text). ®The enthalpies of solvation are calculated from eq 8 with the
radii from column two. ¢The relative enthalpies of solvation are from ref 5, except for the first nine which are from ref 2. 4The absolute heats of
solvation of hydrogen ion are calculated from eq 9 and 10. ¢The absolute enthalpies of solvation are calculated from eq 9 and 10 and the calculated
mean value of the absolute heat of solvation of the hydrogen ion, AH,,(H™), of 262.18 kcal/mol (see text). /The errors are in calculated values from

column three compared to the AH,,, in the fifth column. £See ref 24.

available® are not listed in Table II. These include TI*, TI**, Pb?*,
Co?*, Ni2*, Mn?*, Cr?*, Cr*, Fe?*, and Fe**. For these ions the
differences between the calculated and experimental enthalpies
exceed 10%. However, these ions form coordination complexes
with water (ref 6, p 335) and, therefore, it would not be expected
that the cavity size for these ions follows the same rules that hold
for other ions. Finally, we have also excluded Be?* from the table.
For Be?*, the difference between the experimental and calculated
value is 17%, a discrepancy which may be due to large saturation
effects resulting from the fact that Be?* is a particularly small
ion.

The success of a continuum dielectric model in reproducing
experimental results even for multivalent ions demonstrates that
corrections due to the effects of dielectric saturation are not large
in the calculation of solvation enthalpies (a point first made by
Latimer et al.?). This may not be the case in the calculation of
other thermodynamic quantities.>® Although conflicting estimates
of saturation effects have been reported in the literature, 191325
it is interesting to note that the saturation effects obtained by
Millen and Watts! are on the order of the 7% correction factor
in the cavity radius that we have introduced.

Solvation in Nonaqueous Media. It is of interest to consider
how the Born model might be applied to solvents other than water.
This question is of particular importance for biological systems
where problems concerning the free energies of transfer of ions
from water to proteins and membranes arise in a variety of
contexts.26:27

The Born equation as developed above can in principle be used
to calculate the energies of transfer of ions from vacuum to any

(25) Schellman, J. A. J. Chem. Phys. 1957, 26, 1225.

(26) Parsegian, A. Nature (London) 1969, 221, 884.

(27) Honig, B. H.; Hubbell, W. Proc. Natl. Acad. Sci. U.S.4. 1984, 81,
5412,

solvent. However, since the cavity size produced by a particular
ion will vary in different solvents, a general expression for transfer
energies must take this into account. We obtain an expression
for the free energy of transfer of an ion between two solvents by
considering the process in which the ion is first transferred from
one solvent to vacuum and then from vacuum into the second
solvent. The energies associated with each of these processes are
given by eq 7, but different cavity radii must be used. Thus

AG12° = (¢?/2R:.)(1 - 1/D)) = (¢*/2R.,)(1 = 1/Dy) =
¢*/2%(1/RDy ~ 1/R.D)) + (1/R., - 1/R)} (11)

where R and R, are the two cavity radii. When R, is equal
to R, the standard Born expression is recovered.

The correction to the standard expression can in principle be
quite large. Consider for example the transfer of a Cl~ ion from
water to hexane (D, = 80, D, = 2). If we use the corrected radius
of 1.937 A (Table III) for the CI™ ion in water and assume that
the cavity radius in hexane is equal to the van der Waals radius
of the Cl”ion (R, = 2.252 A), the total transfer energy is cal-
culated to be 47.8 kcal/mol or 6 kcal/mol larger than if R, =
R., = 1.937 A. While it is not clear that the value we have
assumed for the cavity radius in hexane is the correct one, the
magnitude of the effect emphasizes the need to account for
variations in cavity radii in estimating transfer free energies.

It should be pointed out that the cavity radii we have used
should constitute a good first approximation for any hydrogen-
bonding solvents. This implies that the correction term will be
small in going, say, from water to ethanol. Since the 1/D terms
are small in both solvents, the free energies of transfer should also
be small, as is observed experimentally.!* Similarly, the Born
expression using the corrected radii of Table III should be ap-
propriate for many applications to proteins where ions and ion-
izable groups appear to always be hydrogen bonded.?
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Relation to Simulations. The success of the Born model in
reproducing the observed solvation energies suggests that it may
be capable of providing useful insights regarding molecular dy-
namics and Monte Carlo simulations of ions in water. One striking
prediction of the Born model is that the transfer energy of an ion
to a particular solvent is essentially independent of the dielectric
constant, once the dielectric constant is high, say above 30. This
follows from the 1 ~ 1/D dependence of the transfer energy. For
example, the Born model predicts about a 3 kcal/mol difference
in transfer energies between water and methanol for a univalent
ion, a value which is in good agreement with experimental results.!?
It would appear then that any model for water which produces
a high bulk dielectric constant should be successful in reproducing
solvation energies, even if the calculated dielectric constant is
incorrect.

On the other hand, the Born energy is highly sensitive to the
choice of the cavity radius. When translated into the parameters

(28) Rashin, A. A,; Honig, B. J. Mol. Biol. 1984, 173, 515.

used in detailed simulations, this implies that it is necessary to
have accurate potential functions which successfully reproduce
short-range interactions and can account, for example, for binding
energies in the gas phase.”” Finally, since the Born theory predicts
that ion-solvent interactions at fairly long distances are still
substantial (i.e., 10 kcal/mol for interactions above 10 A), it would
appear necessary to determine whether the use of periodic
boundary conditions is capable of accounting for this contribution
to the total solvation energy. In any case, the apparent success
of the Born model in treating the solvation energies of ions suggests
that the continuum model will continue to be useful in a variety
of applications.
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Laser Multiphoton Dissoclation of Alkyl Cations: 1. Fragmentation Mechanism of
Homologous Alkyl Cations Produced from Their Iodides
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Institut fiir Physikalische und Theoretische Chemie der Technischen Universitit Miinchen, D-8046 Garching,

West Germany (Received: June 24, 1985)

A homologous series of alkyl cations and their corresponding multiphoton mass spectra are produced from alkyl iodides to
test the degree of fragmentation pattern transferability from one ion C,H,,4,* to the next larger one, etc., in multiphoton
mass spectrometry. In electron impact ionization all ions in the same mass range, even when produced from different parentages,
produce similar fragmentation. In direct contrast to this multiphoton mass spectra of homologous alkyl compounds display
strong differences. The wavelength of the exciting light influences the fragmentation pattern in a direct way, thus leading
to two-dimensional control of the fragmentation pattern. These features can be exploited for mixture analysis using mass
spectrometry. Mechanistically this can be understood as being due to the ladder switching mechanism leading to optical
selective photon absorption by fragment ions. Results are also presented that a classification in terms of a single average
energy for decomposing ions is not adequate. A parametrization in terms of differing internal energies for differing ions

is required.

I. Introduction

Multiphoton ionization (MPI) is known to be an unique method
providing additional variables for the production of polyatomic
molecular ions in a mass spectrometer.’”? One such possibility
is the use of high light intensities in excess of 10’ W /cm? to lead
to fragmentation of organic ions with a large amount of small
fragments, even C* cations,? these being energetically very high
lying.

In order to exploit this new technique there is considerable
interest in the clarification of the complex mechanism of the
multiphoton fragmentation processes of polyatomic molecular ions.
Photon absorption exclusively within the molecular parent ion,3?

(1) Boesl, U.; Neusser, H. J.; Schlag, E. W. Z. Naturforsch., A 1978, 334,
1546.

(2) Zandee, L.; Bernstein, R. B.; Lichtin, D. A. J. Chem. Phys. 1978, 69,
427.
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1979, 28, 175.

(5) Lubman, D. M.; Naaman, R.; Zare, R. N. J. Chem. Phys. 1980, 72,
3034.

(6) Fisanick, G. J.; Eichelberger IV, T. S.; Heath, B, A.; Robin, M. B. J.
Chem. Phys. 1980, 72, 5571.

(7) Cooper, C. D.; Williamson, A. D.; Miller, J. C.; Compton, R. N. J.
Chem. Phys. 1980, 73, 1527.

competing light absorption and dissociation in the neutral ma-
nifold!® and in the ionic manifold in a so-called “ladder switching”
mechanism,!"'2 as well as ionization and dissociation of supe-
rexcited neutrals® have been discussed. Two-laser experiments
of our group!>'? and more recently photoelectron kinetic energy
measurements from other laboratories have shown that for aro-
matic hydrocarbons, e.g., benzene, toluene, and chlorobenzene, 416
as well as for a series of small molecules!™!® the “ladder switching”
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" (ap2)T,M1 p2 (aT)pgnu,l <a/'Ll>T,p2 Ml
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Holding 7', u1 constant and changing p, from 0 to py gives

m(p2) P2 o
w(ps) 70 = [ Tan= [ dp’z( )
7(0) 0 dpy T, 1

7m(0) = 0 if there is no solute, the solvent pressure is equilibrated
p2 o
— / dp/2 ( pleift)
0 apQ T?,ul

Define an auxiliary function

F=F-— TS - /LlNl
with

dF = dE — d(TS) — d(p Ny)
= -5dT — pdV — Nldul + HQdNQ

Therefore F'is a natural function of 7', V', uy, and Nj.
F= F(Ta V> M1, NQ)

The density is a simple function of natural variables of F

Let’s choose

() )7 ()
0,02 T,V 8(N2/V) T,V 8N2 T,V

Maxwell relation from F

(5. ()
Ny T,pu1,V oV T,u1,N2
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So, we get

(&), ()
dp2 T,V ov T,p1,No
() ()
V) ) e \ OV,
Opa —1
e <8<Nz/v>)T,m,N2 ()
= P2 <%>
Opa Tu1,N2

Back to the osmotic pressure

P2 op p2 Olto
7r:/ dpl (a ) =/ dpph (0_>
0 P2/ Ty, v 0 P2/ T\p1 Ny

From the ideal system assumption

Bus = BApz + In py

Ope _BﬁAM2 X d1In p, _ l

dpy " Oph Opy  ph
P2 / 1 —1
77:/ dpypy—=— = B pa
0

Bps
pr = Z Pi

B

or in general

Example Osmotic pressure of 0.1 moles NaC'l in 1 1 water at normal con-

ditions.

7 = ksT(pna+ + pci-)
=1.38107% JK~'-300 K- (0.1 +0.1) mol - 6.02210* mol " - 107% m ™

N
=4.9910° J/m’ = 4.9910° — ~ 510° Pa ~ 5 atm
m
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4.10 To be ideal or not

For an ideal solution or gas

pi = Ap; +kgT'In p;
and Ay, is independent of p;.
If the solution were not ideal

A,uz == A,LLAT, Psolvent s pz)

Taylor expansion in powers of p;

pi=0

OAp;
= AM1<T7 Psolvent s O) + ( 0 . )
pl' T,Psolvent

= A,uz(Ta Psolvent s O) + 2kBTszz + .-

Now, recall that

dA > a(—@A))
e = ad iy = (2502
(8]\72- T,V,N;z; v T,N

Using p; = ul(-ideal) + 2kgT'B;p; + - - -, we have

BA = pAldeal) _ VBip? 4 -
For several components of solutes

—B]A — Alideah] — ZVBijpipj 4.
1,

where the sums are over all solute species.

Thus,
571_ _ ﬁ,ﬁ(ideal) + BpZQ

or for a simple one component gas
Bp = p+ Bp* + O(p*)

In this case the constant B is called the second virial coefficient of the gas.
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B(T)

The Boyle temperature

/

repulsive forces
dominate

Pressure of low density real gas.

> 1/T

attractive forces dominate

scheme 090

B
W EL-1
p
//
s
e
-
i
pd " —slope B
s
/4
>0
scheme 091
Example van der Waals gas
2
_ PP
ﬁpvdw - 1 — b,O kBT



—L2_ accounts for finite size of molecules

excluded volume

N Notice: excluded

V(I-bN/V)
2 .
ak';—T accounts for attractive forces between molecules
volume part is independent of T, but the attractive force part decreases in

N N

size with T increasing.

The parameter b is roughly the volume of one molecule. Low density is
therefore bp < 1. In that region

2

p
AW = bo? + .+ —g——
Bpvaw = p + bp” + YT

Hence
Boaw(T) = b — 2
vdW - kBT
The Boyle temperature for this equation of state is
1 b

kB TBoyle a

Osmotic pressure of aqueous Na® CI~ solution at concentration ¢

scheme 092

What is going on here? Experimental osmotic pressure of Na™ CI~ solution
doesn’t look like 7 = pno+ + pci— + -+ -. Also the corrections from ideality

cannot be expressed as interger powers of density.
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What we see in the case of strong electrolytes is the result of

1. Fluctuations in density must preserve macroscopic charge neutrality

2. screening

Peter Debye figured all this out in his famous Bebye—Hiickel theory of ionic

solutions. To discuss this theory, consider first

average energy of interaction -

/
for an ion ¢, coupled to other | ~ 4mp / 7“2d7“q€—z
R

ions, ¢/, at average density p.
Thisintegraldiverges!

The Coulomb potential has infinite range. It seems as if you can never
separate charges enough to make their interactions negligible. This is not

what we have in a van der Waals gas where the volume b is finite.

To analyze carefully, consider a charge ¢ at the origin in an electrolyte solu-

tion with charges z; of densities p;.

7

7

scheme 093
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Charge neutrality requires ), z;p; = 0.

(pz(T)), = average density of charge species x at position r
po : bulk uniform density
W,(r) : reversible work to bring ion x from oo to a distance

r from the origin

Think about reaction fields. W,(r) should have at least two contributions.
The direct Coulomb interaction between ¢ and z,, and then another part

from the non-uniform charge densities induced by ¢.

Specifically,
qz; ! qz;j !
~ dr'— L5 5,
er +;\/ r EHT_TIH< p](’l" ))q

where the deviation from the uniform desnity induced by ¢ has been intro-
duced.

(Sps(r'))g = py (e — 1)

Recall from your knowledge of electrostatics

1
V2||1|| —4md(r)

with 6(r) Dirac’s delta function, zero everywhere except at » = 0 and net

volume equal to 1.

Use this relationship and operate left and right with V2. You get
qzz
VEWi(r) ~ —— - _QZ zipj ( -1

For large r (this should be the relevant region if concentration of ions is very

low), expand the exponential since W;(r) will be small. This gives

Zi
VAW, (r) ~ — 4 Ears(r —qﬁZz]pj
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This is a linear differential equation for W;(r). You can verify that the

solution is

Wi(r) = %e_”

er

RZ,/@ZP%‘Q

x~' = Debye screening length

%
Z

Effect of one ion on another — the pair correlations — decay as e™*". Screen-

where

scheme 094

ing of ions by ionic atmosphere. The effective radius of an ion is (¢ ion

concentration)
1 1
— = Debye length ~ —
- y g e
Now we do the correct calculation of

(U) = average energy of interaction for a tagged

ion coupled to all other ions

=y / ar pie—BWi(r)
: €T N——

density of ions

surrounding ion ¢
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The interaction energy of ion ¢ with ions of type 7 is ©¢. The exponential in
the density of ions can be expanded and only the first two terms are kept,
the other terms can be neglected at very low p; because the ions are generally
very far apart.

pie_:BWi("') ~ p; — BpiWilr) + - -

K= —  (concentration)'/?
€ eDebye length ( )

Analysis of the osmotic pressure can also be done (tedious). The result is
3
Br = Z i~ our Debye—Hiickel limiting law

With salt M, X, — vyMy +v_X_ (eg. NaCl,vy =v_ =1) we have

vy UV

p,, X, = ViQDpy +v-Ap- +kgTInp p= +kgTInvl  v=wvy +v.

where v is the mean activity coefficient

1 9 9 K
e = R ) T

NaCl 25C

AN experiment

Debye-Hckel . \/7

scheme 095
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Chapter 5

Chemical Kinetics

5.1 General considerations and formal devel-

opment

First recall some old ideas:

Two state system (e.g. spin up and spin down)

State 2 — E, Relative populations of equilibrium
determined byAE = Ey — E;
State 1 _ E K= % = % — ¢ FAE

How do these two states equilibrate?” And how much time does it take to
equilibrate?
e How — Mechanism

e Time — Kinetics
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Trans/gauche conformations

g+ t

g-

scheme 100

State g* E,

State t —_— E;

This looks like a 3—state system! Is it? If we say the energy of intermedi-
ate conformations is very high compared to kg7, then those states have no

population and are unimportant at equilibrium!

But, if we want to know how fast a g© — t occurs, for example, we must
consider all the intermediate states! This is the central idea of chemical

kinetics.

g+ g-

scheme 101
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Not really a 3—state system! To know exactly how fast a conversion from t —
g~ is, for example, we would have to know the energy of all the intermediate

angles. But as a first guess to the rate, we only have to know E*!

Conclusion

1. Thermodynamic popoulations — energy of stable states

2. Kinetic rates — energy between stable states

Most fundamental distinction in physical chemistry

Thermodynamics Kinetics

Y 4
Assuming an equilibrium Non-equilibrium system
system at ¢t = oo, at t < 0o, so all fluctuations
allowing all fluctuations not yet achieved.

Think of tedious chore to illustrate difference!

Formal development Consider the reaction A — B.

Want a notion of rate of reaction.

Rate = number of B molecules appearing per time.

= number of A molecules disappearing per time.

If constant volume reaction, can use concentrations to count molecules of

species A and B.
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Let ¢4 = [A],cp = [B], both ¢4 and cp depend on time.

Note ¢p(t) = —éa(t) = S(ca+cp) =0

ca + cgconstant in time

Rate =cép(t) = Sep(t) }

a(t) dt A(t) — conservation of mass

Now we need equations for the rate. The rate equaions are determined by

the Reaction Mechanism.

e Elementary Reactions (easy)
e Complex Reactions (tough)
Let’s do easy first: A — B

Assume: Rate o< ¢4 (This is a big intelectual jump!?)

Then, (Rate equation)

Rate = éB(t) = —éA(t> = kCA(t)

where k is the Rate constant.

Easily solved to give

ca(t) = ca(0)e ™
cp(t) = cp(0) + ca(0) (1 —e™™)

This is called a first order rate equation.
k
A— B

B could go backwards to make A. Let the rate constant for that inverse

process be k_;

s

A

I

—_

B

calt) = —kea(t) + k_ic(t)
éB(t> = kCA(t) — k?_103<t)
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At equilibrium,

C‘AZOZC.Bi():—k?CA—f—k_lCB
and we get
Cp k .
K =— = — < | Detailed Balance
N ca k,
thermodynamics ~—~

kinetics

5.2 Arrhenius law

Temperature of a chemical reaction.

— not clearly defined, as temperature as a statistical quantity only applies

to equilibrium

— for most systems in good approximation on can use the statistical tem-

perature
— be careful with special systems, like flames.
Arrhenius plot

Ink 4
E :activation energy

»1/T

scheme 102
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dlnk E, dlnk  E,

d1/T) R daI _ RI?

For the back reaction we get

dlnk’  E,
dT  RT?

These are empirical laws!

From, K = ﬁ, we get

InK =Ink—Ink’
dln K B dlnk B dln k&

T~ dT dT
N——
ideal gas

AH E, E!

RT?  RT® RI?

AH - Ea - E;
thermodynamic kinetic

quantity; change quantity
in enthalpy for

the reaction

5.3 Transition state theory

XYZ

XY +Z
X+YZ

]

reaction coordinate
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scheme 103

Let’s consider a bi-molecular reaction in the gas phase

A+B+—= X+Y

[Ei : concentration of activated complex

for forward reaction
(__
[C] : concentration of activated complex

for backward reaction

Assumption Equilibrium of activated complexes for backward /forward reaction

A+Be%8
<_
C +— X+Y

We get the equlibrium constants

o=

Il I
S

kﬂ@kﬂ

X][lY]
Write E with partition sums

] = Qf—ggbe‘%w B

Ey is the energy difference of the ground states of A + B and C (zero of

energy definitions).

Q. = Q(trans)Q(rot)Q(vib) - - -

A
O’ E

pot
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scheme 104

For the translational partition sum at the transition state all molecules move

along 0 (reaction path) and E, =~ const. and we have free translation with

) 1
qs = E\/ 27kaBT : 5

where m is the mass of the complex and the factor 1/2 is due to the fact that
we only have to consider the forward movement.

0 A
[vC_j = %\/QkaBTQCbee T [A][B]

average velocity of complexes at the transition state

. . Velocity of re-
average time at the transition state

>

action

7 7 i Eq
[Eﬁ% - %\/%kaT Q? G AlB

We need an estimate for v: Maxwell distribution

m/Uz
P(v,v +dv) =,/ 27:l?BTe_QkBTdv - N

where N is a normalization constant

oo o0 2 oo 2

_ _ mv? _ mv?

U—/ P~Udv—/ ve 21‘BTdv// e 2T dy
0 0 0

and we get

2kgT

w™m

1]

— kT QF _ Eo
Clg =2 2 e

v
9% = TQagbe B J[A] [B]

4[c] k
dt

This looks exactly like the empirical equations of kinetics



with
_ keT QF ~Zy

k= — e
h QaQb
kgT
— 20 Kt
h
? _ it mmkpT 1/2 é
¢ 2 h

K* is an artificial equilibrium constant.

Comparision with Arrhenius:

dh?}T? gln Kt ar . (eliminateX :
ar . = —ar Toar
dink dlnk, 1 BT
= cr VB = AH+ =

dT ar_ "or T
S—— N——

Eq AH

RT2 RT?2

From the interpretation of K* as an equilibrium constant

AG = —RTIn K*

and
k= kBTe—AGﬁ/kBT
h
or
AGH = AHY — TAS"

k= %G—AHﬁ/kBTG—ASﬁ/kB

Compare to Arrhenius k = Ae=2Fe/ET to get

E, = AH* activation energy
kgT
A= BTe_AS ‘IR frequency factor
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Relation to experiment In experiment we measure k(T')

e Eyring plot: In (%) vs. 1/T

f

— slope: —ATH
. f
— Intercept: ATS

e Arrhenius plot: Ink vs. 1/T

Eq

— slope: —

— intercept: A (assuming no temperature dependence of A)

5.4 Kinetic isotope effect (KIE)

Dependence on the rate of chemical reaction on the isotopes in the reactants

k(isotope 1 kg

KIE = ~20%0Pe = B
k(isotope 2 kp

Primary Isotope Effect rate change due to isotopic substitution at a
site of bond breaking or bond making in the rate determining step of a

mechanism.

Secondary Isotope Effect all other

Typical primary KIE values.
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klight/kheavy [25 deg C]

C—-H/C-D 6-8

C—-H/C-T 15-16
2o /3¢ 1.04
Lo/ 1.07
UN/BN 1.03
160 /180 1.02
32G5/348 1.01
BOLPFCL 1.01

From transition state theory

kT QF o Eb ks T

Elight h Q
R,
KIE = —&% — :
Fheavy kpT Q) o—E}/kgT
h QRrn

i
_ Qi Qrh (- e

a Q' Qry

Molecular partition sum

Q = Qtrans : Qrot : Qvilg'QE

mass dependent

In the Born-Oppenheimer approximation Qg is independent of mass. The

most important contribution to the KIE is from Q.

1
Qvi, — §hw zero point contribution

W= \/E f: force constant; u: reduce mass
1
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transition state

STt \\ light isotope

heavy isotope

scheme 105

Under the assumption that at the transition state the bond is broken, there

is no specific contribution to Qiib.

AEy =~ AE(zero point energy)

1
= §h(wlight - wheavy)
ks 1
KIE = light ~ efghAw/kBT
kheavy

estimate for primery isotope effect

Example C—-H vs. C—D

12-1
=== ~1]
[ 1241 YH oo~ 14—KIE~S
iD= 1375 2 wD

Examples of KIE Dehydrohalogenation reactions

NaOC,H; H3C,
CH3CH2CHzBr > /C:CHZ
C2H5OH H
NaOC,Hs H3C,
CH;CD,CH,Br —77 > /C:CHZ
CQH5OH D
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ku

— = 6.7 — primary KIE for C — H/C — D

kp

Transition state

8_
C,Hs0.. o)
‘HY H
(D) Huw==H
H3C Bro~
Rate limiting step involves H (D) abstraction.
CHj H,0 HsC  CHs
CH,CH,~C-Br ——» =
CH, A H  CH,
(I:H:} H20 H3C CH3
CHsch_C_Br E—— —
&, A o on,

ki

kp

Transition state (rational)

159

1.4 — secondary KIE for C — H/C — D

scheme 106

scheme 107

scheme 108



H(D) CH, HO)  cH,
Lo I
@ [ I ep, ©)H""
H,C 9oBf HaC CH;

scheme 109
Rate limiting step is Br~ elimination.

Decomposition of azo compound

R-N=N-R —> R-NZEN-R —> 2R+ N,

scheme 110

ka

= 1.02 — primary KIE
ks

KIE can be used to elucidate reaction mechanisms.

Origins of secondary KIE

e Differences in steric demand

scheme 111

kp
— =1.15
ku

C — D has smaller vibrational amplitude.
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e Hyperconjugative effects

e Differences in inductive effect, e.g. H is mor electronegative than D.

Tunneling Quantum mechanical effect: transfering through instead over

a barrier.

Basic exercise in QM

partices @~ @ ——— -

E—

- F——
R: reflexion T: transmission

V(x) &

(Classical physics E>U R =0
E<U R =1

Quantum mechanics

~ (A*+1)*sinh’ka
©4X2 4 (A2 4 1)2sinh® ka
T_ 42
402 + (A2 4 1)2sinh® ka

E<U

161
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with

2
K? = h—ﬂ;(U —F) mass dependence
2m
2 _
K
ok
Example: U =2F; K=k A=1
4 1
= — 12 = 3 T = Ka
4 +4sinh"ka 1+ sinh” ka
~1—a*+2/32% + -
Th
» Xa

scheme 113

Importance in chemical reactions

\ Y

scheme 114
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Bell’s modification

k=Q- Ae~Fa/keT @ : tunneling factor

Q= 5 (B —ac™?)

where

B E 5 2am\V/2mE
T KeT - h

f depends on mass (y/m) and barrier width (a). Largest effects for small m

and small a.

Example: proton transfer

2a~04 A4

scheme 115

Can be important in proton transfer in enzymatic reactions, e.g., dehydro-

genases.

5.5 Electron transfer reactions: Marcus the-

ory

Electron transfer: the simplest chemical process

e molecular structures are preserved
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e 1no bonds are broken or formed
e bond adjustments

e solvent repolarization

Electron transfer: plays a central role in

e inorganic redox chemistry

e organic chemistry

e clectrochemistry (fueld cells, batteries)
e solid state and surface physics

e biology

Examples

[Fe(phen)s)** + [Fe(CN)g)*™ —
[Co(N Hs)g)** 4 [Co(N Hs)g*t —
[Co(NHs)s]*" + [Ru N

where phen = 1,10 — phenanthroline.

In all these reaction is a single electron exchanged

rates ~10° M~ 157!
~ 107" Mgt
~ 1072 M 1s!

There are 16 orders of magnitude difference in the rates of these simple

reactions!
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AEnergy Marcus Approximation 4
Em—

AG N\ \v/  AG

scheme 120

A: solvent reorganization energy.

Derivation of the Marcus formula (Nobel prize in chemistry 1992)
Reactants Yy = a?
Products (2 — b) = (z — a)?
Yo = 22 — 2ax +a* + b

Calculation of intersection point coordinates (zs,ys) -

yr(s) = ya(ws)
v =2? — 2ax, +a* +b
0= —2az,+a>+b
2aqxs = b+ a?

_b+a?
 2a

Ts

Interpretation of parameters:
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With this we get
(b+a*)?  (AG+ \)?

Ea p— pr—
4a? 4\
Rate constant
_(AG+N)?
k= Ae 4kpT
Formula for prefactor
27 1
A=""|Higl| —
o 1Has] VAT &g T

Hap :  electronic coupling element
how easy is it for an electron

to go from state A to B
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diabatic : same state
adiabatic : optimal state

scheme 122
What is the physical meaning of the reorganization energy A7

Amount of energy required to distort the nuclear configurations of the reac-
tants (inclusive solvent) into the nuclear configuration of the products with-

out electron tarnsfer occuring.

What is the relationship between the free energy change and the reorganzi-

ation energy when the rate constant is maximal?

Max.k — E, =0 (asE, > 0)
(6G+X)?*=0
—0G =\

Does the rate always increase as the free energy change becomes more nega-

tive?
No, gecreases as soon as 0G > A. This is called the inverted region.
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A Ink &

scheme 123

Electron transfer in biological systems Charge transfer, i.e. electron
transfer, proton transfer and coupled ET/PT are essential steps in biological

systems.

Overall equation of aerobic metabolism

Photosynthesis (light)
—
6C 02 + 6H50 < CgH1204 + 605
—

Respiratory system

Bacterial metabolism

4Hy + SO;™ < S*~ + 4H,0
acetat + SO7” « HyO + COy + HCO; + 5% + - -

Photosynthesis

e Step 1: light absorption

e Steps 2—12: all electron and proton transfer
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Schematic view of aerobic biological metabolism

iyl ) ]
e TN i
Mo —laSe Livaobit= /e, Yy | Flose
1 Waman beeas S
\ s P [ 3~ =0
\ i s o
,5/0(“; [V ot
4 g ‘{
\ 4 ‘ a | A = b
2 OI & | —_—i f=—{ K bg gsiome J L’.\’lejL
I - fﬁl
( - e digin
At O 1ty

scheme 124

Photosynthetic reaction center

scheme 125

Steps 1-8 are electron transfer processes.
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Modifying aminoacids changes AG®

log k {51}

O

il T 1 L i
00 02 04 06 08 10 12

-2

-AG {eV)

scheme 126

From this data an empirical rule for the relationship k, AGY, X and the

distance between donor and acceptor can be derived.

Dutton’s rule

log, 0k = 13 — 0.6(R — 3.6) — 3.1(AG" + X)?/\

Application of Marcus theory Computer simulation of redox potentials
(J. VandeVondele et al. Chimia, 61 155 (2007))

A+D < A+ Dt
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Calculate half cell redox potentials

A+e +— A AA
D+—|—€_<—>D AAQ
A+D < A+ DTAA = AA + AA,

Assume no direct interaction of A and D — rather long range electron transfer.

AA is free energy difference between different redox states — we use thermo-

ad= [ (PN,
[ %)

where « is the coupling parameter between the two states

dynamic integration

H(a) = aHye + (1 — @) Hox
OH ()
Oa

AF is the total energy difference between reduced and oxidized form at given

= Hre - 7-[ox =AFE

atomic positions.

1
AA = / (AE), da
0

() indicates a Boltzmann sampling for ensemble generated by H(«).

Marcus theory:

AE =y — s with Yy = a?
=2za—a*—b Yo = 2° —2za+a®+b
Therefore
(AE), = /OO (2za — a® — b)e PV dyg/ /00 e @)y
=200 —a® +b linear in «o!
and we get

1
AA:/ (AE), da = a?a® — aa® + ab||, = b
0
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(AE)

A

scheme 127

AA= 5 ((AE),+ (AE),)

N | —

or

1
AA = (AE), + 54
1
= <AE>O + §Q
where ¢ is the slope
_d (AE) =2a* =2\
1= da o B
1 1
A=5a=5(AE), — (AE))



and

OH(a) — a
i(AE> _ 4 J Tate e
da ¢ da [ e FHe)dy
2

[Ere e snegy [ (D) e M

fe—BH(a)dg; B fe_ﬁﬂ(a)dx

(7 221, i)
p
(f e—m"(o“)dx)2

2
as H(«) is linear in « : 0 ;i(;o =0
= -8 ((AE?), — (AE),)
= —Bo? fluctuations of energy difference

The solvent reorganization energy A can therefore be calculated as

o % _ ot
%ksT  2kgT

Simulation protocol

1. Generate an ensemble of configurations by molecular dynamics in the

reduced (a = 0) or oxidized state (o = 1).

2. For each configuration calculate the vertical energy (AFE) as difference

in total energy between oxidized and reduced state.

3. Compute average and variance of AF to obtain AA and .
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Electron Transfer Properties from
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Abstract: Marcus theory of electron transfer is the quintessential example of a successful theory in physical chem-
istry. In this paper, we describe the theoretical approach we have adopted to compute key parameters in Marcus
theory. In our method, based on molecular dynamics simulations and density functional theory, the redox center
and its environment are treated at the same level of theory. Such a detailed atomistic model describes specific
solvent-solute interactions, such as hydrogen bonding, explicitly. The quantum chemical nature of our computa-
tions enables us to study the effect of chemical modifications of the redox centers and deals accurately with the
electronic polarization of the environment. Based on results of previous work, we will illustrate that quantitative
agreement with experiment can be obtained for differences in redox potentials and solvent reorganization energies
for systems ranging from small organic compounds to proteins in solution.

Keywords: Density functional theory - Electron transfer - Marcus theory - Molecular dynamics

1. Introduction

Electron transfer (ET) reactions play a cru-
cial role in a number of processes of bio-
logical and technological importance. Well-
known examples include cell respiration,
photosynthesis, fuel cell catalysis and pho-
tovoltaics.l[2] The efficiency of these pro-
cesses can be optimized by tuning the ET
properties of electron-donor and -acceptor
or the pathway between them. The relative
stability of the electron at these sites (i.e.
differences in redox potentials), and the
rate of electron transfer between them are
of particular interest, as they reflect directly
what is thermodynamically and kinetically
feasible. In this paper, we will summarize
some of our previous workB3-151 aimed at
computing these quantities directly from
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atomistic models using density functional
Theory (DFT). The quantum chemical na-
ture of DFT allows the effects of chemical
modifications of the redox centers to be
studied without a need for prior knowledge
or empirical parameterization. This can
thus make our method truly predictive.

A key feature of ET reactions, or re-
dox reactions in general, is the crucial role
played by the environment. Indeed, oxi-
dation (reduction) potentials are the con-
densed phase equivalents of ionization po-
tentials (electron affinities) in the gas phase,
and these quantities can differ significantly.
Our atomistic models explicitly include the
environment (e.g. solvent and/or protein)
so that not only dielectric properties but
also specific interactions, such as hydro-
gen bonding or conformational changes are
taken explicitly into account. Furthermore,
the environment is far from being a static
spectator. Its fluctuations bring donor and
acceptor sites in an energy resonant state,
triggering ET, and its ability to relax after
ET influences significantly the energetics.
In order to probe these fluctuations and re-
laxations in our computational setup, mo-
lecular dynamics is employed to generate a
sufficiently large number of representative
configurations of solute and solvent.

A major step in the understanding of
ET reactions was the formulation by Mar-
cusl16.17 of the rate of electron transfer (k)

as a simple function of the reaction free
energy (AG), the solvent reorganization
energy (A) and a proportionality constant
(x) depending on the quantum coupling be-
tween donor and acceptor states.

—(A+ AG)Z)

ker = Kexp( N

D

The fruitful concept that underlies this
formula is the assumed harmonic nature
of the free energy surface with respect to
the reaction coordinate of electron transfer.
This restricts the validity of this formula to
the range of systems that fall in the linear
response regime, which might thus exclude
systems that undergo significant changes
in conformation or solvation upon elec-
tron transfer. Ultimately, the success of this
theory is based on its capability to predict
and explain experimental results. As will
be illustrated in Section 2, our and other
groups!!8-221 have adopted the central con-
cept of this theory to simplify and guide
calculations.

So far we have focused on computing
two of the three central parameters in Mar-
cus theory: AG, the driving force of the ET
reaction, and A, the solvent reorganization
energy. Anticipating our results in Section
3, we find good agreement with experiment
for systems ranging from small organic
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compounds to proteins in solution. Where-
as our DFT calculations typically involve a
few hundred atoms, the latter system was
modeled using a DFT description for over
2800 atoms.[13]

2. Atomistic Theory of Electron
Transfer

A central element of our approach to
ET so far, is the observation that AG and
A can be obtained from standard electronic
ground state calculations, thus avoiding the
complexity of excited state calculations,
if one focuses on electrochemical half re-
actions. In this case, a single redox active
center is explicitly present in the simulation
cell, either in reduced or oxidized form.
Such a setup only makes sense if there is no
strong coupling between the donor and ac-
ceptor site, and is thus most easily applied
in the case of long-range electron transfer.
The free energy difference between the
reduced and oxidized redox state, which
we will denote by AA, to indicate that our
simulations are at constant volume, can be
computed in a number of ways. In the pre-
sent work, we derive expressions for AA
based on thermodynamic integration, i.e.
integrating the reversible work needed to
change the system’s Hamiltonian linearly
from the reduced [H_({R;})] to the oxi-
dized [H_ ({R;})] one. We write

AA = f<w> do = f(AE({RJ))ada
0 a

ada 2
H,({R})=cH,{R})+(1-a)H, ({R})

HAED  ap (R = H.(RD) - H(RY)
2
where H is a Hamiltonian, formed as a

linear combination of the two physical
Hamiltonians H__and H,. Its derivate with
respect to o is the vertical energy gap AE,
a central quantity in the following. The in-
tegrand <AE({R,})> , is the canonical aver-
age of the vertical energy as obtained from
a sampling based on the Hamiltonian H,
for which we will introduce the short hand
notation AE . The above expression for AA
is exact, and practical for actual ab initio
calculations.[!l]

Nevertheless, let us assume that the sys-
tem is in the Marcus regime, or equivalently
in the linear response regime. In this case,
the integrand AE varies linearly between
the integration limits oo = 0 and o = 1, and
a number of simple expressions for AA can
be derived. We illustrate in the Fig. that the
assumption of linearity can be valid with
remarkable accuracy, but see e.g. ref.[11] for
a counterexample. Three expressions that
are exact in the linear regime, and that have
been used in our previous work are:

AE, - 2o
2kT
0_2
=AE, +—
" 2kT (3)

where the first expression is a two-point es-
timate of the integral, and the latter two ex-
pressions are obtained from integrating the
surface under a straight line through either
the initial or the final point, with a slope
given by the first derivative of the integrand
in that point:

d
TG (AEARY), ]

- Ll(arcr)y), ~(aERy)]

4)

The latter expression shows that the
slope of the integrand is proportional to the
variance (fluctuations) of the vertical energy.
The assumed linear behavior of AE  implies
that the first derivative is constant, and that
all higher derivatives vanish. While this
leads trivially to the property that 6> equals
G,2, it is a lengthier derivation, beyond the
scope of this paper, to show that this leads
to a Gaussian probability distribution of AE.
The corresponding free energy profile, given
by —kT times the logarithm of this probabil-
ity distribution, is parabolic, and the solvent
reorganization energy (A) can directly be as-
sociated with the fluctuations as

_ o, _ o} =1(
2kT  2kT 2

where the last equality is obtained by sub-
tracting the last two equations for AA.

In the remainder of this paper, we will
use the above equations in a simple three-
step recipe to compute AA and A:

AE,-AE)) (5
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i) Generate an ensemble of atomistic con-
figurations by running molecular dy-
namics simulations in the reduced (o =
0) and/or the oxidized state (ot = 1).

ii) For each of these configurations, com-
pute the vertical energy (AE) as the dif-
ference in total energy between the oxi-
dized and the reduced state.

iii) Compute the average (AE) and vari-
ance (0,,2) of the set of values of AE to
obtain AA and A.

Additionally, based on careful consider-
ations of the system’s complexity, we will
choose which formula for AA and A, we em-
ploy, and how we generate the ensemble.
For example, the expressions depending on
the variance of AE converge significantly
slower than those depending only on the
average of AE, but have nevertheless the
advantage that they can be evaluated with
just one simulation in an oxidation state of
choice. The expression based on the aver-
age of the vertical energy at both end points
is likely to be more reliable if some devia-
tion from linearity is to be expected.

Finally, we conclude this section with a
brief discussion of our computational setup,
referring to ref.[23] for a complete techni-
cal review of the method, and refs.[10.12.15]
for specific computational details for each
of the selected applications. The unifying
theme for the simulations that we have se-
lected for this paper is that all DFT calcula-
tions have been performed using the freely
available simulation package CP2K/Quick-
step.[23:241 Based on the hybrid Gaussians
and plane waves (GPW) scheme, 23] excel-
lent efficiency and accuracy is obtained for
systems containing up to a few thousand
atoms.[26.15] The efficiency is obtained by
exploiting the locality and compactness of
a Gaussian basis, and the linear scaling cost
of evaluating the Coulomb (Hartree) energy
in a plane wave basis. Furthermore, Born-
Oppenheimer molecular dynamics simula-
tions can be performed using a robust wave-
function optimization techniquel?! and a
density matrix extrapolation scheme.[?3]

Fig. Computed values

0.7

AE [a.u.]

0.8

of the integrand AE_, for
a classical model of the
Fe2*/Fe3* redox pair in
aqueous solution are
shown with error bars
indicating the statistical
uncertainty. The line
represents a linear fit to
the data. The high quality
of this fit convincingly
demonstrates, for this
system, the validity

of a key assumption
underlying Marcus
theory and our

computational approach.
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The value of this approach can be best ap-
preciated for ‘electronically difficult’ sys-
tems such as radicals and transition metal
compounds, typically encountered in ET
systems, where these methods bring en-
hanced stability.

Nevertheless, these simulations remain
challenging and a number of issues that
might affect their accuracy have been dis-
cussed in more detail in ref.[!4] Errors arise
from the approximate nature of DFT and
from the limited length and timescales that
can be assessed by ab initio techniques.
The most serious DFT error is likely to
come from the self-interaction error, de-
spite the fact that our half-cell approach
avoids the difficulties associated with a
computational setup where both donor and
acceptor are present in the same simula-
tion cell. The latter setup can lead to an
unphysical delocalization of the electron
and requires proper treatment. However,
even with the half cell approach, the self-
interaction error is a major concern for
systems containing an unpaired electron
in an electronic state that is (nearly) de-
generate with the band of occupied solvent
state. In this case, an unphysical delocal-
ization of the spin over the solvent might
be observed.?7] System size effects can
be expected for quantities, such as A, that
are sensitive to the long-range nature of
the electrostatics, since charged solutes
are treated in relatively small simulation
cells. However, when investigating differ-
ences between systems that have a similar
spatial distribution of the charge, the same
unit cell, and a similar environment, these
errors are expected to cancel. Finally, in
assuming a linear response regime for our
calculations, we have introduced a system-
atic error. This is error must be balanced
to the statistical uncertainty in the results,
since only a relatively small number of
configurations (100—1000 s) can be com-
puted using methods based on DFT.

3. Results and Discussion

In the following, we present three ap-
plications that have been used to explore
the capabilities and limits of our meth-
odology within the framework of CP2K.
These are:

i) the organosulphur compounds tet-

rathiafulvalenene (TTF) and thian-

threne (TH) in acetonitrile (ACN) so-
lution,[10]

model quinones, benzoquinone (BQ)

and duroquinone (DQ) in two dif-

ferent solvents, ACN and methanol

(MeOH),12!

iii) two natural varieties of the iron—sulfur
protein rubredoxin in aqueous solu-
tion.[13]

Three variants of the same three-step
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Table. Computed reaction free energies in eV for the full reactions discussed in the text. The statistical
uncertainty on the computed results is about 60 meV for the first four and about 30 meV for the last

reaction.

Redox reaction solvent Ref. Computed Experiment
[eV] [eV]

TH+TTF* ->TH* + TTF ACN [10] 0.96 0.93

THHTTF2+ -> TH2+4TTF* ACN [10] 1.09 1.08

BQ+DQ -> BQ+DQ” ACN [12] 0.42 0.35

BQ+DQ -> BQ+DQ” MeOH [12] 0.43 0.42

CpFe(lll)+PfFe(ll)  -> CpFe(ll)+PfFe(lll)  Water [15] 0.04 0.06

recipe have been employed. For the or-
ganosulphur compounds, we have em-
ployed ab initio molecular dynamics sim-
ulations to generate the configurations,
leading to parameter-free estimates of the
reaction free energies shown in the Table,
which agree with experiment to within our
estimated statistical uncertainty (60 meV).
For the other two applications, configura-
tions have been generated using classical
molecular dynamics, and DFT has only
been employed to compute the vertical
energies. These results are thus not truly
parameter-free, since a classical force field
must be available to describe the geome-
tries. However, this approach allows much
longer timescales to be explored, and both
systems have been simulated for several
nanoseconds, retaining a few hundred to
thousands of configurations for DFT-based
analysis. The simulations of the quinones
exhibit similar agreement with experiment
for the reaction free energies (hence vali-
dating our mixed classical/quantum ap-
proach), but more interestingly allow the
effect of hydrogen bonding on the solvent
reorganization free energy to be illustrated,
and hence the rate of electron transfer. In-
deed, we have selected two solvents (ACN
and MeOH) with very similar dielectric
properties. In particular, their Pekar fac-
tors, which in a continuum description are
proportional to the solvent reorganization
energy, differ only by about 5%. However,
we find that the solvent reorganization en-
ergies of both solutes are larger by approx-
imately 230 meV in the hydrogen bonding
solvent, consistent with experiment.[28]
This illustrates the limits of a continuum
theory approach, which predicts a much
smaller difference. Our third application
is also based on classical sampling with
DFT calculations of the vertical energies,
but applies this technique to a significantly
larger system, the mesophilic Clostridium
pasteurianum (Cp) and the hyperthermo-
philic Pyrococcus furiosus (Pf) variants of
the iron—sulphur protein rubredoxin. We
consider it a significant break-through that

we are now able to obtain redox potentials
differences in agreement with experiment
(see the Table) for a system of this size
(2800 atoms). Furthermore, we also obtain
solvent reorganization energies (0.5-0.7
eV) that are in good agreement with the
estimates employed in kinetic models of
the self-exchange reaction.[?] This is sig-
nificant, since simulations based on stan-
dard force fields yield results that are much
larger. This overestimate is consistent with
the continuum dielectric expression of the
solvent reorganization energy, and under-
lines the importance of the high frequency
dielectric response. The latter term is ab-
sent in non-polarizable force fields, but
included in our DFT description.

Finally, we note that atomistic and
electronic information is available in these
simulations as well. For example, the re-
sponse of the solvent to the ionization of
the solute can be analyzed,[19] the contri-
bution of particular residues to the solvent
reorganization energy estimated,!3-30]
or the correlation between one-electron
energies levels and redox potentials ob-
tained.!'4] In this paper, we focused on the
computation of key parameters in Marcus
theory and compared these results with
experiment where available. The results
presented here are a good indication that
the method is quantitative and predictive,
and that our approach can thus be applied
in cases where experiments might be dif-
ficult or more approximate theories inap-
propriate.
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Chapter 6

Summary

Mass equilibrium

scheme 150

The boundary can be a hypothetical or real physical boundary (liquid/vapor,
liquid /liquid).

Condition for equilibrium:
M(l) — M(Q)

This is equivalent to conditions for equilibrium for p and T'!
For multiple components we have
1 2
0 =P
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Compare this again to conditions for p and 7.

Condition for equilibria in chemical reactions

aA+bB+ -« cC+dD+---
apa + bug + cdots = cpue + dup + -+

From the fact that G(T, p, N1, N, ...) is an extensive function, we get
G = Ny + pigNa + -+

with p; = p;(T, P) and dependent on other components.

Using dG(T,p, N1, Na, ...) = dG(uy, p2, ..., N1, Na,...), we get the Gibbs—
Duhem equation

SAT — Vdp+ > Nidp; =0

For a one component system, we can derive
o o
N|—| =V d N | —
<ap)T . (8T>

Chemical potential for an ideal solution Configurational contribution

S

p

ﬂ,uconf =1In Xsol

where X, is the mole fraction.

Reversible work to create a solute molecule in solution Ap. The sum of these
two contributions is the total chemical potential of an ideal solution (Raoult’s
Law).

B = BAp+In Xy

Reversible work surface Hold specific coordinates fixed

— partition function Q(z,...,xn; 5, N, V)

olnQ B
axl _B< $1>
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(fz,) is the average force on coordiante x1, with x1, ..., zy hold fix.

hl@z_ﬂ W(xla"wa;ﬁaN?V)

reversible work surface
potential of mean force

free energy surface

exp|—[(reversible work surface for z1, ..., zx)]
= Boltzmann weighted sum over all fluctuations with xq, ...,z fixed
o probability for observing system with x,...,xy

AA free energy difference

04
19D

Free energy calculations and measurements We go for o
free energy derivatives

Expectation value in canonical ensemble

e M
ey = LR

where H(p, q) is the Hamilton function (= total energy function = kinetic +
potential energy) of the full system. T"is short for all phase space variables
(ri,7m2, ..., 7N,D1,D2, - .,pn) = 6N variables, N= number of particles in the

system.
Partition function Q= / e PRAT
r

Helmholtz free energy: A = —kgT In Q.

AA = Ay _AX = —kBTln&

Qx
= —kpT'In (e PHY=7x))

where the sampling is over distribution of system X.

Multiple configurations H; — Ho — Hz - - -.
— overlapping distributions

— better convergence of simulations
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Thermodynamic integration
AN) = =kbTInQ(N)

AM=AN=1 = AN =0) = [ =55
-[(H)o~2(5),

Umbrella sampling

Make use of a bias potential W (7). This enhances sampling of some config-

urations, but has to be corrected in averaging.

_ (A
W=,

The sampling (B) is over the biased potential H + W.

Chemical equilibrium in a solvent
A+ B

Chemical potentials have to be the same

A = KB

Thus, (ideal gas formula)

BApa+Inps = BAug +Inpp

and, we get

K — pPa _ e B(Apa—Aup)

~—
PB
no concentration

dependent terms!

Approximation:
K ~ KgaseiﬁAW

AW free energies of solvation differences.
Sources for AW
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e packing effect, excluded volume

e clectrostatic effects

Born model .

_ q
Apm—(1-1/e)—
Debye formula
8(e — 1) m?
2+1 o3
where ¢, m: charge and dipole of solute, o: size of solute, e: dielectric

Ap =~
constant of solvent.

Another application of Sy = SAu + In p:

Osmotic pressure bm = Z Pi

Beyond ideal solutions
Bp=pBAp+Inp

but now make Ay concentration dependent.

0A
Ap = Ap® + a—'up + - Taylor expansion
p
= A’ +2kgTBp+ - - B: 2nd virial coefficient

Equation of state of real gas

Bp=p+Bp*+--

Chemical kinetics Thermodynamics: energy of stable states

Kinetics: energy between stable states

K = T detailed balance
~1
thermodynamics kinetics
equilibrium constant rates of reactions
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Arrhenius (empirical formula)

AE

k= Ae kst

A: frequency factor; AFE,: activation energy

Eyring (from transition state theory)

kpT as* _ant
e kg ¢ kpT

k:

Eyring plot: In (k/T) vs. 1/T
slope: —AH*/kp
intercept: AS*/kg

Transition state theory:
. kT @ _,
Ol = == % o Po/ksT1A|B
=5 ga AP

~
k(Eyring)

S/

From equilibrium assumption
[A] + [B] <> [C] > products

Kinetic isotope effects

KIE — k(%sotope 1)

k(isotope 2)

primary KIE isotope involved in bond
breaking or forming

secondary KIE all other

C—-H/C—-D 6—8
Typical size of primary KIE: / )

all other isotopes < 1.1
From transition state theory

KIE — Qg%e—(%—%)/kﬂ
Q;, @Ry
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Molecular partition functions; @).;, has largest mass dependence

AFEy ~ AFE(xero point energy)

KIE ~ el/ZEAw/kBT
where Aw is change in frequency due to isotope substitution, assumes w? = 0.

Tunneling: other source for KIE
Important mainly for protons or at low temperatures, e.g., enzymatic reac-

tions.

Marcus theory of electron transfer Based on transition state theory
Assumes free energy curves along reaction coordinates (reversible work sur-

face) are parabola (diabatic states).

-

AG

\J

scheme 151

A: reoranization energy = excess energy of state A at equilibrium position
of state B.

_(AG+)?

k = Ae kBT

Regions of electron transfer
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AInk

normal inverted

A

-AG

scheme 152
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