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Preface

The following pages describe the solutions to many of the Exercises in

avid Chandler's text, Introduction to Modern Statistical Mechanics. That

ext is brief but demanding with the principles illustrated only through the

’numerous Exercises. Especially in light of this strategy, a solution manual
an serve an important pedagogical role. While we do not present herein the
solutions to all the Exercises, those we have skipped require no techniques
_that are not already illustrated by the solutions we have included. In some
cases; we have pointed out additional references. While not absolutely
_pecessary (the text is self contained), these additions may be especially
useful for the topics not covered explicitly in the main body of the text.
For instance, in Chapter 6 where at least one exercise leads one naturally to
perform a finite size scaling calculation, we alert the reader to some
introductory literature on this important technique.

In the format we have adopted, the manual should look like neatly
prepared problem sets. The prose is kept to a minimum, and the figures are
generally hand drawn sketches, though a few graphs were plotted with the aid
of a microcomputer. Concerning the preparation of the manuscript, we owe

great thanks to Mary Hammond for her expert secretarial help.




solution Manual for Introduction to Chapter 1. Thernmodynamics, Fundamentals

Modern Statistical Mechanics

1.7 Entropy is postulated by the 2nd Law to be a monotonically increasing

Contents furiction of E (i.e., T » 0) and an extensive function. The first
equation of state satisfies both criteria, while the second is not
Page extensive since it grows exponentially with system size. So

1 . 2 L
Chapter 1 S = LOY(eE/LO)”2 - LL % (f—) + 39 - % ]
Chapter 2 g 0

a

15 is.the correct choice. Indeed, you can convince yourself that
Chapter 3

29
Chapter 4 S(AE, AL, An) = AS(E,L,n)

43
Chapter 5
Chapter 6 59 Further,

. 68 ] 38 ] YVLOS
Chapter 7 7= (gﬁ)n L= 3
Chapter 8 81 , ’E
apter
S implying T > 0 . For the tension, we have
L
9S L o]
£/T = (E)E,n = LOY [ - 5 ]
LO L

3
or f = TY(1/20>[1 - (10/1) 1, & =1L/n

1.h

The principles we apply are conservation of total extensive energy and
equality of temperature at thermal equilibrium. From the solution to

Exercise 1.2,

E = T2Y2 nloe/u

Therefore, the total initial energy is

[(T(1))2 n(1) . (T(2)>2 n(Z)] Y2206/U - E(1) N E(2)

which is the same as the total final energy

TZ(n<1)+ n(2)J YZQOS/M

Hence




1.

2
1 [ (T(T))2 n(?)+ (T(z)) n(z)] }1/2 ;

Assuming the system is surrounded by adiabatic walls, the change in
energy AE is equal to the work fpdv due to changing the pressures ppy and
Pg - The final equilibrium state s0 obtained has new mole numbers i,

and no Instead we can imagine arriving at this final equilibrium

state in two steps. First we reversibly pump the particles to their

final values. Then we do work by moving the pistons to their final

pressures with the walls impermeable to any particles. We know the

B

total change in energy of the system must again be AE since E is a

function of state. Hence, the work done by changing ny and n, can be

associated with work done by changing the pressures.

- 3 (98 ) ~
=T (ap (BT>p,n)T,n p,T,n natural variables =>

(BS ) dG = -$dT + Vdp + udn

3 T,np,n

SV) ]

- 15r © 5,00p,n

For a rubber band of length L, tension £,
dE = TdS + fdL + udn

E is extensive. Therefore by Euler's theorem, E =TS + fLL + un

Hence,

dE = TdS + SdT + fdL + Ldf + udn + ndu

implying

1.13

0= SdT + Ldf + ndp .

Since,
E = eSZL/n2
“we have
= (EE) - 205°L
on’S,L 03

Substitute S

S(T,L,n) by inverting T = T(S,L,n):

ok 268L
T = (22 - n T
(BSJL,N 2’ S = =
Thus,

n 'Ty2

26(——

w= - e(ZeL) L _ T2

n3 26(L/n)

The Gibbs-Duhem like equation is 0 = SdT + Ldf + ndy
show this interdependence of these three differentials

representation, e.g., {S,L,n},

2
3E S
r= (OF _
(BL)S,n =8
ar - (288 265°
- s 4 (- 2
n n
4gSL 2 2
du = (- —=)as + (- 26§ Jan + (888 Ly,
n n nu

We want to

We choose a

though we could also use {T,f}




Chapter 2. Conditions for Equilibrium and Stability

Plugging into 0 = SdT + Ldf + ndu

9L,
[8(262) . L(Eeg) . n[— UeiL)] ds (a) Stability criteria are generally (Efi) 2 0 where X; and I; are
n n n i
> conjugate. Therefore (i) is true,
+ [s(?—%) + L(0) + n(- 29§ )1 aL
n n BpJ op X
(—— = n(——) <0, since -p and V are conjugate,
4osL 205° 66S°L oviT ViT,n ote
v rs(- 228y (- 229y 4 (82 L) an
n n n Seay s . oy _ op .
Also (iii) is true since (8V)T = + v(ngT < O by the Gibbs-Duhem
=0 . QED

equation. None of the remainder are guaranteed false by stability.

(b} From Part (a), we know to examine (ii) and (iv). Note

1.14 The Gibbs~Duhem equation, 0 = -3dT + Vdp - nduy, implies

(BTJ o (BTJ 98
dy = -sdT + vdp , with s = S/n and v = V/n . Wis T v (SVJT
9T ]
Hence, - - (55, G, - {aa = -saT - pav + uan}
au aT ap
L = =5 m + V=
(BV)T (BV)T (SVJT Since (aT/E)s)V is positive by stability,
ap a
= (=), . 3T ?
9v’T ol ; ; 9p
(av]s > 0 implies (BTJV < 0.

But this implication contradicts (ii). Thus, (ii) and (iv) are

1.16 From the definition of heat capacity inconsistent.

3¢
(—"()%)T N (%E T(%%)SLJT

3 (SS

- T(ﬁ SZ)T)SL

Further, since dE = TdS + fdl + udn, we have 2,10 "To derive the analog of the Clausius~Clapeyron equation in the p-T

4(E-TS) = - SAT + fdL + udn plane, note that the u-T coexistence line requires that

p(o‘)<u,T) = p(B)(u,T) . But 0 = -SdT + Vdp - ndu implies

and thus the Maxwell-type relation
dp + (8/V)dT + (n/V)du . As we creep infinitesimally along the p-T

(gz)T - (3?)2 coexistence line, dp(a) = dp(S) when infinitesimally close on either
Hence side, i.e.,
ac 2 2
% a f ] LT
(5)p = - 15), - -1 =5 (57) - o
STt 208 2 [%)(u)dT . (%)(a)du - (%)(S)dT . (%)(B)dp

or

where




2.19

ny(a)_ (ny(8) 9Ly _ (3L 35
o= (H-HT (en = GEen Gieom
A Sy(a) Sy (8) _ o7 39S
8= () - - - (58)s 55)e A(E-fL) - TdS - Ldf ¢
e e implies (&&) =~ (5]
50 50 9S’f,n f’3S,n
given by stability
G - o(28 _ 1y v "
Cv = T(gT]v cp - T(ETJp s Vv (ap)s T V(ap)T Thus
(k_sk.) = {c/Cc_) we note that Gy, <o
Assume constant n . To prove Ks ) v 5Tf,n .
W 3 In other words, the rubber band stretches when cooled.
K /Ky = ('SEJS/(%SE)T 3 a
0S) | (38) (BIy , (38) (2L
- (3% (38 (3py (&L (57 = Grl Go)e + Godr Gt
P5TpepTy TR aS 93 3S af aL
38y (8T 35y (98 Cy (F7)e Gl - (50)r 0L GGelpd
-3, &) - B, - & 4 - 1)
aT’v “aS’p aT’v" *oT’p p ; 5 ;
s L
. Liaing (29, - - (2% (2% = 5l GF)p - -SdT + fdL +
The second equality comes from realizing 5z " 52y oy x . '
50 50 implies
and the third uses the chain rule. Since . " a5
> by stability (ET)L = ~(§f)T
_ ¢ - - (%R v 2
€ "0y M55) 1,0l 57p 0] Co=0C >0
£ L
and since -(8p/dv). > O by stability, we have Cp > Cy Thus, 1 1
T Hence T > T In other words, the constant length rubber band
L f

Cp/cv > 1, and since Cp/Cv = KT/KS , Wwe have KT > Ks
This inequality says that instead of working adiabatically, it
to compress something if you can leak energy out of the system

constant temperature heat bath.

The rubber band heats up when stretched. Assume constant

(BT

. 9T
aL)S,n> 0 or equivalently (§?JS,n >0

Note, these two derivatives have the same sign since

and the second derivative is positive by stability.

To find the sign of (—a-Li

BT]f L 0 ve write

has the larger change in temperature.
is easier

into a

Since in general dE = TdS + f.dx , where f is the intensive field
and x is the extensive parameter, the correct work term 1s HdM.
(In other words, doubling the system doubles M, not H. This
approximate extensivity neglects interactions such as mutual
polarization which might occur if two magnetizable systems were

placed adjacent to each other.) So

dE = TdS + HdM - pdV + udN ,
and
dA = -8dT + HdM - pdV - udN

oH

m)s’vin > 0 and

Stability then requires both Xé1 =




-1

oH
o -

SM)T,v,n >0 .

Using the representation {S,H,n,v} , the thermodynamic potential is

. _ (9(E-HM)
E - HM. We then have M = M(S,H,n,V) since M = [——gﬁ———)s,n’v
oM oM 3s oM
xp = Gl = GGl (5g)r * (58)s
oy o (- 8Ty (9Ty (35 ) = -
xr = % = (- s@ls (5@l (590n d(E-HM) = TdS - MdH + ...
By the Maxwell relation
2
AT 3T My (T
- (5p)s/ (ggly > © (58D = ~(&w)s -
oT i
(5§)H > 0 by stability.
, oM . : 3Ty
(b) Given (ﬁT)H < 0, we want to determine the sign of (BH)S'
9Ty _ _ 3Ty (233 —uM- - -8dT -
(57)s = - Gl (5)e d(E-HM-ST) = -SdT - MaH + ...
oT oM ;
= [§§)H (5T)H - By the Maxwell relation
5, - (&
>0, by <0, oH’T 9T’H
stability given
(a) dA = -8dT + fdL + pdM x = L/M

k, h, Xg and ¢ are independent of x, but not T.

BAS
fS = (—B'—I:_)T’M

1
fL = Mh(x XO).M = h(x xo)
1 2 1 2
(b) AS =3 KMx™ = 5 KL™/M
u =(BAS) —--Eﬁ =~lkx
S M ‘T,L 2M2
1 L 2 1 L2 2
AL =3 hM(ﬁ - xo) +eM = 5 h[ﬁ“ - 2Lx0 + MxO] + oM

Since xg, is independent of L and of x, it's independent of M.

ny

hi- Lo xg] +cC =

: 12 2
3 3 3 hx™= xg) e

=

L 1 2 2
- f I - -
X 5 h(x xO) + Q=

My

(d) The phase

transition ocecurs at Mo

At U f the short phase has x =

T

XL'

[N

= implies - = x_ = - g (x2

2
S L

—
it

£ impli = -
3 [, implies kxs h(xL xo)

Ax = ¥ h/k /hkxs + 2c(k-h) - hxo + X

0

<2l Near the liquid-solid phase coexistence

2
L) ROBEN T
T V2

<|3
W -

g
T

nof—

UL=

Thus
2 2 2
(kxs) = hkx; - hkxg - 2ck ,
or
Bk + v/hk /ékxg + 2c(k-h)
X, - %X, =
L~ %o H(h-K) :
Since
fT = h(xL - xo)
and
since k>h, ¢>0 , we have,
/hk /hkxé+ 2c(k-h) - hkx
f.. = 0
T k-h :
h X s
(e) Xg = x (XL~ XO) implies aAx = X Xg o=
or

Hp

- xg) +C

k-h

k

3

) (x

fg = 1

- XO) + X

=

T
Xgs, and the long phase has




which are functions in {n,V,T}

(2)

(a) and p(s)

are the densities near the coexistence line. At

coexistence, the temperature is the remaining free parameter,

M R C p(B) (e oL
Explicitly,
aA(S) ) SA(SL)) . BA(S) . aA(SL)
on v,T = ‘3n v, T v n,T oV n,T
So
2 (%) 3 2
8-.n,(s) o ,n 28, ,n.(s) o ren ()
AT =3 @ L FHETP = SO
()2 _ (@
Substituting %[p S)] =p L into the previous equation we get
3 22
o017 = 358 0y

Therefore the densities are

—_
N

™[R

p(s) p(l)

1
W=
wiR

W
ot
o

[l

<

and are constant functions of T,

(s) ) _ o (#)y2 128 o~ 1
(b)  py - -0 E
yosw o @y 1 o s @ 1 ol
(c T TNT v 3 3V T ‘n,v- T3 2 3
T T v
_ sy (& ()% o () 116 o 8’
ASp s = n T T2 \3 2P 2°27 B 9 B
T T
2
8 1 «
R ELE = S/
7 T2 B where s n
i .3 8
(d) Since Av = il
bs 128001
av 8T 2 2
Also,
P _18ad1
daT 81 2 2

1M

Therefore i dp

Stability requires - (%%)T 1> 0
ap V2 ap
or (ﬁﬁ)T,n =5 (§V)T,n >0

From the van der Waals equation,

3p RT
(=) = - - 2ap
3TN (g _pgy?

Instability occurs when this function is negative. The boundary

surrounding the region of instability, the spinodal, 1s where it's 0:

i.e.,
2
RT - 2ap(1-bp)~ = 0 .

In the T-p plane, the spinodal is RT = 2ap(1—bp)2 , 1.e., the spinodal

is a cubic polynomial with roots for T = 0 at p =0, 1/b . Also note

that the spinodal has extrema when

T o= 3022 - b+ 1,

that is when p = 1/b, 1/3b

Similarly, there is a point of inflection when
L 3b3p -2b =0 ,

that is when p = 2/3b

Finally,

T(p = =) =

w
nqco
-~3

These features are illustrated in the figure below. Only p < b—1 is

considered since higher p would .give negative pressures. Note also that




the pressure on the spinodal

2
Popinogal = PlTspinoga1 (P03 = @07 209)

becomes negative for p > 1/2b

Van der Waals Spinodal

0.30
020 F
©
-
},...
as
010t
OOO 1 i 1} i

0.0 0.2 0.4 0.6 0.8 1.0

Pb

The van der Waals equation of state for a given temperature Ty has
only one interval in p, if at all, for which (%%]T <0, i.e., for which
the fluid is unstable. This is reflected by the fact that the spinodal
equation, p = ap2(1—2bp) , has only two distinct roots.

In other words, the isotherm is shaped as illustrated in the figure
on the next page. The Maxwell construction requires p(pg) = p(pﬁ) which

can only be satisfied within the height h. Any pair of points s0 picked

will lead to a coexistence curve enveloping the spinodal region.

Van der Waals Isotherms and Spinodal

0.075

0.045
8y
~

]

£
Q.

0.015

-0.015

0.0 0.1 0.2 0.3 0.4 0.6

phase a: BD

it

a + bBu
. 2
phase 8: Bp = ¢ + d(Bu)

At phase equilibrium,

Bp(u) _ Bp(B) ) Bu(a) _ 8“(8) . and Béa) - 6(B) -3

Thus a + bfu = ¢ + d(su)2 , implying

b+ /bz - Ud(c-a)

2d

Bu =

The density can be obtained from the Gibbs-Duhem equation,

dy = -sdT + vdp , i.e., {(1/v) = p = (%%)T = (gégi;)s

So, p(u) b,

p(8)

It

2dByu ,




and we identify the positive root as the physical root to the quadratic " Chapter 3. Statistical Mechanics

equation. Hence

B () /7 hagane)

The probability in a canonical ensemble is

P(E) « a(E)e PF - explinn(E)-BE]

We assume that P(E) is so sharply peaked that <E> occurs at the top (or

b + ¢ b2+ bd(a-c) ]

b
8p L. +
transition ed very close to the top) of the peak. The following steepest descent
caleulation will validate our assumption: Expand &nP(E) = &nQ(E) - BE

about its maximum value 2nP(<E>) which occurs at <E>, i.e.,

2 32£nP(E)

~ 94nP(E) 1
PnP(E) = InP(<E>) + 8B s> | oo + 5 (6E) ——ggg——— P
; —_——
0, because &nP(E) .
negative

has a maximum at <E>

BZQnP‘ _ 32(1nQ—BE)‘ _ BZKnQI
2 '<KE> 882 <E> 3E2 <E>
_ (g_ (a0 _ 9 (31n9(<E>)) _ 08
oE oE <E> a<E> I<E> a<E>
o1 9T o 1
- 2 3<E> 2
kBT kBT CV
Hence
2
P(E) « expl- iE—S%Zl—J
ZKBT CV
) 21 .
§E = 10 "<E> , N = 107", using <E> = 3/2 NkBT , CV = 3/2 NkB y
-109
P(E)/P(KE>) = e = 0.000..... 0001
\._..____Y_—_/
a billion zeros
That's improbable!
Be
1 : . N 1 1+ e -Be
=~ implies —— = — = = e + 1,
1+ ese N-m 1-m/N eee
0o wm - 1= ebe




or B and N varying, the grand canonical ensemble yieids

where m = m(E) = E/e

N!
(N—m)!m!)

S/ky = AnQ(E,N) = an(

=NAnN- (N-m) ¢n (N-m) - m ¢nm

= ()« nan (B ~ .
N-m m o he purposes of an estimate, we only need to know that we'd only get
- onstant times Cy, the exact constant being i levant since it!
- N tn (e Be 1) + __g__gg ge - S(B,N)/kB gme C v ing irrelevant since it's
1 + e ti11 0(N). So, as an estimate
Clearly, 4%im S/k_ =0 .
grw D - K ToC
T BTV
Also,
hich 1s the canonical ensemble result. The RMS deviation
N N
- L -1
S/Kkg(E,N) = N tn (N_m(E)) + m(E) n (m(E) ) Ve
; . Q(GE)2> i kBT 3kBN/2 R 10_11
= - Nn (1 - ) + B/e in [E- -1} . ’ <E> 3Kk TN/2 7
o et 3(s/ky) 1o S - 1) imilarly, for an ideal gas, <(&N)°> = <>
© B - T3 v T e VE .
- epd KD
The last result is in agreement with the earlier formula, <p> <N> /N

Sl B . A
N/m = 1 = e”" . Notice, however, that 1/T can be negative when st for:reference, let's evaluate the actual derivatives involved in
Ne . E_&e . . 1
T 1< 1, i,e., i > 5 implies T <0 .

- (&) (25, &9
aT’'V,n aN‘V,T *3T’V,Bu
3.10 From p. 68, the canonical ensemble calculation gives -cC + (32 k1) - (- BBu) / (SBUJ .
_ ge -1 B 3T ‘v, N 7 VBN v, T
-gA = N en(1 + e B8 B> = Ne(1 + &%)
- E e oY S =1/T € + p/T dV - u/T dN
Then N ‘9T'V,N N L4
~pe NBe 0 = EdB + Vd(Bp) - Nd(Bu)
= - - = —_— E 1
S/ky B(A - <E>) = N gn(1 +e ") + B SE -y - 3 => d(8y) = E/N dg + V/N d(gp)
1+ e N y T2 2T
which is the same as in Exercise 3.9 from the microcanonical B
calculation.
_E vV 3(8p) N
“F o vt Bp = § = 8PNV, T)
s 22 i1 ; vV 1 1
3.16 N = 0.01 moles is = 10°°, An open, thermally equilibrated system: is = ¥ . T %

controlled by T, V and u. Fluctuations in the energy and the density

p = N/v are given by
3

= C_+ (3/2 kBT)'(ZT

YeN = (3/2 + 9/u)NkB = 15/4 NkB .

2
K(8x)™> = - %éfz , where £ is conjugate to x




Show [¥g,f[<gf> = <g><f>] <=> p(x) = 6(x—x0) . above theorem on

b b o jdx £(x)[fay g(y) n(x,y)] =0
gr> - @<t = | gOrpodx - [ gIpGx)dx - [ tptay
a a

a
calling the term in the square brackets n(x)

b b b b
= f J' g(x)E(yip(x)s(y-x)dxdy - J' f g(x)f (y)p(x)p(y)dxdy
a a a a

Hence, if <gf> = <g><f>,
For N spins in a field H,
b b

[ ] gtofpGils(y=x) - ply)] dxdy =

aa En1,n

it
i+
—

I~

(‘niuH) , n

n 1

2'"TN i

This holds for all g and f if and only if
ta) g,H, and N are constant in our ensemble:

N
§(y-x) - = .
p(x)[s(y-x) - p(y)] =0 B i 5y (-n i)
Z 17727 N 7 i=1
Q = € = €
The trivial solution, p(x) = 0, is discounted because it is not n1’n2""nN n1,n2,...nN
normalized, Thus, we must have
) N BniuH N guHn
= o e = 1 e s
p(y) = 5(y—xo) , n1,n2,...nN i=1 i=1 n=+1

since the factor for each spin is identical, so
where X5 is some point in the interval [a,b]

Q= (eBUH + e_BuH)N = (2 cosh(BuH))N .

(b) <F(x)gly)> - <£lx><ely)» ‘ 390Q
B = 2
9(-8)
- | [ axay £Og(IPGGLY) - [ dx £00P, (0 [ ay (1B, - BuH _ Bl
= NyH ~———————— = NpH tanh(-BuH)
e BuH eﬁuH
Hence, if <fg> = <£><g> ,
= -~ NpH tanh (BuH)
[ ] axay £GoOg()Ipx,y) = By(x) Py(1N] = 0 .
This holds for all f and g if and only if B B
- - g _ThrE
pC,y) = p(x) py(y) =R |
Note: The above proofs rely upon the fact that Jf(x)n(x)dx = 0f = kBlﬂQ + kBB<E>
all f is equivalent to n(x) = O on the interval of integration. ‘ BuH gl
= NkB[ln(e + e ) - BuH tanh (BuH)]
This is true because if n(x) = 0 we could pick F(x) = n(x) for
which ff(x)n(x)dx 5 0 . For two dimensions, we can iterate the (¢) In the limit T >0 or B =+ =, tanh (guH) > 1 . So
<E>T+O = - NuH
E¥al




3.20

i.e., the ground state has all spins + , or aligned with the fie] ns up. For a given H, this ensemble is the microcanonical ensemble

BuH . ince E-= - HM 1s also fixed. Note we can't generalize this ensemble to

lim NkB[R,n(e e'S“H) - BuH tanh(BuH)] = NkB[EuH - BuH] =0

Bre with fluctuating extensive variables because there is only one: M,
henos, nich we fix (assuming N is constant), i.e., we can't have E flowing
ndependently of M from the system to an energy bath.
ST+O =0 : S0 we want to use E, H, and N as our natural variables.

n this ensemble,

N N
(a) <M>=<2pni>=-1ﬁ<z~uni}{>=——<l_{2
1=1 i=1 n, = u(n - n_) where n, = number of spins up
= Ny tanh(guH) ! n_ = number of spins down
) = p(2n+-N) , and n,+n_=Nn
(b)  <(sM)%> = <(M-<M>)%> = > - ap? = -é— —3—9—5 - 15 a?gﬁ))z
3(BH) Q
2
1 3% 13
B - - Hu(2n -N)
= Nul{eN-1)tann®(guH) + 1}
Hence,
N!
TTN=n)1 and S/kB = nQ(E) ,
<(6M)2> = Nu2{1 - tanhZ(BuH)} = NuzseChE(BuH) . 3n
1 §§| . dang(E) _ 9tng _ + 3 (nln t(N-n )1]) » ——
E'N,H JE dn, 3E 9n, +' +7° -2Hy °
Also,
<M> 2 2
Srley = B {1 - tann“(guid} , )
<M> 321 Q 2 55: 2n[n+!(N_n+)!]
so [852.) o (L2Be) = (s
9(BH)’B,N 3(6H)2 B,N 0,
© )
(e) As g~ =, tanh(guH) » 1 . o [n2n n_+ (N-n)en(N-n) ~ N]
Therefore <M =N a <M = N 2(1-1) =0 1 "
r e rew = Nu o, an T = NH =0 . [en n, - 2n(N-n,)] = 7 4o (N-n )

¥
In other words, the ground state with all the spins aligned has n

fluctuations.

N

1o+ e_ZBMH ’

In an ensemble with constant M, all members have the same number of

u(zn+ - N) = Np tanh(guH)
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which agrees with Exercise 3.19 and (after a change in notation) with
3.9 as well.

Substituting n, = M/2u + N/2 into the above equation for BH gives

_ v Nu + M
BH = 5 &n (ﬁﬁ_:—ﬁ) anl0 ! o [aal® 1|
~BH e 1 0] _ Z 10
=0 n!
In the {A,B} basis, HO = __Z —g and m = [8 WO] " a - n
_op a7 ool oy (88 0
-t n! 01 ) n! 10
In Pauli spin matrices notation, HO = - on and m = wo, even odd
Then H = H, - mE = -Ag_ - pEo_ . - w - -
0 X 2 TSI G VL S R e 7 ey o
n! n! 01 2 n! n! 10
(a) E =0 q = o o 01 ~ n=0 n=0 n=0 n=0
a = = HO = AUX = A 10
BA -gA 10 1 BA _ _~BA 01
| 5= < [|me]B>] , tee. | +> = — [ : and | - > = — L™ + ] (o 1] v ogple e {1 o}
el V2
So cosh BA sinh BA
= sinh BA cosh BA
H| +>=-b/v/2 (? é] {1] = - a2 {1] =-4a]+>;5 E = ;
These matrix elements are the same as those arrived at by rewriting

[eBA 0

'BAJ in the {A,B} basis. Now performing the trace,
0 e

junl
i
A4
1]
I
=3
~
N
—
- O
o -
R ——
1
L
R ——
il
i
o
~
<.,
nol
—_
L U
1t
>
i
v
=3
H
it

1 O} e Pl coshph = ePh BB

(b) H in the {+,-} vasis is _A(O -1

In the end, the route to the partition function is unimportant, since

: : : -BH _ |e 0
Since H is diagonal, e T o oBY| and the trace is invariant to a change of basis,
-gH B g BA -BA le) Using the {+, -} bpasis
Q = Tre = Tr = e"" + e as expected. - ! !
o o BA ~
e
. 1 -gH 1 -BA +B4
i a = = = L Aml-
Doing the trace with [ A> and ] B> gives ) m> Q Tr (me ) Q[<+]ml+>e v Im] 7€ ]

BA

Q= <A | e 9BA | &>+ <B | ?BA | B> |a> = [|+> + |->1 Since
1
© (B> = [|+> - <lmfe> = 5 (<al+<B]) |m] ([a>+]B>) = 0
= % [P0« 7By 15 [ePl s e By and similarly <-|m|-> = 0 , therefore

<m>-=0 .

BA

Similarly <+| |m| |+> = e and <=} |m| |- = Bl




so <ml> = Juf . _ cosh(/e?+ d®) « I + sinn(/e?+ a®) (—2 0, + —2 )
c+ d2 ¢+ d2
<(6m)2> = <m2> - - u2 .
Since TrI = 2, and Tr 9, = Tr o, = o,
o B _ {~uE -A
For E =+ 0, H= - bo, - uko, - (—A +MEJ 2.2 2 . . :
Q = 2 cosh(B/u"E™ + A%) in agreement with (i).

The energies then satisfy the equation

det(EI - H) = 0

So E° - (uE)2 - A2 =0 , or E = % V(uE)Z + A2

2 2 2 2
nd Q- BB 02 a/umPs )

Then A(E) = —s_‘ (2 cosh(BV(uE)z + AZ)]

To evaluate <m> = Tr(me "H)/Tr o BH
c)

e want the matrix elements of m in the H eigenstate basis [1E>

olving for |+> in the {a,B} basis,
{:gz ;é] (; = & /(uE)%s 42 {i} implies
and the free energy of solvation is E - H A ] / /AZ + (E—uE)2 having energy - /(uE)2 + A2 = - E

~-uE + E

A(E) - A(O) = —s"1{ xn[ZKSOSh(S/(uE)2+ A2)] - en[2 cosh(pa)] }

| - >e- ( A J‘/ VAZ + (E—uE)2 having energy /(uE)2 + A2 =E .,

-uE - E
_ ©  [co_ + dg " ‘
e BH ) ——~3£7TT——5—— where ¢ = BuE and d = gA ( B)
n=0 i o (i lm‘ £> = A E ¥ U - u i‘}EJ:E .

To evaluate the nill term, note

j ; 2
5 herefore <my = — K E { exp[BVu2E2+ 2% 7 - exp[-8 u2E2+ 2%] }7q

2 2
[coZ+ daX] =c"I + d°1 + cd(ozoX + aXoZ) QuE)2+ A2
2 2 .
= (¢™+ d7)1I since {cz,cx} =0 qu 55 5
= ————————  tanh[/uE° + A7)
n 2 2.n/2 u2E2 . A2
So [Coz+ do, J° = (c"+ d7) 1 for n even
- (% d2)(n-1)/2 [co_+ do 1 for n odd 2 2
z X . A~ + (E 7 ug) .
milarly < & fm| + > = |y] —5——————— , hence <|m|> = |[u| . This
A" + (E 5 ugE)
. _ ~-BH -8H
and true for any E since <|m|> = Tr(|u|I e ")/Tr e .
In other words, <m> increases as the field increases. There is a

-gH % (/e?+ a®)" 1 " . .
e "= ] = competition between the field E which would make [A> and |B> the

n=0 ’ ~

even figenstates, and the tunneling A which has !i) as eigenstates. Only as

EEf 2 », does <m> = p and <m "= -y, where all spins are
« /3 7. 7 Eoe Er=e
N E /(C +.d7) ( c + _-——__d )
0 n! 92 5 5 %
n= 02+ d2 ¢+ d

n odd
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aligned with (or against) the field.

_ 94nQ
J8E

<(dm)2>, is in general no longer equal to -

As a final note, although <m> =

for small E, the fluctuation

a<m>
JBE

Systematic analysis of the fluctuation in that case is

unless m

in m,
commutes with H.
in fact equivalent to analyzing the quantum dynamics of the system,

which is not the focus of this text.

2 <N> 3
Bp = p/(1-bp) - Bap” , P V==L
2 2.1/2
(a) For constant V = L3 <(6p)2>1/ /p o= <(SN)T>TT/AKN>
2, _ (<> _ 9p - v ap
<om® = Grgy)e,v = Vagde,v = Vol )s,y
s (28B)1
= < (Bp )S’V
2
PN {(1-bp) 5
1 - 2Bap(i-bp)
or
<(<5p)‘2>”2 R (1-bp)
i / z
a 1-2Bap(1-bp)
which vanishes as the volume becomes infinite.
(b) At the critical point
3 1 3°8p 2b
(_EE =— - 2gap = 0 and > ]B = - 3" 2Ba =0
3 B (1opp) 3p (1-bp)
Do some algebral!
1 a8 1 3b 27
e ™3 = - 2 T TBa
c 3 2ap (1-bp )°  2a(2/3)
c ¢
1
(¢) Use the result of Part (a) with V = 100b, p = 35 and

g = 12 , where x will be close to 1:
x 8a
2,172
<(8p) > _ 1 .
. 5/3(1 = 17x)

ar

Thus we have the table

X <(80)51% /0
1.1 0.38
1.001 3.7
1.00001 37

(d) We're looking for "significant" density fluctuations in a volume

V=~ (1OOOA)3. Typical molecular volumes are -~ (511.)3 =b
V= (200)3b =8 x 1O6b .
(s )2>1/2
To estimate significant ———QE————— , Wwe checked the CRC for the

index of refraction of distinguishable (by sight) fluids:

HZO = 1.33

n-Hexane =

1.37 or — = 3%

For small differences in p, we can consider n « p So take
(s )2>1/2
significant 2xoel 2 0.03 Solving for the difference in
1
B = BC/X at p = Po = 3 we geb:
2.1/2 -1
A=7% = 1073 A (e > 7
/6 p
2.1/2 -1
Then x = 1 + 1072 (51§2%~3——-) = 1+1073
;———Y———s._l
- 1072

In other words, critical fluctuations will be easily observed

optically if you are within 0.1% of the critical temperature.

We can make an analogy with the ideal gas analysis of Sec. 3.6.

2 2 2
<(NA <NA>) > = <NA> <NA>
N
= gj [<nainaj> - <nai><naj>] » n =1, if molecule i is in state A

= 0 , ctherwise



= E n . + E n n - n >Xn_.>
.
< LD <n > < . i <
1

L ai’a
1]

\

—d

5

zero since different molecules
are uncorrelated

- , since each molecule 1is equivalent
=‘N<na1>(1 <na1>)

= N<n ><T - ng > = X xpN

where

Xy = Mp>/N, and xg =1 - Xy .

£

Chapter 4., Non-Interacting (Ideal) Systems

:3,5 Begin with the equation at the top of page 94,

Bhw/2 _ e-Bhw/Z

BA ]

-4nQ = f dw g(w) 2n [e
0

D-1

_ (ND_ dw ® on [eBMw/2 B e-BHm/ZJ
<) J

As long as Bhwo/z >> 1 , we can approximate this integral in the limit

of PB=»w as

2 %
vim ga = (M) [ dw WP grwre
D
T-0 wo 0
(B>e) 5
ND wOM
2oy B
Hence
2
@ - e ND wgHt
a(-g) n,v  20p¥1y
Similarly,
_ (JE _ 29 (3inQ
Cy = (BT)V =7 kgh 9B (a(—s))v
@ BHw/2 -BHw/2
o 23 + e
= - kst gg fo do g(w) S Hu/2 ]
e - e
W
2 0
2 (ND D-1 2 2 2
= kBB (—5—) f dw w (Hw/2)< [-{ YA —Bhw/Z) ]
w 0 e - e
o]
Change variables to x = BMw and let kBOD = Mmo :
0./T
o mz Mfl) dx ?1 X%x
vV B kg oD 0 BA DT (x| )2
0./T
D D+1 x
= kBND2 (g——)D f L)?—e*é dx .
D 0 (e™-1)
In the limit T > 0 , We encounter @he integral
D+1 x © @ D
E—;—g—é dx = XD+1 x1 +  (D+1) f ; dx
0 (e™=1) e"~1 10 0 e"-1




=0 + (D+1) T(D+1) c(D+1) = (D+1)! o(D+1) . Using %nN! = NAnN - N we get

N—
Gamma Reimann
Function Zeta Function f -nQ = - N
i W qA + 4n NA! - NB in ag * Wn NB! ,

For D 3, we note ¢g(l) = ﬂu/90 , and so that

H, = impli -
A B plies n qA + in NA = -4n qB + 4n NB ,

or
<n,>) N q g
' A A _ _A e‘BAe
NB qB gB
<ni> <nj> since ni and nj are uncorrelated
: . . 2
<n,> since <n,> = <n.> . 1 N 1
i i i ’ (a) 0=1-gV -1 (q + gV
N! NT ‘9 T 9
Therefore, ’
1 %I N Ny (NN
- - N! TTm-nyT Y4 9

g 5 <ni><nj> 1 613) w=o "a N-N,JT A 7B

- ¥ NA NB

4.11 The expression for the electronic partition function of an H atom, N n NNt 9y 9% = ) eXP[—BA(NA, NB)J
A’B . P
Beo Beo/n2 . s ot
q. . (T) = g,e v g e + ... is only exact in th , such that
int 1 n , N. + No = N

; A B ~
case of an isolated atom. When the atom is put in a box or if there are
other atoms in the universe, the convergence of energy levels oA

‘ (b) Mg = ug implies = - SA
> E=0asn - o is lifted. The reason for this is that as n increases Ny B<NB> o
so does the energy and spatial extent of the atom. The expectation ‘ <NA> + <NB> = N = const implies 832 . - _OA (2)

> IN_> T
A
value for the repulsive energy of two atoms then has no upper bound; an B
will increase as the spatial overlap increases. Equations (1) and (2) imply
. _oA _ _9A 0 9A
N, > = =
A AN ,> 3N

Therefore, quite generally, A(NA,NB), is minimized when

4.15 For an ideal mixture
N = . )
; At Ny N are partitioned to satisfy chemical equilibrium. More

N N
A
o - 9 9p
-y T NI
N

B
specifically, with the ideal expression in Part (a), we have
9
Further 0 = = {= WIN (NN )T + N 0 q, +
R A A A a, N-N,)2n qB}

94nQ ‘ R §

pakadibi) . ~ = n[N - 7 R

(BNB B,V,N, ‘ [N, /=N, )3+ anla,/qg) applying Stirling's
approximation

(BRHQ
BNA B,V,NB

~Buy = , “Bug =

~a



AT

2

q,N [qB/(qA + qB) ] = <NA><NB>/N .

or associating the solution to this equation with 4,18 For an ideal gas of structureless particles
2.2
<N> =N - <N >, we obtain e MK k=T mfenss y
A B” ’ k Zm ¢ 2T Wy y+nz .
<NA>/<NB> = qA/qB . (a)  Then assuming a macroscopic volume,
Blu-e, ) -
BPV = fnE = ) gn[1 + e ~ 1= v ; f kazlnfl b oBlu- Bk /.2m)]dk
Yoo s k 2m? o
q q N
Q = ) ﬁAT NB' = (q, + qB) /N! as shown above .
[ 5!
NAxNB A Wy ( m )3/2 f X2 (1 s ze ) d Bu
= X . Z =@
(N, + Ng=N) R .
q NA q NB q
1 A B A i o 2 5
<NA> -3 ) NA T N T Ta ) NA So Bp = — lg f x5 on(1 + ze ¥ ) dx A (ZHBM )1/2
N, ,N A B NA’NB e o —
A'"B ( ,
- N, + N, =N
(NA+NB N) A B _1 -
3 7572
n ; .
=q (82 < Substituting the series for n(1+x)
A an quN 3
4 k+1 z -
N = F5/0(2) = — 1N e f x%e % gy
3 ((qA * ) ] N /T k=1 0
= q, v— Un (———}] =4 Ty gy "
A 3q, N1 N A (g, + ag) . )
N = 1 =R R 52
Since A and B play symmetrical roles, <NB> = qB Ta;—:—ag) K=1
Hence,
To calculate the density,
>IN = / 2,2
M7 T % N> = J<n>= J L - v fmllkz ze K /2m
K K K Ble, mw 3 U 55 dk
= Ko BT 4y (2m) 0 -Hk/2m
Similarly, 1 + ze
N, N - .2
: q Ad B q A 4 [ 2 ze X
<N aB - awS - a1 7 n2 A B A "A37— OX 7~ X
A A A A Q NA’NB A A!NB! m 1 + ze_x
So
(NA+NB N)
2 3 4 o k+1 k ¢ 2 -kX2
94 3 (¢ 22 9y (322 _q[qxx 520 , 199 oA " kZT (-1) [ xe dx
= 7Q 3q, EEN T T3 \3q, s A 2 Q9 ﬂ = o]
Q 9g, " "A 99,°qg,N g2 99, °9geN Q 3a, q,
o
- 7 EnFT R 32
k=1
<N, >
-q 3[3’32@] N=qAaaAl N=qA[——-———qI§q-qA - 1,02
A day Q@ 99, " 4 9 A’ 9% 3
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2 dk
<n > g, = drk< ) - 2 2
k™ Sk 3 2m B(H K /2m - W)
= (2m)” 0 1+e <Ip|> = (%) h/x , or A= (%) h/<|p>
© 2.2 1
3 v j Nnkz en [1 + eB(u T Ak /2m)] dk (@) Bp/p = -3 f.5/2(2)
3m 3 pA
(2m) 0 1 2 ,,.3/2
3V o oy -8 2 Yo () -5 e - D223 - (D 2 L
3m 3 5/2 B em ,3 5/2 pA
3 =1 3252
(gpV) = 5 pV

The finite pA3 correction is due to the negative correlation

o 1 5 A3 E (_1)1+1 21/13/2 . between fermions (i.e., the Pauli exclusion principle implies that
(a) We want to invert y = p =
2-1 no two identical particles can simultaneously exist at the same
. S ko, mined coefficients,
Using z = 20 cy in the method of wndeter point in space). However, as pA3* 0 , the effect of the exclusion
K=
principle diminishes as the particles become farther apart.
® p K%, ,3/2
y= 3 YT eyt e
9=1 k=0
m 2
o ) +1 -1/2 - -
; oML M e1 520 (@) £, = V2] axfraTet v a7
= /2 Y 0
=1 2372 0 s 83
® 2+1 - -172 (7 -1 -1
G DAL S e m op St 1y o V2 ays e v 1)
" A
g=1 g3/2 0 2 42 e 0
Since the derivative of the distribution [Z_Tey + 1]_1 is sharply
Equating terms, ;
peaked at y = %nz , we integrate by parts to get
0 =f (¢c.) which implies ey = 0 ©
/270 - - -
3 f3/2(z) _ 4 f dy y3/2 oY lnz[ey Lnz 1 2 )
. 3r 0
and then
Expanding y3/2 around the peak at y = &nz gives
1= 01 .
and £y0(2) = —= at [(2nz)3/2+ 3/2(0n2)"20 + 3/8(anz) " /242 +. .3
1 2 3WT -inz (e’+1)
0=¢ 737 %1 .
2 y 3/2 (" e
3 = —— (4nz) dt —————
Therefore 2=+ () 722+ Ll eV [znz (eb+ 1)2
—ap? 2 y /2 L et -inz 4
e gp7/2m - 3378 /2m for pA3 « 1. = — ()3 f dt — 5 - dt = 5 1.
(® <« - Sevtrom 3/7 — (e + 1) - (e” + 1)
- 1 o+ ze P
@ 2 —
(@) <! l> v M—g J ana pA3 e“BP /2m dp The first integral is 1 and the second is of the order =z T
c p = 3 ;
(2m) 0 so a3 = (nz)3? ws3/m
Vp 2
2
o

2ﬂ2M3 B




e -g(e-e)
z=~e © where e = (MZ/Zm)(fiﬂzp)z/3 . = 2p e F
Be x2
@ - Similarly,
Bpad = r () =L [ ax Laniee T !
/Y1 0 Ble + €)
_ -g{e, +e )
0= 2 : f dk [1 + e k °F ] 1.2 . f dK e kK °F
J'B 1 (Z’IT) (21[)
= €p o dg f3/2(Z)
-Be o
2 F 2 2.2
- = e y dk k“exp(-pA "k /2m
To get the correction term in (seF) 2, we calculate f3/2(z) to (zﬂ)3 " Jo pie e)
2
order t<:
: -Be m
- e F 5 ( e 2)3/2
. 2ugA
f dt te . 0 since the integrand is odd, and _
o (e 4 192 er 3
© e ) = e 27X .
@ tzet 1T2 Therefore,
J a5 2 73 ¢
- (e” + 1) pn = ps/)\3lle_BE
3 i 4 3/2 . w0, 1 172
So  BpA” = e [ g —8e)” "+ g (Bep) + )
° 3/ N> =] > = pV e Blmemw) ePHy vebt
5 4.22 ad 3 i Ps Ps
i 3/2 2 kil -1 . e ——
= —;: (Beg) Lz (Bep) + 73 (Beg) ~ * .- ] . adsorbed degeneracy classical
3T limit
; 2 . S e )2 e av N
ence p =g p Ep =5 Beg cee Pag = 7V = e upse .

The pressure 1s not zero at T=0 because the exclusion principle Also By = lnpgx3 for the classical gas, and y has the same value as in

requires all but one fermion to have non-zero momentum. the above equation for 0aq-

Hence,

Simply plug in the Fermi distribution given on page 96. o = eB“/AB
g L
. _B(E'EF) which implies
Since e =x << 1
3 Be
/ =
then —— =1 - x Pag’Pg = Psh7C
1+x%
So,
(a) E=E, + E, + E
“Bleme,) Ble-ey) ) At Bt e
p=2p, - 2p[1 +e 17 = 2 01 - (1 - e 11
then
-8(E + + E.) ~BE -BE -BE
C
a- 1 6 s Je M e BHde 9 -q
ABC A B C




ainqA . Blan . aanc ,
B> = 3-8) T 3(-8) 50-8) 50-8)

9LnQ and

2 2 2an
3 anA 3 %an . 2 9c

2 2 ]
= = <E> /38 = kB L + 5
CV kBB B aB2 aB2 98
(4) (B) ()
a A
Let E = EA + Ey Ey = zero point energy .
-B(E,+ E.) -BE -BE
A 0 0] A
Then Q= ) e = e ) e ,
A A
-BE ~8EA
Q9 gp +gnVe P1=E +JE e /0, and
<E = 51y < 30 [P E o *LE
-BE
203<E>y _ _ 23 A,
cy = - 8 (Sg) = - kg8 5 (% Ep @ )
which is independent of EO. -

| i i do with
In other words, fluctuations produce Cy, and Eg has nothing to do

fluctuations.

= + g.e
(p) Qiec 8q + 819 g,

i i our choice for the
where energies 51 and 52 are relative to Eg *

zero of energy.

2
(elec) 23
C = k_ T —= 4n Ueiec
v B 382
-Be -882
21 1 2 1 . Eze ]
= kT . Leyege 8252
elec
~Be “Bes o
1 1 . e ] }
Tz e g2
qeleo
. . . oq ../ , SO
(e) Q- qtrans qelec qnuc qrot qv1b cAB

.

£) (vib)
(trans) (elec) (nue) (ro -
¢y = S * Gy * Cy * Gy v

Now

cletee) |y 820<ed - <e>?]

v B
where

g 82 6_381 + g € e~881 N
€h - e? o (L i 2
= ve g
3 6-50,000/300 ¢ e—100

So

Céelec) < kBBZe_100 at room temperature, which is negligible .

Because of the high energies of excited electronic states, the
contribution to Cy of excited states is negligible. Neglecting
the excited states completely is equivalent to assuming

Céelec) = 0 , which is therefore a good approximation.

Also, the above calculation shows that the ground state

degeneracy doesn't enter into the heat capacity.

<E> - A
S = T
e-BEO . e—Be1 . e-BE2 s
qelec g0 g g2
L J
v Z
-100_ "€
<e e
Ignoring these terms doesn't affect %elec
significantly and also won't affect either
<E> = 94ng/3(-B) or A = -8nq/g
On the other hand, g0 will affect S because even
though the average energy doesn't care about the
-Be -Be
= 0 0 -
degeneracy, <E> goeoe /goe EO , the free
energy is affected.
A =—12,n +
elec ) = € -
S ) eo— EO + kBT lngo o
elec T = ¥gthggy -




Thus the degeneracy accounts for an additive term to the entropy.
2

) 2 2
Cy = 572 Nkg + N(—==)¢ esch (Bfwy/2)/ Kk T°

N N
= !
Q = 9grans qint/N' and Cp = CV ¥ NkB
If we write - 7/2 Nk + Hug 5 >
B NkB(§Eg?) esch®(Bhuy/2)
-BEO
dint ~ 8p® (2IA+ 1>(ZIB+ R %Yot dvib Furthermore,
= <E> - A
qr’ot T/erot S = R
) [eBMwO/2 ) e—Bhwo/Zj_1
dyip ~ ’ ( BYw,
= Nk | 572 + coth(Bhw./2) +
. B 2 wo ) lngnuc + ln(T/Orot)
we are assuming:
BHw . /2 -BAw,. /2 2 (m
) o - gnle 0 -6 0 1+l L mmy + Mg ) 3/2
(1) The volume is large enough that qin¢ is independent of volume. n[ 3 (————~?;-___.*) ]
h
This is important when distinguishing Cp from CV, since the
difference will be th;t from Qepans: i.e., the ideal gas value. - enN + 1 }
The necessar i i ig:
(2) Excited electronic (or nuclear) states are sufficiently high in y numerical input is:
energy to be ignored in Q. T = 298 K Kuw. = 3700
Bug = “5o3 0.0 = 121K = 6.63 x 102Terg s
1 3 kT
g = (2 = + 2 _ v B =
(3) Internal nuclear motion is well approximated by a rigid rotor- nuc 2 " (2 FE 1) =8 NT T T 4,06 x 10 2cm3
hd ~
harmonic oscillator, which neglects: H1 Br81 Br79
’
- anharmonicity in the vibrations yielding
- centrifugal distortion
S = 51.7 cal/m .
- rotation-vibrational coupling. oL K, (Note: ggﬁt:?tSE'gf 4;-2 ?iglects the 4n g
ion o . cal/mol X)
and
() The high temperature formula for Gpet assumes that Cp - 6.97 cal/mol K .
Orot L T (i.e., 12.1 K K 300 K) .
N
o ' ‘ 26 qu,v,T) = L q =L (2wm]3/2
From the partition functions, we obtain ! h3 B
Aw
o _ 0 «© N o Bu\N
<E> = -3WnQ/38 = Ney + NkgT + N —= coth(BHwy/2) + 3/2 NkgT . (a) 2= %T BNy (ge”")" _ e(qu“) o7
N=0 -0 N!
Therefore,




Chapter 5. Statistical Mechanical Theory of Phase Transitions

2= (
h3 B
Since the number of nearest neighbors in a D-dimensional cubic lattice
() = -efPV o> gpv=av b - z/B is 2p,
3AnE : ; -
= = VYz implies 2z = p - - 1. - -
W = E, JN 5 2p) DNJ ,

Hence, p = p/B , the ideal gas law.

where the ¥ corrects for double counting pairs. Note that for a two-

fesp®s L faon®

dimensional triangular lattice, each spin has 6 nearest neighbors, so

(c)

p <N>
that in that case
2, 3y 22y oo 1
(N> = T Ey = = Jn ( 5 6) = - 387
/ 2 1 -10
<(dp) > - J kBT/pV = 2,01 x 10 . .
B 1
e < - - - -
H=-J .Z 8, S;,4 =" ‘2 by
i=1 i=1
(d) To second order in §N .
where b, = s, 5. = + 1 1s the bond between spin i and i+1. The b.'s
1 2 azxnp(m)) 17 %55 .
gnP(N) = RnP(<N>) + > (< ( N2 N o= <> ’ . completely determine the s;'s up to the value of sy. This degeneracy is

ing a Gaussian distribution around <N> with variance related to the fact that only N-1 of the bi's are independent:
assumin

i.e.,
2
<(8N)>7 , we get
-12 107
P(N) -10 T2 10

———te = @ = , which is very unlikely .
P(<N>) -

However, as N + « , the contribution in energy due to the NEE bond

N-1 N-1
bN = I b, 1s small compared to the other bonds Y b, . So
=1t =1 *
N N
8J.§1sisi+1 BJiETbi
Q = Z e 1= = Z e h
{s;= 1} Now  {b, = 2 1}
N 8D BJ, _-BI\N N
= 1 6™ ") = (" ")V - [2cosn(ga) 1 .
J=1 b=-1,1

Note: With some patience, the reader can compute Q for finite N without

neglecting edge effects. Also of interest is the transfer matrix method

illustrated in the solution to Exercise 5.21.
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t the Ising model energy can be written as

= 2m + 2 m3/3 + ey

5.4 Note tha

which is the Taylor expansion of ¢n( jm

) about m_ = 0 .
<

8

N

-mH § (engm1) - 2 (2ni—1)(2nj—1)
i=1 i,J

1

3
5am (2m + 2 m”/3 + ...)

b oy y - J Z B =
- -2md ) ny + mNH -4J Z ngny ¥ 2J 2

i=1 i,
N T
same as 2z ) Nz/2 12
{=1 -§m = JZ(B‘BC)
As a result, the answer is Thus, for T > T,
= . 172
Q (8N, H;d,m) = explN(mH - J2/2)] & ppppeg (BrNuiE) me (T, = T)7" or =172
ISING GAS

In reading this solution, try not to confuse the reciprocal temperature

LJ and z is the number of nearest neighbor g with the critical exponent B.

with y = 2mH - 2Jz, € =

Finally, as T~» 0, B » «» , it's easiest to analyze

sites to any given lattice s%te.

BzJm _ _-BzJm
= tanh(BzJm) = =

eBsz + e-Bsz

ez(BuH + gzdm) _ 1 _yhich clearly tends to -1 as 8 » » if m< 0O, and +1 as B > =

e T
5.6 m = tanh (BuH + B2IM) = “HrEETgam) ifm>o0.
or _The ‘complete mean field solution is plotted in the figure.
; o 2(guH + gzJdm) _ Mean Field Magnetization
meZ(BvLI + pzdm) e 1 1.0 T T T
or 0.8 .
1 1+m

+m . . . I at H ]

2 (yH + zJm) = 1n(%:a) unich implies 8 = 5y W (7g) - g
% 06 .

3

-

g

=1)
Now, g 04 4

£

1+m -
RIBLLY I 1+m) - 4n(1-m)
n 1_m) wn( ) 0.2 | R
) 3 2 3
m m_m .
O R C RE ol o 0.0 ' S

0.00 0.25 0.50 0.75 1.00

kT '/2DJ Temperature




In this figure, only positive m are plotted since the curve is symmetric

\ MF (MF
about the temperature axis. Note that kBT/ZDJ is T/Té ), where TC )

is the mean field theory prediction of T,.

5.8 In the mean field theory, different spins are uncorrelated. Thus
1
(B)yp = —#H Y (siyp — 5 > Tiilsisihur
i ¥

"'/J-H Z(si)Mp - }2'2 Jl'j(si)MF<8j)MF !

i

The desired result follows from the association (s;)p = m. Al-
ternatively, you may begin from the perspective of Sec.(5.5) where

the partition function in this approximation is shown to be

InQ ~InQur — B(AE)yp

where —B{AE)p is given by Eq.(d) of p. 138, and

N

Qumr = [2cosh(BuH + BzIm)V .

The desired result for the internal energy is obtained from differ-
entiating this approximation for In @ with respect to —f. Here,
in the differentiation, note that m is a function of §; in fact, from

Eq.(b) on p. 136 with AH = zJm/y, we find

%’g = (uH + 2IM)(1 = m?)/[L = fzJ (1 — m?)]

for T < T,. For T > T, and H = 0, mean field theory gives
m = 0, and thus predicts zero internal energy in that case. This
prediction is incorrect since (although the average coupling to the
field is zero — i.e., there is no broken symmetry and long ranged

order) there are still correlations between nearest neighbor spins.

g(K') = 2g(K) - h(K)

where h(K) is analytic at K = K
c

’

1

K' = K'(K) = 3/8 2n cosh(iK) K'(K) =K_,

and h(Ky) = g(Kg)

Assume C « |K - K |% near K = XK,
¢ c
that is, € = { a less singular part |} + alk -k |7 .
c
The second term with o > O dominates as K » K .
e

d2
Then since ¢ = — g(K) ,
dk

we can write g(K) = { a less singular part } o+ b|K - K 2"
c

where b is a constant. Plugging this into the first equations above, we

get
{a less singular part} + blK'- chz_u = 2[{a less singular part]
+ DK - Kc|2~°‘] - h(K)
As K ~» Kc , the dominant contributions are
bIK'- Ko|2™® = 2b]K - Ko |ZT® .
Taylor expanding K'(K) about K = Kc gives
K =K

3K,
e’ §§’Kc' (K - K,)

B

or

3K’

3K 2-a o
IEEIKl = 2, MHdlmmhes(}a)Qn—_4 =4qn 2,
o oK 'K,




5.21

or
=2 - 4n 2/ &n EEL{
o= KK,

Note that the actual value of h(k) is irrelevant.

+ + <
@ 1 = ] § e(sJ' 85, M/2 + 8485 K
81,82...,SN=11 j=1
y K )1 =Q
= hs, + Ks.s, =
21,52,...,SN=11 exp[jz1( J 3

0 A

N N
A0 Wooo
(b) Tr(gN) = rif.” ] 1=t | ¥ N}J = Af + A?
a c
() gq-= [C b]
IAL - a] - (-a)(a-b) - ¢ = 2% (asb)r + ab - e®= 0

implies

+ V(=) + ¢ .

a+b
A=

Thus,

-2K
eKcosh(h) + Y eZKsinhz(h) ve @

>
[}

£
- eXrcosn(n) = J[ginhz(h) R ]
Further,
Q = Af sV A§E1 + (i:)N] , 50
&%9 = e, + % enf1 + (;i)N] > gnh, , as N> .
Hence,

K + gnlcosh(h) + sinh®(h) + e Ky

#
©
=]
—
>

+

~

I

sinh(h) + sinh(h)cosh(h)
S (k. Sl « o K
(d) <> = =5 (‘ﬁ‘) -

cosh(h) + ¥sinh2(n) + oK

( 1+ oosh(h)//sinhz(h) + e_uK )
cosh(h) + /sinh°(n) + oK

lim <s,> = 1lim sinh(h) -
h+0 h-»>0

=0

(a)

Q(K:hyN) =

(h/2)[sl+s3]+h+K[s1+s3] (h/2)[s1+s3]—[h+K(s1+s3)]

e + e X aswn

{odd Si}

(h/2)[sN_2+ sN]+h+K[sN_2+sN] (h/z)[SN~2+SN]—[h+K(SN—2+SN)3

X e + e

- rr,m V2 q'n'n2)

Thus,

e(h/z)(s1+s3)+h+K(s1+s3) . e(h/2)(s1+53) - [h+K(s

1+s3)]

(h'/2)(s1+53) + K's. s

= f(K,h)le 73]

For all the possible states of s; and $3:

1

]
8y =83~ 1+ f(K,h) KL e2<h+K) v e 2K ()
-K' h _ _-h
§1 = =83 fK,hle " =e + e (2)
] 1
sy =83 =-11: f(K,h)e ek Ko, e 2K . (3)

By multiplying Eqs (1),(3) with Eq(2) twice quickly yields

f(K,h) = 2[cosh2(h) cosh(2K+h)/cos}’x(—ZKw‘h)]1/ll .

hn




g(h,K) = nQ

2z

pivision of Eq{1) by Eq(3) quickly gives

, 1 cosh(2K+h)

h =h+3 an L cosh (-2K+h) ]

g(h,K=0) % an(el + &MY

en(2cosh(h)) .

i i Lo
Division of Eq(1) times Eq(3) by Eq(2) twice easily leads

As written in part (a) and (b), flow from g(h,K = 0.01) will be
2

- /i
k' = enlcosh(2K+h)cosn( 2K+h)/cosh” (h)] towards the h-axis, away from (h,K) = (1,1). We would like then to

invert the parameter flow, i.e., find h = h(h',K') H

cosh{2K+h

(b) For K,h >0 |2K+hl>|=—2K+h\,sothat remrrh > b K =K(h',K")

implying A’ > h. Further,

Using these inverses, our errors will diminish with each iteration,

' cosh(2K + h) cosh(—2K + h)
e =

since then g(h,K) = 1/2 g(h',K") + 1/2 £(h',X") .
cosh?(h)

“{(ch + 3—4K—h)(e-=-41(+h + e"h) AK
=e

(e FeP)et+e™)

One method to get reversed flows (from low K to high K) is to first
<e

flow forward f.om (1,1) (to lower K values), and then retrace the

steps taken back up to (1,1):
Hence, K' < K.

i Wr i T e as
So the flows as itten cause h to inc ease and K to decreas
1

illustrated in the picture.

51



On the reverse trip, d-e-f, we can use our low K "accurate Parts (a) and (b): The rules for construction of legal configurations

approximation for g, the error halving with each iteration. admit only three energy levels:

(i) E = «» if any partition has other than two atoms. Now, given that
n X there are two atoms per partition, we can have
g At —_—
2.00285 1.00 1.00
. 0 0 0 0 0 0 0
o 1.94 0.1469 (ii) - 0‘ O, O’ ces (or ... lo ‘O )O lo eed)
-2
2.84 2.81 2.23 x 10
86 5,86 7.09 x 10—6 Having two atoms on the same side of a partition means that the
2. . *
y > 86 7.5 x 10712 two atoms in the next cell must belong to the next partition.
2. . *
. ~ The degeneracy is 2, and the energy is E = N<0 = 0
Generate starting at (h,K) = (1,1)
and moving down according to flows.

t at bottom with ' (iii) The only other noninfinite energy states are those where each
Start a 0

-12
g(h = 2.86, K = 7.5 x 10 2) = g(2.86, 0)

EN 2n[2008h(2.86)] H

partition has an atom on each side:

and iterate upwards using

0 o means that the next partition is either OlO or Ofo ,

] 1

g(h,K) = 2 g', K') + 1 a0 £(n,K)

1
2 and the choice between these two possibilities for each partition

is unrelated to other partitions, e.g.,
The convergence to h = 2,86, K = 0 exhibits a stable fixed point,

and in fact any h = ho, K =0 is a fixed point in flow.

0 0 0 o
o 0 0 0o """

The exact answer is (from Exercise 5.22)

-4K
anQ(K=1, h=1) _ K + tn(cosh(n) + /ézggiz;;~:~;__~ ) = 2.00285

N

These states have energy E = Ne, and the degeneracy is ZN.

(c) As a result of the preceding analysis,
which matches the RG value of 2.00285 above.

Q=2+ 2N g7BNe

2h

An analytic inverse in closed form can be found by using e and

indi h (@ A_ 29 gn(e+ (2e7FHN)
e”k as variables, which reduces the problem to the finding of the N

-Bn ~-BN
roots of a UM degree polynomial. Therefore,
lin & kT #n2 + e, 27 F%5 4
N>e N 0 , 2e B




5.26

£, 2 BE 51

<E> 1 unQ {
N N> 3(=8) 0, 267 %% < 1

X 1
(e) A phase transformation is associated with B8 = z ¢n 2, or

€
Ty = T3
0 kBan

This problem illustrates how phase transitions can arise due to

competition between entropic and energetic effects.

o

P
P m 2
: - U JE
(a) Q= éii (en)?’? ) exp['Z1K uiui+1]Ide exp[-BE /20 * (Euiz1 1B
u, i=
i

The integral can be evaluated to be

P
- p o -p/20[E-0/B(en J u. )]
g 2 i=1
exp{B/Zc[E (eu } Ui)] ] I dE e
i=1 -
2 P P 5
- expl B (Ju(Ju)l -/
2 LT AT
2p i=1 J=1
So,
P 2 P
Buo
L e (2P2 )i §=1uiuj
Q- /2m Lim g P2y is i

8 Prew

(b) From the text, we know

i o~y

[c ugug, o0+ hu, ]

1

aE) = 07 enf/? e

e
P
i

2.2
= 2 cosh[B A2 + u E ]

Hence,

-8E%/20  3Q(E) ,q
3(8E)

<m> = u<u1> = f dE e

-

o 2
w | dE e PE /29 ooinn(s/a? W2ES) uE/A2 + 2B

-

= 2
[ dE e BB /29 soosn(va? + v2E)

-

BX

As B > =, coshBx, sinhpx » e , SO

u f dE exp[—BE2/20 + B/ﬁz + quZJ(uE//ﬁz + uZEZ)

<m> =

o
| dE expl-gE°/20 + 8/3° + ,2B?)

-0

o
u f dE e

-

—Bw<E)(uE/ A2 . p232)

11§

[ aE o BW(E)

where the last equality defines W(E) and the weighting function
-BW(E) . : . .

e . As B»= , the weighting function becomes a delta function

x §(E ~ Eﬁin) where E ;, is the E that minimizes W(E). Exploiting

this idea is a method of "steepest descent." Note
oW E qu 2 /2 2
FE - 5~ T—————— vhich implies E, = 0 or gu°= /A° + u E2.
JE g min min
2 2.2
A+ uE

In the latter case,

Eiin = 02u2 - A2/p2 which has the real solutions
_ _ A N1/2
Ei = * 11(0 '*2)

=

when GUZ/A > 1 When this condition is met, we have broken

symmetry. In other words, E+ starts contributing to W(E) at

cu2/A =1, For cuZ/A <1, <m> =0, while for ouz/A >1 , as




B2 This emergence of broken symmetry will cause

<m> = 0 .

>

2 . s i
<(6m)2> to diverge at ¢ = ¢ = A/y" . More is said about this

crit

broken symmetry in the isomorphic problem, Exercise 5.27.

5.27 (a) Doing the sum over spins with the transfer matrix method (Exercise

5.21):

N Bh+BJ _-BdJ
N (e e )
) expl § ghs, + BJs,s.+1] = Tr(q ) , where g = ~8J -8h+ay
{s = * 1} i=1 ! Bt e e
i<t
a+b a-b 2
Now, the eigenvalues of M = { J are s = 5 J 2/ (5) + e
N
A, 0
N N
S0 Tr(qN) = Tr * alo= A, A,
0 A
where A > A_ are the eiEenvalues of g , and
-gNhZ/20 (N N
Q(h;8,N) = e (A, + 2D .
Thus,
A(h;B,N) = - 1/8 nQ(h;g,N)

AN 2
= 1/8 In ey, + an(1 ¢ () ) - gNn“/20] .

+

For large N, therefore,

2
I N Nh
Ah;g,N) = = 2 2nx, + 5o
2 -lgJ
=N g— -J - % gn (cosh(gh) + /é;;hz(sh) v e B 1
0

(p) At this point, notice that A(h;B,N) is even in h , i.e., if h

minimizes A , so does -h . Further,
2
lim ~ h
2 -g-n
|h‘*” > N 20 [ }J

Thus, we're looking for bistability in A like this:

A

A

ﬁ <

Since & is even and &

34
e )

3hln
0 when A/9h'

to determine t

taking the B+«

1lim cosh(Bh) =

RBroo

Alh, B»w, N)

and does show bistability.

Bcr'it

p>B crit

B crit

>

3

A will have a bistability in h when

how

< 0 for h'> 0 near zero; i.e., A is concave downward at h =

< 0 for h' near zero.

Hence, 3A/dh 0 can be used

he critical temperature. Alternatively, note that

limit gives

eBlhl 1lim sinh(Bh) = sign(h)-eslh', and hence
Rrw
SR S R LY
=N i 2 n (e )1
2
h
=N [ Er -J - !hl]

However, we don't get an equation for

from this analysis.

Near h = 0 for h > 0, we find

o
an, _

N

+

0

1 2
—-Nh[; ge

[ - sinh(gh) eZBJ]

als

BJ

1, since sinh(gh) = gh




This derivative changes in sign as a function of B when

8 2BcritJ _ 1

al

crit
which is an invertible function in 8 since it's montonically

increasing.

Another way to view the analysis of this Exercise is to solve for

A _ § to find the stable minima in A(h) This equation can be

written A'(hgins8) = O , an implicit function for § = g(h ;)

Yy, ash . >0,

Bcrit is then the limiting value of B = B(hmin nin
32 = 0 and solve for B .. .
and so we look for = N o* = Bopit
>

Chapter 6. Monte Carlo Methods in Statistical Mechanics

To perform Exercises 6.10, 6.11 and 6.14-6.16, you will collect

statistics from long Monte Carlo runs. These exercises help illustrate what
must be done to obtain reliable information from such calculations. In this
regard, efficient and fast computer codes are important, and as emphasized in
the text, much can be done to improve the programs listed in the text. At the
very least, one should use a compiled version of the codes. As a standard of
excellence, however, you might want to view Jeffrey Fox's Monte Carlo of the
Ising magnet.* It utilizes binary arithmetic only and machine language, and
it runs from 102 to 103 times faster on a PC than the Ising model program
listed in the text. As well as providing rapid access to good statistics, the
greater speed permits one to view rather large systems in real time. The
’views are both instructive and pleasing to the eye.

Some new books on Monte Carlo methods in particular and computer simula-
tions in general are worthy additions to the bibliography of this chapter:

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods Vol., I: Basiecs,

(Wiley Interscience, New York, 1986);

H. Gould and J. Tobochnik, An Introduction to Computer Simulation

Methods, Parts 1 and 2, (Addison-Wesley, Réading, 1988);

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, (Oxford

U. Press, Oxford, 1987).

he last of these is especially pertinent to the material covered in Chapters

and 8.

J. Fox, "Fox's Ising Model Simulation for PC Compatibles," placed in the
public domain on 3/25/88.

=0




i ially as 1 gets
6.10 Above T,, we find i decays more or less exponentially g

farther from j, and random thermal fluctuations destroy long-ranged

The effect of the interface is to introduce long-ranged correlations

between spins along the interface, even while T << T, and the

correlations. In fact c,, » O for 1 far from j until T = Tc from above, correlations in the bulk are only short-ranged. However, as defined in
1]

at which point cij = 0

we have broken symmetry, and as T = 0, we find

the code given in the book, the ground state of the 20 x 20 lattice,

Below T even with the biasing field on, has all the spins aligned the same way

Q?

l<s1>l is significantly greater than zero. This is an indication that (With the exception of the biased spins). Simply setting the initial

we are frozen into either the up state or the down state. One result of ~ configuration to be an interface would sample a metastable well. To

2

this broken symmetry is that as our runs apparently show <S1> > b, observe the interface fluctuations we can increase the bulk of the

and hence <s;s,> > 1 as well, we will observe Cij > 0asT>0. lattice relative to the interface by changing the dimensions to be
1]

40 x 20 .
100 Note that in implementing the calculation, there are four columns
i Spontaneous . ) )
0.80 | of spins each that can be considered bulk or interface. In our
i magnetization calculations the dependence of <s> and <sys;> on the distance from the
0.60 o
Zg i biasing field is averaged over., Correlations shown in the graph are
\Y
—  0.40 - - {$.8.> - <8,><5,>
1 1 J
0.20 o 0.8
L Correlations with spins in the interface
0.00 S e i
0.0 0.8 1.6 24 32 4.0 A 06
g
%
k BT/.J f
A
%
0.60 Y 0.4
Correlations in the A
N oas L w’
. 0 -
0 i i o
v L Ising Magne 0 oo
('/;* 0.36 o
\ L
A 024 - )
) 0.0
Q; 012 i 1 2 3 4 5
L Neighbor distance
0.00  — S
o4 a2 4.0 These representative results were obtained on a 40 x 20 lattice at
0.0 0.8 1.6 : ’ ) kBT/J = 1.2 using 100 passes to equilibrate and 10,000 passes to
K -T/J measure correlations. The biasing field keeps spins 1-20 up and 21-40
B

down in the top row. Spins in columns 1, 20, 21 and Y40 are considered
to be in the interface, and columns 10, 11, 30 and 31 were taken for
bulk measurements. The upper line shows correlations along the
interface, and the lower line shows the correlation of a spin at th
interface into the bulk. Correlations between bulk spins are ~ 10 or
107" and are not discernible on this graph.

: i1ippate

Fig. Representative results for exercise 6.10. Thg lattice was equll;zr .
for 100 passes, and then statistics were complleg for 5,000 pas§ héo
Spin-spin correlations were measured up to the fifth nearest neig

o



6.

12

A straightforward algorithm is to choose a large enough, or
equivalently, to scale the range of the uniform random numbers [0,1] to

[_Xmax’ Xmax] so that most of the Gaussian will fit in this range.  Then

trial x's will be accepted with a probability « p(x) , normalized so

that for all x, prob{x) < 1 The trouble is that the fraction of

accepted trial x's tends to be small.

area under the curve to the rectangle:

1.0

1

_X X
max

In other words, if we pick x uniformly from the interval, we will then

reject most choices. This inefficient method does not exploit any for

of importance sampling. There are a couple of possibilities for

improvement.
2

One is to imagine that the distribution p(x) = Joarn e %% is due
to an energy E(x), where BE(X) = ax2 , and to employ the usual
Metropolis algorithm with diffusive motion. Then trial samples will
tend to come from the regions of lower E(x) and higher probability. I
drawback is that one random number x;,, is correlated with the previqﬁ

one Xj from which it made its move to Xi4q = X + 8§x , with &x

small. Nonetheless, the calculated moments should be correct..

Another method, equivalent to the "force bias" Monte Carlo.of

problem 6.13, is to change w , to reflect the more likely regions ©

v

p(x), thereby increasing the A |'s
T Vv

AP

This fraction is just that of the

The first algorithm described above corresponds to 7 =

¢ = constant

g XX
,o:eOLX

and A i
x - As we said, that scheme is not very efficient

Vi k g » = A( ), W
instead i€ make a change o variables such as x = y ith Y pl(}ked

uniformly from [0,1] then the probability of picking x in [x
O:

| Xq + dx]
is
q -1
EX » dx o« SE
X yex dx ?
X=X
whe = ¢ i
re y £ (x). So if we want to achieve 100% acceptance
A =1 i
! » then our trials must be chosen with T, = Yo/w e“a'x2
XX
and thus
-1 2 %o 2
= Yyao/w e which impli - Tox
Xo v plies f (xo) = Yo/m fo e dx = erf(xo) s

i.e., £ i i
y is the inverse of the error function. Note this scheme only

generates positive x; the sign should be assigned randomly

In
some problems, such a perfect solution is not possible But as

long a i i
g as Axx' increases and begins to approach unity, we have made good

ro
progress. In the present context, any change of variables favoring

sampling smaller x is better. For example, let

1-y
X = et i i
oy where y e [0,1] is uniformly picked. This implies

X=(1-y)/cy

0.0 0.5 10

Iirf




are picked wi ili .
So the x picked with probability equivalent to any other pair. With detailed balance designating

T
T, o« ——-fi——-—§ , and so we must accept with probability EV' g Ev » V= v+l , we therefore have,
X (1 + cx)
W
~BAE
2 2 VY ' -8
- - woooo BHw p
A« { xex) V7o e *F W, e = ® = T = oX
X c Vv v P
or
to preserve w, . The proportionalities are chosen so that L < 1 and
- 1 1
Ax < 1 . Again only positive x are generated and the signs should be p= 14 X—1 1. eBhw
randomly chosen. Note only one index is retained because any given
Note: in the limits Hw = O ) p~>1/2,

choice is completely independent of previous choices.

and W » o , p~>0
! 6.13 (a) The condition of detailed balance, w ,/ W = exp(-BAE )
NN v'v w' 6.14 (@) g f” ‘B(HO— m(E + Eapp)) ‘BE2/2
with AE , =E - E , gives ’ =) dE[Tr e Je o
vy v v
@ 2
LY. S = T, A, ~BE"/2¢ -BH
dEe
W W . exp(-AE ), or A , = ——— exp(-BAE ) . - o%nq ! 99 Im e
A ' <m> =
T, ' W vV L vV SBE._ 7 "~ @ a7 =
VoV VY v app BEapp) )
Since A is a babilit A < 1. ,
1 vy probability, w' - Evaluating the trace gives
T -BE L ~BAE
Soif %Y o W' <1, we let A L= =2 e w' ang ® -BE/2¢ s >
T vV T Q = f dE e 2 cosh[g(a“ + y“(E + E )2)1/2J
Vv Vv Cw app
A, =1 ; otherwise, we can switch indices, v « v', i.e., . 5
Y = 2(8/w) f dE o BE /2L cosh(BE) , and so
Toy!  TBAE o
A, = e VV and A =1 .
vv T vV 3Q i 2 —
VoV O« _ _ ~-BE /20 _. — 1 - -
= 2 f dE e sinh(gr) B 1 71 =
8 (BE, ) ! BE) g 3 & 2E+E, (e
(b) To make a transition every move, we R -_EZ/ _
' =2 [ dE e P2l inn(Ee) (B 4 E )/
~o app
let A = A =1 . So then
w' v'v .
from which the desired formula follows directly.
P Vo= vl
W = = ’ N
v w' { 1-p, v o= vl

6.16 The modification to include windows is simple. Since we are basically

This form, which is independent of v, is possible because of th . . L
’ adding a potential that is infinite outside the window (i.e., not under

symmetry of the problem — each pair of adjacent levels is the umbrella) and zero otherwise, we need only check if we've stepped




Fig.

This is done at the time we also check

outside the window.

~BAE

e > rnd Moves outside the window are rejected. We can scan

through each window for the minimum in A(M). Once one is found for a
1 .
given T, we can assume for T' near T , that M min is near Mp,, SO we

need only scan a few neighboring windows.

However, as T - T_, it will be hard to find the minimum since a wide
’ c
range of M are equally probable. We find that the barrier drops faster

than the minimum moves in as illustrated in the schematic figure.

Notice that the criteria of a vanishing bistability can be used
unambiguously to define a critical temperature for finite systems. 0f

course, such a definition leads to system size dependent TC which

becomes the true critical temperature only as N =L x L » =« , 3o, our

m;n) va T is shown in the Figure for

results for the "phase diagram," (
several values of L. The L » « behavior of Mmin/L2 is the exact M(T),

and we've plotted M(T) on the same graph for comparison.

1.0
Q
-—J i
" Magnetization far .
£ o8 ‘
= Different Lattice Sizes
0.6
2.0 2.2 2.4 2.6
kgl/J

These results were obtained with 5000 passes/window, and e%ch wi?dow h
the width 1L2/20 except for the L = 40 case where we used L/U40 window

widths.

As described above, we determined T, for each value of L by
extrapolating to Mmin = 0. The results of those extrapolations are
given in the table. We then extrapolated TC to the L » » by using a

procedure known as finite size scaling. In particular, we assumed

b
(7, - T,(17 =« 1/1L

where TO = Tc(w) . We determined the exponent b from the slope of

[Tc - TC(L)] vs. &n L . This procedure gave b =~ 1.0 + 0 Then a plot

of Tc(L) vs., 1/L gave
T = 2.26 + 0.02

as the 1/L » O intercept. This estimate can be compared with Onsager's

TC = 2.269 .

L T, (L)
10 2.60
20 2.43
30 2.38
4o 2.34

A discussion of the finite size scaling method is given in Sec. 1.2 of

Binder and Stauffer's Chapter in Applications of the Monte Carlo Method

in Statistical Physics, ed. K. Binder (Springer-Verlag, N.Y., 1984).

Also see Part 2 of Gould and Tobochnik's Computer Simulation Methods

referred to at the beginning of this manual chapter,




Chapter 7. Classical Fluids 3 N N N
Bp = N n v f dx" exp[-8 ) u(V“3 X .01,
1 i>3=1 1

7.10 The kinetic energy and pair potential parts of <E> will be the same as .
where the integration is now over the unit volume, not the system

discussed in the text. For the three-body term, we write
volume. Differentiation is now easy, directly affecting the pair

N : .
< ¥ u(3)(ri— tj’ gj~ gl) > = % N(N-1) (N-2) <u(3)(§12,§23)> potential. Accounting for the sum over N(N-1)/2 equivalent pairs,
324=t differentiation yields
N
N (3) -gU(r")
dr-u (r,, ,r,,) €
N(N-1) (N~2) J ~12°523 y N
% N [ axm-texpl-8 § w3, yirauv' 35 ysacu’ 3, 1 % y/3
N _-BU(r) 8 N ij 12 1277 M2
[[ar” e B = p - = 123=1
) 6V N
, N 1/3
N [ ax'exol- I u(v X301
(3) _ _ N-3 -8U(r ) 1>5=1
1 f dr, f dr, f dr, u [Py 223) N(N-1)(N-2) f dr” “e
% TN
f ar o BUD) 3 ) . )
TP T fdr N(N—1)exD[—5. Z U(Pij)][du(r12)/dr12]r12 /f drNexp[-B Ioulr, )]
1 (3/N) (3) 1>3=1 i>j=1 1
=% f drl1 f drlz J‘ dr‘_3 p (21’ o 1'_‘3) u (’:12’ 1:23) .
” du(r. ) N N
-0 - £ 12 N-2 -gU -
For a uniform (homogeneous) system, p<3/N>(§1, Y 23) TP T fdliT fdfz ~5F?;—— ry, N(N-1) f dr e BU(r )/ f arNeBUCrT)
= p3g(3)(r12, {23) , and we can integrate out one of the degrees of
freedom to get the volume: 8 du(r]z) 2N
TP T fd21 fdtz & Ti» o )(21, r,) .
12
1 3 (3) (3)
=gV, Wog P78 7T (Lyp Dpg) W5y 1p3)
Therefore, for a uniform system
12 (3) (3)
=N = dr dr (r,, vy uw >, ,, ryn)
N-gp f ~12 J Co3 8 ~12' =23 127 =23 %— =1 - (Bp/6) f dr g(r)r du(r)/de . Q.E.D.
Thus
: T2 [ante ™ gy L [ g p2pemBUlr)
B> _ 3 1 o
7 3kgT 30 [ dr glriulr)
1,2 f (3)( r._) u(g)(r ros)i. = EEEE [e—ﬁu(r)_ 1] ’ _ oy fm r3 ‘Bu(r)(_ du
* 5P f d§12 d223 g Tioe ~23 ~12° ~23 3 o T . 3T e 8 T ) dr
34nQ 5 N U™ A )
- I - 5 r=>w,ulr)-+0, and
T 8p = (Sl y = g7 Ao fv ar e
3. 3
T s s o
We change coordinates to §i = V_”3 Ei , thereby accounting for each of )
the three cartesian components, dx, = Vdr, . Hence, '
e i i for quickly enough decaying u(r), i.e., faster than r3, Therefore, the




boundary term in the integration by parts gives zero. As a result,

—-gu{
2 e gulr) r du

- % f dg[e—gu(r)- 11 =5 (- %) f dr 4w r

2 dr
2 0
-gu(r) du
= - B/6 f dr e r4 - Q.E.D.
For hard spheres

g 3

2 2na
= - - = = b
BZ(T) 2ul jo dr r°] 3 o

For a square well

n

¢ o'
B(T) = - 20 { - f dr rz + f dr rz[ess— 11}
2 0 g

= E% [o'3 - &P (s'3- ¢33

=

At the Boyle temperature,

|} BE 1
%1[03—e13(c3—a3)]= 0,

therefore,

e/kBTB = in

or

The figure shows a graph of the square well B, with o' adjusted such

that
0'
2 - - 2
f dr r uLJ(r) = - ¢ f dr r
0 g
which implies ¢' = 9'/3, With this choice of ¢', the square well

(LJ)

should be a reasonable estimate of 82 However, unlike the square

(LJ .
well B2, 82 ) vanishes at very large temperatures since

By L a0

square well
s 54

7.28 The velocity or momentum averages are isotropic and factorable from the
coordinates. Therefore, only one average 1s necessary to answer all
parts to this Exercise.

2 2
2, . 2 -gp /2m -gp~/2m
(a) <vx> = f dp Ve / f dp e

® > —Bpi/Zm
[ ap, (o /m)° e

—~co

” 22
| ap, &78Ry/2m

since the p degree of freedom is statistically uncorrelated from

the others. Performing the integral gives

2 1
< =
vx> g
Alternatively,
2 2 1 2 2 1 2
< = 2 - =< 2
VX> n 30 <vx> 3 <p {2m>
= (2/3m) 3 k. T = 1/8m
2 B
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2
2 .2 2 1
b V. v. > = KV >V > = [=—
(b) Xy Xy (Bm ) : - —gk(x - XO)Z/Z
T £ f dx e
h ~m
(¢) <v2> = <v§ + vi + v§> = 3<v§> = gﬁ
1
= ——3—1:1- [V ET_[ o _2&7_1‘_ ]3N
h BK 8
(d) <v.>=0
" -3N
= (B¥w) .
; +RHw/2
(6) <(v. +bv.)® = D + 2b<y ><v > + by (c) since e -1 BMw/2 for small B ,
X y X Xy y
: - Bl’iw B BMU} ‘3N
- wd) o Qg = L0+ B2 ) - (5 - Bluyy
2 -3N
1+b = (8H _
T pm () Qiassical

Classically, these averages won't be affected by isothermal

.31
volume/pressure changes (i.e. through the potential) since the 7.31 (a) For p » Pep (but p < pCp) we approach the g(x) for a close packed

momentum distribution is dependent only on the temperature. When system, i.e., delta functions spaced ¢ apart. The lower the

. X d i :
the classical assumption breaks down at extremely high pressures, ensity, p, the broader the peaks, and the more rapid the decay to

uni
one would then need to consider the quantum dispersion of particles ity at large x.

since the dispersion (i.e., the uncertainty principle) leads: to

statistical correlations between positions and momenta.

g(x) at high P

7.29 (a) Since the Hamiltonian is separable, one can factor the partition

function as discussed in Chapter 4. This gives

-Bhw/2 3N -3N
Sl e e
1-e

(eBHw/Z ~ e“Bﬁw/Z)

SN A A
\/\/

where we have used the fact that (% + 1) Ko with w = /k/m is the

nth energy level for a one-dimensional harmonic oscillator.

(b) In the classical world, the partition function still factors;

N N
o N N -BH(r", p)
Q = ggﬁ f dr f dp e
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(v)

Since u(x) is = for |x| < & and zero otherwise, g(x) is therefore a

step function at low p.

As

p

>

0

3

g(x) =

e—Bu(x)

g(x) atlow p

Notice for a hard potential system, Bu(x) is either infinite or
zero, so Bu(x) is independent of temperature. Thus g(x) is

independent of temperature. The configurational properties of hard

core potential systems have no temperature.

Since the integral of pg(x) determines the number of neighbors, and

since there will be one neighbor between 0 and (3/2)%, we have

(3/2)8% B

dx 8op(x) = pep

0
L.

Note that the momenta are uncoupled from the positions, and that

the momentum distribution is proportional to exp(~6p2/2m) . Thus,

(i) <v> =0
Further,

- 2 2
(i1) <vp =2 ] e BP /2m Bp-/2m

dp / fm e

-

p

()

and

. 1 2 1 1
111 - = e o=
( ) < 5 mv> % " 3 kBT
Finally,
(iv) <E> = <KE> + <PE>
p2 !
=N'<ﬁ>=“2'NkBT

where we have noted that <PE> = 0 since the "potential energy"

is zero for all acceptable configurations.

2

Since Bp = p + bp” + ... , we can identify b as the second virial

coefficient. Hence

b = - % f dx[e_Bu(x)— 1] = -

%
1
3 {m dx(-1) = & .

Note that b is independent of temperature.

The partition function for the system can be calculated exactly.
The easiest way is to think of the excluded volume due to the rods
(N%) as being subtracted out of the possible position space of each
rod (L). Secondly, configurations which are identical except for

the switching of rods are counted as the same state, i.e., we need

to divide by a factor of N! . So,
1 ] IL—NQ fL—Nl jL—N%
Q = — dx dx, ... d
]
N T 1 2 o N
1 1 N N
= ')\—1\7 'N~'(L NL)© .

This value for Q can also be arrived at from scaling and changes of




7.32

coordinates of the configuration integral: First, adopting one

particular ordering of the rods,

L L L
1 -gU
Q = —= f dx j dx, ... f dxg e
AN 0 ! 0 2 0
1 L-(N-1)8 L-(N-2)% IL .
ol f dx1 ) dx2 e o e Xy
A 3 X+ L N-1

s 1 .- i
which becomes after a change in variables to xj = Xy i,

L-N% L-N%
1 ' '
O = 5 f dx f . X, e fx' dxy
A 0 x1 N-1
1 N
= 5 T (LN
A
Then
34nQ 1 0
Bp = =Nime © T
oL T,N L-N& 1-p

Thus, b = &, as already noted.

(a) Neglecting the internal structure in the low density limit, the

gaseous Ar is an ideal structureless gas. Thus, for M atoms

(id)
(id) 3anQ - _ V_ ,2mm,3/2
8u = - S =AM - in (h3 = )
2
gh” y3/2

= n ( 2mm ) * Anp

= £(B) + fnp ,
with p = M/V

(b) Let U (RN) stand for the total potential energy for all N water
W
molecules with RN denoting all the coordinates necessary to

describe the configurations of all N water molecules. In the low

density limit, different argon molecules do not interact with eact

£ Q

other, but they do interact with the water molecules. Therefore,
quite generally, we can view the total potential energy of the
solution as

M
u RY) + P

U (r,; RN)
~i
i=1

where Ci is the position of the ith argon atom and there are M such

atoms. The partition function is then
11 N N M N
= expl-NE (B)-ME(8)] g7 o [ar fdgT...dgM exp{-g[U_(R") +i§1U(§i;R )1}
N N N
-MF(8) -BU_(R") M -gU(r.;R") -8U (R")
e N W ~i N W
= Q, —pr— de e [fdg1...fd§M i¥1 e ]/de e
N
S ME(B) Mo -BU(r; R
PRV TR 'deM < f e >y

where Qw and <...>w denote the partition function and ensemble
average for the<EEﬁ3 liquid water solvent. Now, since the argon is
dilute, different argon atoms are uncorrelated. Thus, the average
of the product can be replaced with the product of the average.

Hence, due to indistinguishability,

SMEB) L -ur RN M
Q = Qw —r V' <e >w
M e-M[f(B) + BAul 8 ‘BU(£1, RN)
=QV , where eP¥ o e > .
W M! W

Note that since the solvent is isotropic, the last average is

independent of r, .,

The desired formula for p is obtained on differentiation of

nQ with respect to M with Q given by the last equation.

Due to <1> =1, it is obvious that Au = O when U(g1; RN) is zero.




dAuA

(c) At phase equilibrium, the chemical potentials are equal. Hence, o

=0, fdg By (id) u(r)

BAu

£(g) + np, = £(B) + fnp, + gAu , 1implying p, = p e Integration from x = 0 to X = 1 gives the final desired result.

and since for an ideal gas, Bp = PG
To prove the virial theorem in two dimensions, use the same proof as
_ BAn

Bp = p,e . Q.E.D.
g V—1/2

r. . On

given for Exercise 7.11, except that now, X = rs

. . differentiation, this brings down a factor of 1/2 rather than 1/3. One
(d) We can simply plug into the result for Auy derived in Part b.
) therefore finds
Alternatively, we can follow the suggestion noting

du(r
~ . . Bp/p = 1 - (8p/W) [ dr g(r)r 37D
Au = change in Helmholtz free energy due to introducing - dr

one argon atom into pure liquid water.

2 du(r)
r

r) ——=

=1 - (Bpu/2) f dr r 3
0

- kBT n[Q(1 argon, N waters)/Qw]

from which the desired result for exp(-pAu) follows immediately. =1+ (p/2) f ar P2[y(r) g e‘Su(r)]
r
0]

Next, define Apx according to
where we have introduced y(r) defined so that g(r) = expl[-gu(r)ly(r)

-8lu, “Bru (e - v )
e = Il e >w For hard disks,
i
Then e—Su(r) =0, r<g
( |) =1, r>ag.
~BAu r-r,
AW '~ ~i
dshw, <shupy CJe-ry D Te W
R = 'BAUAW(Ir—ri,) Thus,
<Ie >w
i d -gu(r) _ -
T © = §(r-g)
N “BU,
JdR N qu([g-gl}) e As a result,
=8 -0 = BN Uy
far e 2 i
2
Bp/p = 1 + pu/2 f dr rTy(r) §(r-o)

0
where )
1+ (pwe~/2) y(o)

]

Recall that y(r) is the distribution function for cavities. It should

be continuous at r = ¢ . However for r > g, g(r) = y(r) so
and <"'>A indicates the ensemble average weighted by that
y(g) = lim g(r) . Hence,
A-potential energy. Thus, from the definition of radial r>g
distribution functions, 5 N
Bp/p = 1 + (po w/2) glo )
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Chapter 8. Statistical Mechanics of Non-Equilibrium Systems

it

7.35 (a) Let U, ) [uo(rij) + Au1(rij)3 . Then from

i>j
-gU 8.7 Since HB[z] = 1 z > qf
1 danQ 1d N A *
= - = = 0 z <
dA/dX § Tan R n f dr e q
one finds using arguments similar to those in Exercise 7.32 that
‘ and 6[q(0) - q¥] requires q(0) = q% ,
2
aazdx = (pv/2) [ ar g, (r)u,(r) .
we interpret
Integration over A from O to 1 yields the desired result.
- +y - 114
kgp(0) = kg, (07) = li$+ kgp(e)
N —B(U0+ U1) N BY €
(b) Q/Qy = Jdr e / fdr e
In other words, we're looking for the flux through q* for small enough
-gU -8<U, > . . , : # ;
- <e 1 >o N 170 time that trajectories which are started at q° essentially do not
recross. Note the existence of v(0) guarantees an e small enough that
Further )
’ ale) = q(0) + ev(0) + 0(e?) . Then
N(N-1)
U,>, =< u, (r,. >, = < ——"u(r )> -
170 ‘E. 1 13) 0 . 2 17127 70 k. (0) = x| <v(0) sq(0) - q*] H_[q(0) + ev(0)] >
id BA A B cr0*
= (p2V/2) f dr g . (r)u, (r) . -1 M "
~ 0 1 = x, <v(0) 8[a(0) - q"] Hglg® + ev(0)] >
>0
Therefore, since A - Ay = - kBT ln(Q/QO) ,
= ! %
A-n, =%, <v(0) 8[q(0) - q"1 olv(0)] >

- < % p fdg go(r)u1(r) .

where 6 is the Heaviside step functiom. We can then write

-1 <v(0) olv(®)] alq(0)-q*1»
A <slq(0) - ¢* D>

kBA(O) = X <6[q(0) - q*]> .

#
The first term is a conditional probability given q(0) = q . However,
since q(0) is statistically independent of v(0) in the ensemble, we can
drop the condition. Note that the original expression can't be factored

in this way since v(t) = v[t;q(0),v(0)]

So then

-1

kpa(0) = XA

<v(0)elv(0)I> <slq(o) - ¢*1> ,

and since the distribution for v(0) is even and the time origin is

21



8.13

arbitrary,

. 4
kg, (0) = <|v|> <s(q~q »>/2x, .

Recognizing HéTST)[q(t)] = 0[v(0)] gives the transition state theory

expression for kéTST)

t t '
SaR%(E) = 2 [ at'r(0)ey(e')> = 2 [ de'ev®> eTE T
0 0

= 2<v2> w1 - e_t/T]

Integration and enforcing the initial condition of ARZ(O) = 0 gives

ARE(t) = 2¢<virtt + 2yl ¥ - 47
For t << 1, to 2nd order in t,
2 2 2.2 ) T t2
ART(t) = 2<v™>1t + 2<v™>1"[1 - < + Z— - 1]
T 2
2T
2.,.2

SRR O LS
i.e., inertial (non-diffusive) behavior. For t > 1 ,
2

ARZ(t) > 2<v2>1t - 2y >12 = 2<V2>T(t—T)

which represents the long time diffusive behavior. The function is

plotted for all time in the figure.

A R2()

82

8.20

Since
D= % f dt <v(0)-v(t)> = % gg ARZ(t) = 1w
0 e 3
then
T = 3D Z 2 = fmD .
<& mv©>

For Ar, MW = 40 g/mole, so at T = 80K

T = 60 fsec

The primary variable x(t) drives the bath, and the driven bath affects

the primary variable through the force

£(8) = £, (8) + f_mdt' Xy (-t ') x(t")

t
] d ] '
=f (t) - dt [ ——=] C (t-t [
B (8) s[m preseaeICNCUBHEIC

= £ (t) + 8C,(0) x(t) - BC, (t) x(0)
t @
-8 jo e’ (t-t") x(t") (a)

where the second equality uses the connection between Xb(t-t') and
Cb(t—t') » and the third arises from integration by parts and the fact
(essentially a notational convention) that f(0) = f = Z ey = fb(O) .
fb(t) differs from f(t) only as time evolves from the initial phase
space point at t = 0. |

Now consider the average of fy(t), averaged with the initial

conditions x and x held fixed:

_ IO ° Bxf 1
<E e}, . =< fb(t,x,x,{yi,yi}) e o TR
X,X [ixed <e >b
at t=0

This equation follows from the fact that the distribution of initial

bath variables differs by the factor (8xf) from that when the bath is




8.22

uncoupled from the primary variable. Let us employ the ¥yi's that are

the normal modes of the bath, where mode ¥y has the frequency W . Then

we have
. Bxe; ¥y 1
S I . = Z ci<[yicosmit + (y;/w;)sinw t] e >y T
X,x fixed i I
e >
b
8xc.y,
= } ¢, cosw,t 2 gnce i
R ¢ i 9BxC, b
i i
= Bx J ? <y2> cos w,t = BxC, (%) (b)
i i i b

i

where the second to last equality follows from the fact that each Vi is
an independent harmonic oscillator variable and therefore obeys a
Gaussian distribution. The last equality is true since for normal modes

2
<yiyj> = <yi> dij , hence

Y

2,2
1 cie.<y,y.> cos(w,t) = § e<y"> cosw.t .
ghy 13T j FERE i

By combining Egs. (a) and (b) with mx(t) = fo[x(t)3 + £(t) and
averaging over initial conditions of the bath variables, the generalized

Langevin equation follows directly.

@  <¥(0)-y(t)>
Argon Gas

<V2>

t

The very slow decay has a time scale of 1 , the mean collision time

in the gas.

(b)

NAn s
AYRYAY,

Argon Solid

The oscillations persist for long times because for small
displacements the atoms effectively sit in a harmonic well with
period T . The slow decay is due to collisions with other atoms

and also anharmonicities in the well which cause dephasing between

different trajectories.

Y V20 v2(h)>

<V4>

<V2>

Argon Solid

The decay in the oscillations is due to the processes described
above. Note that even if the lattice were one-dimensional, the
minima of <v2(0)v2(t)> would not drop_ to zero because the ensemble
average ié over various initial conditions, so the turning point

times are averaged over. In three dimensions, we have orbits with




no turning points. This is reflected in the three separate phases

that are averaged over:

PO = <(v20) + v20) + vE(0) () v v2e) + vEie))s
= 3<v§(0) vz(t)> in the case of an
X isotropic lattice.
(d)
<u(0)- u(t)>

8.26

CO in Solid

The small oscillations are due to the vibrations in the lattice:
The long time decay is due to the infrequent process of a CO

molecule flipping over completely in the lattice.

8.23 For a small perturbation from the equilibrium zero-field distribution,
the fluctuation-dissipation theorem tells us the rate of relaxation to
equilibrium is the same as that of a spontaneous fluctuation to that
non-equilibrium distribution.

At time t = 0, the field is shut off but

the flow v(0)

#*

0 . Since the flow will dissipate with time,

V(E) = AV(E) « <6V(0)8v(t)> = <v(0)-v(t)>

Qe

or
) | SO
v(0) <>

The relaxation time is then

Substituting 03(t) = ¢ - 01(t) - cz(t) into the rate equations gives

c1(t) - (k31+ k13) 01(t) - k1302(t) + k130

cz(t) = - k23 01(t) - (k32+ k23) cz(t) + k230

or, in matrix notation,

Kk k
a (%] [ft M 13 il L 3],
dt c, k23 k32+ k23 C, k23
¢
The homogeneous part can be solved by expressing in terms of the
2

eigenvectors of the above matrix, while the inhomogeneous part just adds
a constant to d; and dy: written in the basis that diagonalizes the

above matrix,

li
[
[

d1(t) + const

+ const!

0
a
®

dz(t)

where f1 and f, are constants determined by the initial conditions.

Thus the concentrations cy and ¢, can be written as the sum of two
decaying exponentials,

—A1t -Azt
01(t) = Ale + Bie + <c1>




—A1t —Azt
cz(t) = Aze + B2e + <02>
By
where A and are eigenvectors of the above matrix.
2 2
(a) So,
—A1t —Azt
Ac1(t) = ATe + B1e
—A1t *Azt
Acz(t) = A2e + B2e
where
A1’2 = [(k31+ k13) + (k32+ k23)]/2
+ V/ K, + - 2
(Clgpe kyg) = (kv k00172 |5 Kigkpg -
() For e P9 < 1, then k
’ 13 ° k23 >> k31, k32 .

We can write

A1’2 = [(k31+ k32) + (k13 + k23)]/2

M

£/ (Ll k) (kg Ky )172)° = (K )

31K30 T K3pkog * Ky3kg,

= [(k31+ k32)/2 + (k13+ k23)/2]

w1 s/ - (kyylisy + K /Ll g + Kyt p)/21°

31Ko3 ¥ Ky3Kg, 13+ Kgp

A1’2 is now conveniently written in terms of the small parameters
k31,k32, so that we can expand the root Vi-e = 1 - % €

P [(k31+ k32)/2 + <k13 + k23)/2]

1
x {1 + L1 - = 2
fr=01-5 (Kypkgp* Ky kyo + k13k32)/((k31+ Ky * Kgpt k33)/2] 1}

So the + root is

-1
Ttransient

[k, + k23)/2 + 0(e)] [2 - 0(e)] = kyo * K

13 37 %237

and the - root is

31432 + k31k23 + k13k32)/(k31+ K, .+ K .+ K,.)

= (k, k

31%23 + k13k32)/(k13+ koo) = 1 .

23 rxn

From the above,

K K
-1 23 13 -1
Tk (B Y ek (2 ) < o
rxn 31 k13 + k23 32 k13 + k23 transient
and so the relaxation is dominated by t . When k = Kk ,
rxn 23 13

-1
Tosn = (k31+ k32)/2

(¢) As shown above, the faster transient decay occurs on a time scale

of

ko ko) T mGh ik, > K

13 23 23 23 13 7

(d) The two decay rates are analogous to the two rates in the reactive

T . The connection can

flux description: Thol = Teransient <K i

be made by imagining preparing the system at the transition state,
i.e., in state 3. Then the decay into states 1 and 2, cq(t) and
cg(t), follow the two decay rates, one much faster than the

other. But 01(t) « <6nA(O)6nA(t)> by the regression hypothesis,
and the time derivative of <6nA(0)6nA(t)> is just the flux in the

reactive flux picture. is on the order of k31

In particular, 1_1
rxn

or k32, and is the plateau value for the reaction rate.

5




L. . -BQ (e) The relaxation of the non-equilibrium distribution will follow the
(e) This is similar to the transition state theory idea where e is

same rate as that of spontaneous fluctuations, such as in
the probability of getting to the transition state 3, and D « 1/n

<y(0)-v(t)> . The decay time Ffor <v(0)-.v(t)> is given by
is the rate to cross the barrier (3) once there. As we showed - - - -

previously T = gmD = 16 fsec
relax

KT o v <6(amq®)s

1

1 1
(f) From 8.24 D“é—or7—3 i

8.28 T = 300K n = 0.01 poise Dy = 1 x 10—50m2/sec ARZ(t)
mAr = 40 amu mH o 18 amu So if n doubles, D halves, and the diffusion time t = R
2
doubles to 340 psec. 1In contrast, since the temperature is still
) (b) 300K , <Vir>1/2 = 4,3 x 10ll cm/sec remains the same.
(a) and (b):

The velocity distribution is just the Maxwell-Boltzmann distribution and

is independent of the potential. So

2. 2 1 2. 2 3
ar? T m T ST MV T 3 KT

1.87 x 109 em2/5902
or
i
<y o> = 4.3 x 10 cm/sec

for Ar atoms in the vapour and in solution.

(¢} Assuming inertial motion in the vapour, the time to move 10A is

2 1/2
t = 1OA/<VAr> = 2.3 psec

(d) Since ARZ(t) = 6Dt , the time to diffuse 104 in solution is t = 170
psec. We are justified in assuming diffusive motion since 170 psec
is long compared to the velocity relaxation time calculated in part

(e).
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