MSE 421 LABORATORY ON ENERGY LEVELS AND SEMICONDUCTORS

Exercise 1 Designing energy levels

Start by opening “levels-discrete.cdf”, which allows you to design a hierarchy of energy levels and to
observe how the thermo-physical properties of this system are determined by canonical (i.e., constant-
temperature) occupations of these levels. For instance, you can observe the temperature variation of the
mean energy (E) (T) and the heat capacity cy(T), and understand how the distribution of energy levels
determines these properties.

The main goal of this exercise is to understand the most central concept in thermodynamics: under
constant temperature conditions, nature tries to minimize the free energy A =E —TS.

(a) Create a system with two levels E; and E; > E; in the notebook. Without doing any complicated
calculations, and only using the intuition about minimization of the free energy A, describe to
which value the following quantities will converge to in the limitas T — 0 and T — oo:

e the probabilities P(1) and P(2) of being in the two microstates
e the internal energy (E)(T)
e the entropy S(T) Hint: what is the number of “possible states” Q in the two limits?

Make sure to explain your results using the free energy.

(b) Go to the notebook, and for different values of E1 and E,, verify the predictions you made above for
the probabilities and (E) are correct. Furthermore, comment on the behavior of the heat capacity
cv(T). What does it converge to zero for T — 0 and T — o00? Provide an explanation using the
results from the previous exercise.

(c) So far, we focused on the limits as T — 0 and T — oo, which correspond to the limits of “low

temperature” and “high temperature”. But where does the transition between low and high tem-
peratures happen?
To get a feeling for this question, examine what happens to the heat capacity curves and the location
of the peak in particular, if you change the spacing between E; and E, (for example, you can use
AE = 0.5,5,50). How (very roughly, just in terms of order of magnitude) is the location of the peak
in the heat capacity related to AE? Why could the location of the peak be a good measure for the
transition between low and high temperatures?

(d) In both classical and quantum mechanics, the energy of a system is only defined up to a constant.

For example, the gravitational potential energy is Epot = mgh, where m is the mass, g ~ 9.81m/ s?
and h is the height of the particle. This energy clearly depends on where we start measuring
the height from. If we shift the reference height by Ah, all heights become h’ = h + Ah and the
potential energy shifts becomes E/ = mgh’ = mgh + mgAh = E + Const.. But this freedom does
not affect any experimental predictions, since we never directly measure the energy itself. What
matters are only energy differences: if an object falls from height h; and lands at h;, the energy
difference mg(h; —hy) gets converted to kinetic energy. And height differences such as h; —h; do
not depend on where we start measuring the height from. This is why we always predict the same
final speed for the object.
How does such a constant shift in energy influence results in statistical mechanics? For this, change
the energy levels E; and E; while keeping their difference AE constant. Comment on how this
affects both the mean energy and heat capacity. Your results from part (a) might also help you
figuring out the correct behavior for the energy.

In principle, the 2-level systems studied so far are simple enough that we could have performed all
calculations just using pen and paper. But the power of simulations is that we can also extend this to
much more complicated systems!
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(e)

9

Now include multiple levels and keep the spacing constant (you could try something that looks
like E;, = n, for example). Comment again the behavior of (E), Cy as well as the probabilities P(n)
that you observe in the two limits as T — 0 and T — co. Make a prediction about which value
the entropy S would converge to in the two limits (although you won’t be able to verify this in
the notebook), and provide a simple explanation for why we obtain all these values using the free
energy similarly to part (a).

Keeping the energy spacing AE fixed, which system does the behavior converge to in the limit in
which the number of energy levels n — co? Hint: You will need to have a look at problem sheet 2
for this.

In real materials, energy levels can look much more complicated.

(8

(h)

Design a sequence of levels of your choosing, and explain a possible application of a material
exhibiting that series of energy levels. Hint: for example, what conditions will lead to a double peak in
the heat capacity? What kind of use might a material with this property have?

In parts (b) and (d), you developed some tricks to estimate various thermodynamic quantities for
the limits as T — 0 and T — oco. Would these tricks also work for systems with infinitely many
energy levels? You should see that this will be possible for one of the two limits, but not the other.
For the limit where the same trick doesn’t work, what alternative approach could we use to “guess”
the correct behavior? Hint: Problem sheet 2 might be helpful.

Cont.
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Exercise 2 Properties of semiconductors

Materials can be classified into three categories, depending on the behavior of their resistivity (p) with
temperature: insulators, semiconductors and metals.

Category p(Qcm) ? g
Insulators 10% | __—m

Semiconductors 108-1073
Metals 1076

(@) (b) T ©)

Figure 1: (a) Room temperature resistivities for the categories of materials. (b) Resistivity versus temper-
ature for a metal. (c) Resistivity versus temperature for a semiconductor.

From your class on solid-state physics, you should know that the various electrical properties observed
in materials can be explained using band structures. The band structure of a solid describes the range
of energies that an electron within the solid may have (allowed bands, or simply bands), and ranges of
energy that it may not have (energy gaps). A material with a large band gap E4 > 3 eV between the top of
the highest filled (valence) band and the bottom of the lowest empty (conduction) band is an insulator. A
semiconductor is a material with a small energy gap (Eg4 between 0.5 — 3 eV). Pure semiconductors behave
as insulators at absolute zero, but have thermal excitation of electrons into the conduction band at higher
temperatures. Keep in mind that when an electron is excited from the valence to the conduction band, a
hole is left in the valence band. In metals there is no gap.

Another important concept is the fact that quantum states for electrons can be identified by the crystal
momentum k, so that in the parabolic band approximation the energies of different levels can be written
as 2,2

hk
E(k) = e
This is important, since the density of states accessible for a given energy will then depend on the curvature
of the bands, which is given by the effective mass m*.

This lab is intended to help you understand the basic concepts of the physics of semiconductors. Open
the “semiconductor.cdf” Mathematica notebook provided.

The most important property of any semiconductor at temperature T is the number of electrons per
unit volume (n) in the conduction band and the number of holes per unit volume (p) in the valence band.
The simplest possible scenario you can assume is that of a pure crystal with no impurities or dopants,
described as an intrinsic semiconductor. Note that for intrinsic semiconductors the number of conduction
band electrons must be equal to the number of valence band holes:

(@) In semiconductors, resistivity can be defined as

M = ! - !
P = en(M +tnp(M)  q(Te + thIne (1)

where q is the electronic charge, whilet, and Ty are the electron and hole mobilities. Given that for
silicon Eg = 1.12 eV, Te = 1300 cm?2V-lg 1 Th = 500 cm? V1571 use the notebook to determine
the behavior of p(T), and make a plot. Use a value close to unity for the effective mass of both
electrons and holes. (Hint: the units of conductivity and resistivity are respectively Sm~"! and Qm, and
you may want to make your plot using a log scale.)

Cont.
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(b) At which temperature will you notice a “reasonable” conductivity in silicon? Hint: the conductivity
of copper is 58.3 % 10° Sm~!. You may need to experiment with many orders of magnitude.

(c) At T = 300 K, what value of E4 gives rise to a reasonable conductivity? You can either directly
experiment in the notebook, or try to use your answer from part (b) to directly guess the correct
answer.

Because an intrinsic semiconductor is a poor conductor at room temperature, its conductivity is usually
increased by adding certain impurities in controlled quantities. Such semiconductors are called extrinsic
semiconductors.

(d) Emulate the effect of the doping by tuning the number of impurity donors (N4) and acceptors (N).
Does the relation n(T) = p(T) = ny(T) hold in the extrinsic case?

(e) For silicon at room temperature, what is the order of magnitude of dopant carriers that you should
introduce to increase the conductivity to a reasonable value? Provide a simple (qualitative) expla-
nation for the change in conductivity by adding dopants.

Bonus points: This will be the most challenging, but also most interesting part. You can get bonus points
for doing this, but it is not necessary to get a full score on this lab. Our goal is to understand what role
the chemical potential p plays in semiconductors.

(f) Going back to intrinsic (undoped) semiconductors and holding E4 and T constant, change the
effective masses of the valence and the conduction band. What happens to the chemical potential
i when the effective masses are not the same? How are effective mass, temperature and chemical
potential interrelated?

(g) What happens to p when you vary N and N4? Can you explain why?

The End.



