
STATISTICAL MECHANICS Problems & Exercises Exercise 5

Exercise 1 Statistical mechanics of magnetization

Consider a system of N distinguishable non-interacting spins in a magnetic field B. Each spin has
a magnetic moment of size µB, pointing either parallel or anti-parallel to the field direction. Thus, the
energy of a particular state is:

H =

N∑
i=1

−siµBB = −µBB

N∑
i=1

si, si = ±1 (1)

where siµB is the magnetic moment in the direction of the field.

(a) Show that the partition function of the system as a function of β, B, and N is given by

Q(β,B,N) = (2 coshβµBB)
N (2)

(b) Determine the internal energy as a function of β, B, and N.

(c) Determine the entropy of this system as a function of β, B, and N.

(d) Determine the behavior of the energy and entropy for this system as T → 0.

(e) Derive the average total magnetization,

〈M〉 = 〈
N∑
i=1

µBsi〉 (3)

as a function of β, B, and N.

(f) Given δM = M− 〈M〉, determine the average fluctuations 〈(δM)2〉 and compare it with the mag-
netic susceptibility,(

∂〈M〉
∂B

)
β,N

(4)

What is the relationship between the two quantities ?

(g) Derive the behaviour of 〈M〉 and 〈(δM)2〉 in the limit T → 0.
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Exercise 2 Ferromagnetic materials

In the previous exercise we learned to use statistical mechanics to understand properties of a param-
agnetic material. You could note that you could simplify the partition function due to the non-interaction
(or non-correlation) of spins, i.e. the flipping of any spin is independent with the rest of the spins in the
systems.

In this exercise, we will apply principles of statistical mechanics to understand another class of mag-
netic material, ferromagnetic material. In a ferromagnetic material, there exist a finite interaction between
spins given by Jij. The Hamiltonian of the system of N spins is given by:

Ĥ = −B

N∑
i

si −
1
2

∑
i 6=j

Jijsisj (5)

where si = 1 or -1 and B is the magnetic field.
Because the interaction gives rise to sisj terms in the partition function, we cannot decouple the sum

like in Exercise 1. Instead, we will make some useful approximation that can simplify the partition function
while still reveals most important physics. This approximation is called “mean field theory” (MFT).

We assume that there is only neighbor interaction with the same strength J. Each spin in the system
interacts with a z average neighbor spins whose value is given by:

s̄ = 〈 1
N

N∑
i

si〉 (6)

(a) Write the expression of the partition function for a ferromagnetic material consisting of N spins and
simplify it under the mean field theory approximation.

(b) Under what circumstances is this approximation valid?

(c) Derive an expression for the average (spontaneous) magnetization in the limit B → 0. Examine it
graphically and show that in a ferromagnetic material, there exists a phase transition temperature
Tc.

(d) In the low temperature region near Tc (critical regime) in the limit B → 0, what is the behavior of
the average magnetization? What is the value of the critical exponent?

(e) Still in the limit B→ 0, determine the average magnetization in the low temperature region T → 0.

(f) Now draw the dependence of average magnetization on temperature, and indicate Tc and phase
regions.

(g) Determine the susceptibility at high temperature above Tc. The result is the so-called Curie-Weiss
law.

(h) Draw susceptibility as a function of temperature.

(i) Describe the behavior of the specific heat at constant B, C(B = 0) near Tc.

Cont.
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Solution to Exercise 1

(a). A given microstate of the system is characterized by a configuration of up and down spins
(s1, s2, . . . , sN), where each spin can be +1 or −1, leading to a total of 2N possible states. The proba-
bility of being in a state ν is given by

P(ν) = P(s1, s2, . . . , sN) ∝ e−βH, (7)

with the energy given by H = −µBB
∑N
i=1 si. To normalize this into a proper probability, we need to

compute the partition function at a given temperature T , number of particles N and applied field B as
follows

Q(T ,N,B) =
∑
σ1=±1

∑
σ2=±1

· · ·
∑

σN=±1

exp

{
βµBB

N∑
i

si

}

=
∑
s1=±1

∑
s2=±1

...
∑
sN=±1

eβµBBs1 eβ µBBs2 ... eβµBBsN

=

 ∑
s1=±1

eβµBBs1

  ∑
s2=±1

eβµBBs2

 ...

 ∑
sN=±1

eβµBBsN


=
(
eβµBB + e−βµBB

)N
= (2 coshβµBB)

N

(8)

where we have used the fact that the spins are independent, which allowed us to factor the Hamiltonian
into N independent terms only depending on one spin.

(b). The internal energy of the system can be computed by

U(T ,N,B) = 〈E〉T ,N,B = −
∂

∂β
lnQ(T ,N,B) = −N

∂

∂β
ln (2 coshβµBB) = −NµBB tanh (βBµB). (9)

(c). Combining parts (a) and (b), the entropy can be computed from the difference between the internal
energy and the free energy: A = U− TS↔ S = 1

T (U−A), and A = −kBT logQ, leading to

S(T ,N,B) =
1
T
(U−A)

=
1
T
U+ kB logQ

= kBN [log (2 coshβµBB) −βµBB tanh (βBµB)] .

(10)

(d). As T → 0, for any B > 0 the expressiontanh (βBµB) → 1 and the internal energy reaches its
minimum value, U(T → 0,N,B)→ −βµBBN since all the spins are aligned in the direction of the applied
field B. Thus the entropy reaches a minimum value

S(T ,N,B) = kBN [βBµB −βBµB] = 0. (11)

(e). The total magnetization M is given by

M = µB

N∑
i

si (12)

In this particular case, it turns out that the Hamiltonian (or energy) is simply H = −BM. Thus, we could
simply take the average energy computed above and divide by −B. This method, however, does not work

Cont.
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for more complicated systems like the Ising model. We will thus show the derivative trick, which also
allows us to compute the magnetization for other systems.

〈M〉T ,N,B =
∑
σi

M
1
Q
e−βH (13)

=
∑
σi

M
1
Q
eβBM (14)

=

∑
σi
MeβBM∑
σi
eβBM

(15)

=

∂
∂(βB)

∑
σi
eβBM∑

σi
eβBM

(16)

=

∂
∂(βB)Q

Q
(17)

=
∂

∂(βB)
logQ (18)

In our case, logQ = N log (2 coshβµBB) and thus

〈M〉T ,N,B = NµB tanh (βBµB). (19)

Note that this derivation also works if the Hamiltonian contains other terms that do not depend on the
magnetic field. This includes the Ising Hamiltonian (in the presence of a magnetic field)

Ĥ = −B

N∑
i

si −
1
2

∑
i 6=j

Jijsisj (20)

since the derivative with respect to B is not affected by the extra term.
(f). The average fluctuations in magnetizations are given by 〈(δM)2〉T ,N,B = 〈M2〉T ,N,B − 〈M〉2T ,N,B.

The second moment of magnetization can be computed analogously to (d) as

〈M2〉T ,N,B =

〈(
µB

N∑
i

si

)2〉
T ,N,B

=
1

Q(T ,N,B)
∂2

∂(βB)2Q(T ,N,B) = Nµ2
B

[
(N− 1) tanh2 (βBµB) + 1

]
,

(21)

while the square average is straightforward from the solution of (d). Thus, we get:

〈(δM)2〉T ,N,B = Nµ2
B

[
(N− 1) tanh2 (βBµB) + 1

]
−N2µ2

B tanh2 (βBµB) =

= Nµ2
B

[
1 − tanh2 (βBµB)

]
= NµB

(
2

eβBµB + e−βBµB

)2
= Nµ2

B sech2(βBµB).
(22)

An equivalent result can be obtained by differentiating the average magnetization with respect to the
applied field:

〈(δM)2〉 = kBT
∂〈M〉
∂B

(23)

(g). The average magnetization saturates to a maximum value of 〈M〉 → NµB as T → 0, when all the
spins are aligned along the field direction. On the other hand, this condition corresponds to an absence of
fluctuations 〈(δM)2〉 → 0.

Cont.
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Solution to Exercise 2

(a). We start by writing the Hamiltonian of the interaction as,

Ĥ = −B

N∑
i=1

si −
1
2

∑
〈i,j〉

Jsisj (24)

where instead of writing Jij, we write
∑
〈i,j〉 to be the sum over all pairs (i, j) that are neighbors of each

other. Note that if atoms 3 and 5 are neighbors, the pairs (i, j) = (3, 5) and (i, j) = (5, 3) are both included
in the sum. Thus, each pair is counted twice, which is compensated by the factor of 1/2 in front of the
sum.

Let us focus on the interaction between two spins, terms of the form sisj. By denoting by 〈s〉 the mean
value of the spins, we can always write

si = 〈s〉+ δsi, sj = 〈s〉+ δsj. (25)

by defining δsi = si − 〈s〉. Then,

sisj = (〈s〉+ δsi) · (〈s〉+ δsj) (26)

= 〈s〉2 + 〈s〉(δsi + δsj) + δsiδsj (27)

Here comes the key approximation step: We will neglect the last term, which is quadratic in the fluctua-
tions. Naively, one could motivate this by saying that δsi will be “small”. More precisely, since we sum
this over i, j, we are in fact neglecting the correlations between spins i and j.

Using this approximation, we get

sisj ≈ 〈s〉2 + 〈s〉(δsi + δsj). (28)

Computing the sum, we obtain

1
2

∑
〈i,j〉

Jsisj =
J

2

∑
〈i,j〉

[
〈s〉2 + 〈s〉(δsi + δsj)

]
(29)

=
J

2

∑
〈i,j〉
〈s〉2 + J

2

∑
〈i,j〉
〈s〉δsi +

J

2

∑
〈i,j〉
〈s〉δsj. (30)

Note that the sum over all neighboring pairs 〈i, j〉 contains z ·N terms, where N is the number of “atoms”
(or sites) and z is the number of neighbors per atom, also called the coordination number of the lattice.
For example, z = 4 for a square lattice (in 2D), while z = 6 for a simple cubic lattice.

Coming back to the summation over all Ising interactions in eq. (30), we see that the first term does not
depend on i, j anymore, and is just a constant shift in the energies, which does not affect the probabilities.
Thus, we can just ignore it.

For the next two terms, note that we basically have the same summation, just with i replaced by j.
Since the sum over all neighboring pairs 〈i, j〉 counts each pair like (i, j) and (j, i) separately, the two sums
will be the same, so we obtain

J

2

∑
〈i,j〉
〈s〉δsi +

J

2

∑
〈i,j〉
〈s〉δsj = J

∑
〈i,j〉
〈s〉δsi = zJ

N∑
i=1

〈s〉δsi (31)

Ignoring constant terms, we therefore get

1
2

∑
〈i,j〉

Jsisj = zJ

N∑
i=1

〈s〉δsi + const. (32)

Cont.
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There is just one issue with this expression: we need to write the Hamiltonian in terms of the spin
variables si rather than δsi. For this, we can just rewrite

〈s〉δsi = 〈s〉(si − 〈s〉) = 〈s〉si − 〈s〉2 (33)

Thus, replacing back δsi by si simply adds a constant term of 〈s〉2, which again, does not affect the
probabilities of being in a state. We therefore obtain

1
2

∑
〈i,j〉

Jsisj = zJ

N∑
i=1

〈s〉si + const. (34)

Thus, the total Hamiltonian that also contains a term corresponding to the magnetic field can be written
as

Ĥ = −B

N∑
i=1

si −
1
2

∑
〈i,j〉

Jsisj (35)

≈ −B

N∑
i=1

si − zJ

N∑
i=1

〈s〉si + const. (36)

= −

N∑
i=1

(B+ zJ〈s〉)si + const. (37)

= −

N∑
i=1

Beffsi + const. (38)

This is just the Hamiltonian of an ideal paramagnet, where the magnetic induction B has been replaced
by Beff = B+ zJ〈s〉. In other words, we have transformed a problem consisting of interacting spins (the
Ising model) into a problem of independent spins in a modified magnetic field, which we already studied
in the previous exercise.

To make this huge simplification possible, we had to use one approximation: the fact that we neglected
the quadratic terms δsiδsj.

The partition function of this system will therefore just be

Q(T ,N,B) =
(
eβBeff + e−βBeff

)N
= (2 cosh(βBeff))

N . (39)

(b). Since the MF approximation essentially neglects the correlations between spins, it is supposed to
hold whenever the mean interaction among spins dominates on the spin-spin correlations.

(c). The formal analogy with paramagnetic materials also implies that the MF average magnetization
is written as

M̄ = N tanh (βBeff) = N tanh [β(B+ Jzs̄)], (40)

which is a self-consistent equation in the average spin magnetization, because M̄ = Ns̄. This last relation
allow us to continue the discussion in terms of the average spin s̄. In the limit of an negligible applied
field B→ 0, we get

s̄ = tanh [βJz s̄], (41)

which satisfies the limiting conditions s̄ → 1 as T → 0 (and therefore M̄ → µBN as T → 0) and s̄ → 0 as
T →∞ (and therefore M̄→ 0 as T →∞). From this behaviour we find that the critical temperature of the
system is given by Tc = J z/kB, such that

Cont.
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s̄ = tanh
[
Tc

T
s̄

]
. (42)

A graphical solution of the self-consistent equation is presented in the figure below.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

<s>

ta
n

h
(z
β

J
<

s
>
)

zβJ=0.5

zβJ=1

zβJ=2

zβJ=4

Potential solutions of s̄ are where the colored lines intersect the dotted line. For low temperatures,
there are two (nonzero) solutions. As the temperature increases, the solid lines flatten out and will, at a
certain point, fail to intersect the dotted line except at zero. The temperature at which this occurs is the
critical temperature.

(d). For T < Tc and near Tc, s̄ is small and we can approximate the expression for the average spin (or
the average magnetization) as

s̄ = tanh
[
Tc

T
s̄

]
≈

[
Tc

T
s̄−

1
3

(
Tc

T

)3
s̄3

]
, (43)

which implies s̄ =
√

3
(

1 − Tc
T

)1/2
. The critical exponent is therefore 1/2.

(e). For T → 0 and B→ 0 we get:

s̄ ≈
[

1 − 2 exp
{
−2
Tc

T
s̄

}]
. (44)

That is, s̄ ≈ 1, and M̄ ≈ N
(f). We know from (c)-(e) that the average magnetization approaches a constant as T → 0 and that the

average magnetization is zero for T > Tc. Based on (d), we can also see that the derivative of s̄ with respect
to T is undefined at T = Tc. A sketch of the magnetization vs. temperature will then look something like
the figure below.

Ferromagnetic Paramagnetic
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(g). At T > Tc we have:

s̄ ≈
[
βB+

Tc

T
s̄

]
(45)

which implies:

s̄ =
B

kB(T − Tc)
=

C

T − Tc
B = χ B (46)

with C the Curie-Weiss constant and χ the Curie-Weiss magnetic susceptibility.
(B). From (g), we have χ = C

T−Tc
for T > Tc. A sketch of the χ vs. T is given below, from which we can

see that the magnetic susceptibility diverges as T approaches Tc.

(i). Using the definition of the average energy in the MF approximation and assuming T close to Tc we
can write

〈E〉 ≈ −Ns̄B ≈ −N
√

3
(

1 −
T

Tc

)1/2
× (B+ J z

√
3
(

1 −
T

Tc

)1/2
), (47)

which for B→ 0 implies

〈E〉 ≈ −3N
(

1 −
T

Tc

)
J z . (48)

The heat capacity is therefore given by a finite value corresponding to

C =
∂〈E〉
∂T

= 3NJ z
1
Tc

. (49)

The End.


