
STATISTICAL MECHANICS Problems & Exercises Exercise 4

Exercise 1 Calculating the Density of States

In this exercise, we learn how to calculate the density of states (DOS) for different systems. In general,
the DOS can either be written as g(ε) in terms of the energy ε or g(ω) in terms of the frequency ω.

In the following, we assume that the material has size L and is d-dimensional (usually d = 3, but
modern nanomaterials can also be one- or two-dimensional).

1. Start from the dispersion relation ε(k) or ω(k)

2. Solve the previous equation for k

3. Define the total number of states up to energy ε or frequency ω by

Ω =

(
L

2π

)d
Vdk

d (1)

4. If needed, multiply by the degeneracy factor due to spin (for electrons), polarization (for phonons)
etc.

5. Take the derivative

g(ε) =
dΩ
dε

, g(ω) =
dΩ
dω

(2)

There are two types of important dispersion relations.

• Free electrons are electrons for which Epot = 0 and hence ε = Ekin = p2

2m . Using the relation p =  hk

from quantum mechanics, this becomes ε(k) =
 h2k2

2m . This is an approximation used to describe
electrons in metals, which are strongly delocalized as if there was no potential energy due to the
ion cores. Especially for Alkali metals, and also the nobel metals (Cu, Ag, Au) to some extent, this
provides a reasonably good description.

• Phonons are the “quantum particles” associated with lattice vibrations or elastic waves. As a first
approximation, elastic waves have a constant speed c of propagation, regardless of frequency (this,
strictly speaking, only is true for waves with a wavelength much bigger than the atomic bonding
length). Then: c = λν = ω

k and hence ω(k) = ck.

(a) Show that the for free electrons in 3D, the total number of states up to energy ε (taking into account
the degeneracy due to spin) is equal to

Ωelec,3D(ε) =
V

3π2

(
2mε
 h2

) 3
2

, (3)

where V = L3 is the volume is the system, and conclude that

gelec,3D(ε) =
V

2π2

(
2m
 h2

) 3
2 √
ε (4)
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(b) Show that for free electrons in 2D, the total number of states up to energy ε (taking into account
the degeneracy due to spin) is equal to

Ωelec,2D(ε) = 2 · A
4π2 · π ·

2mε
 h2 =

Am

π h2 ε (5)

where A = L2 is the total area of the system, and conclude that

gelec,2D(ε) =
Am

π h2 (6)

In particular, as opposed to the 3D case, the DOS is just a constant function.

(c) You probably noticed that keeping track of all factors of  h,m,π etc. is quite annoying. Thankfully,
these prefactors do not matter so much if we only care about getting a qualitative understanding.

Without doing any complicated extra calculations, and starting from Ω =
(
L

2π
)d
Vdk

d, show that

Ω ∝ εd2 for the free electron gas in d-dimensions, and conclude that the DOS will thus be of the
form

gelec(ε) = a · ε
d
2 −1 (7)

for some constant a. Verify that the exponent d2 − 1 is consistent with your results from parts (a)
and (b).

(d) Starting from ω = ck for phonons, show that for phonons in 3D, the total number of states up
to frequency ω taking into account the three-fold degeneracy due to polarization (transveral and
longitudinal modes) is given by

Ωphonons,3D =
V

2π2

(ω
c

)3
(8)

and conclude that

gphonons,3D =
3V

2π2c3ω
2 (9)

(e) We can again generalize this. Show that in d-dimensions,

Ωphonons(ω) ∝ ωd (10)

and hence that the DOS is of the form

gphonons(ω) = aωd−1 (11)

for some constant a.

(f) The phonon modes in graphene are more complicated, because it is a 2D sheet which lies in a 3D
ambient space. We assume that the graphene sheet lies (more or less, if we ignore the curvature) in
the x−y− plane. Out of the 3 possible phonon polarization modes, two are described by vibrations
of atoms within the graphene sheet, while there is a third set of vibrations in the z-direction (out of
the graphene sheet). For the first two modes, the dispersion is given by ω(k) ∝ k as for usual lattice
vibrations, while for the mode along the z-axis, ω(k) ∝ k2. Combine what you have calculated so
far to show that the DOS for graphene has one part behaving as g(ω) ∝ ω from the first two
(in-plane) modes, while another part behaves as g(ω) ∝ 1 (a constant) from the z-direction modes.
Hint: ω(k) ∝ k2 should behave similarly to free electrons.

Cont.
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Exercise 2 Electrons in Metals: Free Electron Gas in 2D

Consider a system of N non-interacting electrons (fermions) moving on a surface at finite temperature.
The appropriate distribution function is the Fermi-Dirac distribution,

fFD(ε, T ,µ) =
1

eβ(E−µ) + 1
,

where ε and µ are the energy and the chemical potential, respectively. Physically, it tells us the average
number of particles that occupy a state at energy ε for a given temperature T and chemical potential µ.

(a) Show that in the limit of low temperatures T → 0, the Fermi-Dirac function converges to a step
function

lim
T→0

fFD =

{
1 ε < µ

0 ε > µ
(12)

Hint: In statistical mechanics, it is often easier to work with β instead of T . The limit as T → 0 (from
above) corresponds to β→ +∞.

(b) The total number of particles N and the total energy E of the system can both be calculated by first
looking at how many particles have energy ε, and then adding this up for ε ranging from −∞ to
+∞. In our case:

N =

∫∞
−∞ g(ε)fFD(ε)dε (13)

E =

∫∞
−∞ εg(ε)fFD(ε)dε (14)

For a free electron gas in 2D the density of states (DOS) g(ε) = Am
π h2 is just a constant for ε > 0, and

g(ε) = 0 if ε < 0 since there are no states of negative energy. For this system, show that in the limit
as T → 0, the integrals above can be evaluated to give

N =
Am

π h2µ (15)

E =
Am

2π h2µ
2 (16)

(c) In reality, if we have a material (imagine: a chunk of metal for instance), we know the number
N of free electrons (= number of valence electrons), but not the chemical potential µ. From the
equations above, write the chemical potential as a function of the particle number N, and show
that the chemical potential only depends on the particle density ρ = N/A. This chemical potential
(namely the one in the limit as T → 0) is called Fermi energy (or Fermi level), and is usually written
as εF or EF.

(d) The Fermi energy has the interpretation as the energy ε of the highest occupied state as T → 0. In
a free electron gas, the energy of a state is given by ε =

 h2k2

2m . Find the corresponding Fermi wave

vector kF, which satisfies εF =
 h2k2

F
2m , which corresponds to the largest occupied wave vector.

(e) Use the relation between µ (or the Fermi energy εF) and the density ρ that you found above to
show that

E0(N,A) = E(N,A, T → 0) =
π h2

2m
Aρ2 ∝ Aρ2 (17)

In particular, the energy per area E/A grows quadratically with the density.

Cont.
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(f) So far, we have managed to calculate the energy as a function of the particle number N and surface
area A, but only in the limit of low temperatures as T → 0. For larger temperatures, there will be
quadratic corrections to the energy of the form

E(N,A, T) = E0(N,A) + aT2, (18)

where a is some constant that depends on the density of states. Calculate the heat capacity of this
system, and show that it scales linearly with temperature.

(g) We have previously calculated the integrals for N and E, but only in the limit of T → 0. But in
reality, we can also calculate the N-integral for any temperature. This gives us the full behavior
of the chemical potential µ(T) for any temperature! Show that the number of electrons N can be
expressed using the chemical potential as

N =
Am

π h2

(
µ+ kBT log

(
e−βµ + 1

))
. (19)

Using the Fermi level from part (b), how can we interpret the second term? Hint: You can use∫ 1
ex+1 dx = x− log(ex + 1).

(h) Express µ as a function of N. Hint: Exponentiate both sides of eq. (1). It might be helpful to first bring the
equation to the form

βεF = βµ+ log
(
e−βµ + 1

)
(20)

by multiplying by π h
Am to save the amount of calculation steps.

Cont.
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Exercise 3 Phonon Gas

In this exercise, we will deepen our understanding of the thermal vibrations in a solid. We start by
repeating some simple calculations from exercise sheet 1 which are very important to understand this
topic.

(a) Consider a single (quantum) harmonic oscillator with frequency ω. Compute the (single particle)
canonical partition function of this system.

(b) What is the probability that the oscillator is the n-th energy state? What is the probability for this
system to have n phonons? How can we interpret this in the grand canonical ensemble?

(c) What is the average number of phonons and the expected energy of this system? How are the two
related?

(d) We now combine these insights with the Debye model of solids, in which the dispersion is given by

ω = c|k|. (21)

Compute the density of states for this system assuming no cutoff in the frequency.

(e) In reality, we need to introduce a cutoff energy ED. Derive / estimate this cutoff using two different
approaches:

1. by combining the total number N of particles with the density of states

2. by assuming that the atoms in the crystal have a lattice parameter of a: what is the largest
possible wave vector (smallest possible wavelength) in this case?

(f) Ignoring the cutoff ED, show that the energy E is proportional to T4 and deduce that the heat
capacity CV is proportional to T3 at all temperatures.

(g) What is the effect of adding a cutoff on the energy and heat capacity?

The End.


