
STATISTICAL MECHANICS Problems & Exercises Exercise 4

Exercise 1 Calculating the Density of States

In this exercise, we learn how to calculate the density of states (DOS) for different systems. In general,
the DOS can either be written as g(ε) in terms of the energy ε or g(ω) in terms of the frequency ω.

In the following, we assume that the material has size L and is d-dimensional (usually d = 3, but
modern nanomaterials can also be one- or two-dimensional).

1. Start from the dispersion relation ε(k) or ω(k)

2. Solve the previous equation for k

3. Define the total number of states up to energy ε or frequency ω by

Ω =

(
L

2π

)d
Vdk

d (1)

In dimensions d = 1, 2, 3 which are most relevant to us, Ld = L,L2,L3 are equal to the length, the
system area A = L2 (e.g. of a graphene sheet) and the system volume V = L3, respectively (not to be
confused with Vd, which is the “volume” of the unit ball).

4. If needed, multiply by the degeneracy factor due to spin (for electrons), polarization (for phonons)
etc.

5. Take the derivative

g(ε) =
dΩ
dε

, g(ω) =
dΩ
dω

(2)

There are two types of important dispersion relations.

• Free electrons are electrons for which Epot = 0 and hence ε = Ekin = p2

2m . Using the relation p =  hk

from quantum mechanics, this becomes ε(k) =
 h2k2

2m . This is an approximation used to describe
electrons in metals, which are strongly delocalized as if there was no potential energy due to the
ion cores. Especially for Alkali metals, and also the nobel metals (Cu, Ag, Au) to some extent, this
provides a reasonably good description.

• Phonons are the “quantum particles” associated with lattice vibrations or elastic waves. As a first
approximation, elastic waves have a constant speed c of propagation, regardless of frequency (this,
strictly speaking, only is true for waves with a wavelength much bigger than the atomic bonding
length). Then: c = λν = ω

k and hence ω(k) = ck.

(a) Show that the for free electrons in 3D, the total number of states up to energy ε (taking into account
the degeneracy due to spin) is equal to

Ωelec,3D(ε) =
V

3π2

(
2mε
 h2

) 3
2

, (3)

where V = L3 is the volume is the system, and conclude that

gelec,3D(ε) =
V

2π2

(
2m
 h2

) 3
2 √
ε (4)



STATISTICAL MECHANICS Problems & Exercises Page 2 of 11

(b) Show that for free electrons in 2D, the total number of states up to energy ε (taking into account
the degeneracy due to spin) is equal to

Ωelec,2D(ε) = 2 · A
4π2 · π ·

2mε
 h2 =

Am

π h2 ε (5)

where A = L2 is the total area of the system, and conclude that

gelec,2D(ε) =
Am

π h2 (6)

In particular, as opposed to the 3D case, the DOS is just a constant function.

(c) You probably noticed that keeping track of all factors of  h,m,π etc. is quite annoying. Thankfully,
these prefactors do not matter so much if we only care about getting a qualitative understanding.

Without doing any complicated extra calculations, and starting from Ω =
(
L

2π
)d
Vdk

d, show that

Ω ∝ εd2 for the free electron gas in d-dimensions, and conclude that the DOS will thus be of the
form

gelec(ε) = a · ε
d
2 −1 (7)

for some constant a. Verify that the exponent d2 − 1 is consistent with your results from parts (a)
and (b).

(d) Starting from ω = ck for phonons, show that for phonons in 3D, the total number of states up
to frequency ω taking into account the three-fold degeneracy due to polarization (transveral and
longitudinal modes) is given by

Ωphonons,3D =
V

2π2

(ω
c

)3
(8)

and conclude that

gphonons,3D =
3V

2π2c3ω
2 (9)

(e) We can again generalize this. Show that in d-dimensions,

Ωphonons(ω) ∝ ωd (10)

and hence that the DOS is of the form

gphonons(ω) = aωd−1 (11)

for some constant a.

(f) The phonon modes in graphene are more complicated, because it is a 2D sheet which lies in a 3D
ambient space. We assume that the graphene sheet lies (more or less, if we ignore the curvature) in
the x−y− plane. Out of the 3 possible phonon polarization modes, two are described by vibrations
of atoms within the graphene sheet, while there is a third set of vibrations in the z-direction (out of
the graphene sheet). For the first two modes, the dispersion is given by ω(k) ∝ k as for usual lattice
vibrations, while for the mode along the z-axis, ω(k) ∝ k2. Combine what you have calculated so
far to show that the DOS for graphene has one part behaving as g(ω) ∝ ω from the first two
(in-plane) modes, while another part behaves as g(ω) ∝ 1 (a constant) from the z-direction modes.
Hint: ω(k) ∝ k2 should behave similarly to free electrons.

Cont.
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Exercise 2 Electrons in Metals: Free Electron Gas in 2D

Consider a system of N non-interacting electrons (fermions) moving on a surface at finite temperature.
The appropriate distribution function is the Fermi-Dirac distribution,

fFD(ε, T ,µ) =
1

eβ(E−µ) + 1
,

where ε and µ are the energy and the chemical potential, respectively. Physically, it tells us the average
number of particles that occupy a state at energy ε for a given temperature T and chemical potential µ.

(a) Show that in the limit of low temperatures T → 0, the Fermi-Dirac function converges to a step
function

lim
T→0

fFD =

{
1 ε < µ

0 ε > µ
(12)

Hint: In statistical mechanics, it is often easier to work with β instead of T . The limit as T → 0 (from
above) corresponds to β→ +∞.

(b) The total number of particles N and the total energy E of the system can both be calculated by first
looking at how many particles have energy ε, and then adding this up for ε ranging from −∞ to
+∞. In our case:

N =

∫∞
−∞ g(ε)fFD(ε)dε (13)

E =

∫∞
−∞ εg(ε)fFD(ε)dε (14)

For a free electron gas in 2D the density of states (DOS) g(ε) = Am
π h2 is just a constant for ε > 0, and

g(ε) = 0 if ε < 0 since there are no states of negative energy. For this system, show that in the limit
as T → 0, the integrals above can be evaluated to give

N =
Am

π h2µ (15)

E =
Am

2π h2µ
2 (16)

(c) In reality, if we have a material (imagine: a chunk of metal for instance), we know the number
N of free electrons (= number of valence electrons), but not the chemical potential µ. From the
equations above, write the chemical potential as a function of the particle number N, and show
that the chemical potential only depends on the particle density ρ = N/A. This chemical potential
(namely the one in the limit as T → 0) is called Fermi energy (or Fermi level), and is usually written
as εF or EF.

(d) The Fermi energy has the interpretation as the energy ε of the highest occupied state as T → 0. In
a free electron gas, the energy of a state is given by ε =

 h2k2

2m . Find the corresponding Fermi wave

vector kF, which satisfies εF =
 h2k2

F
2m , which corresponds to the largest occupied wave vector.

(e) Use the relation between µ (or the Fermi energy εF) and the density ρ that you found above to
show that

E0(N,A) = E(N,A, T → 0) =
π h2

2m
Aρ2 ∝ Aρ2 (17)

In particular, the energy per area E/A grows quadratically with the density.

Cont.
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(f) So far, we have managed to calculate the energy as a function of the particle number N and surface
area A, but only in the limit of low temperatures as T → 0. For larger temperatures, there will be
quadratic corrections to the energy of the form

E(N,A, T) = E0(N,A) + aT2, (18)

where a is some constant that depends on the density of states. Calculate the heat capacity of this
system, and show that it scales linearly with temperature.

(g) We have previously calculated the integrals for N and E, but only in the limit of T → 0. But in
reality, we can also calculate the N-integral for any temperature. This gives us the full behavior
of the chemical potential µ(T) for any temperature! Show that the number of electrons N can be
expressed using the chemical potential as

N =
Am

π h2

(
µ+ kBT log

(
e−βµ + 1

))
. (19)

Using the Fermi level from part (b), how can we interpret the second term? Hint: You can use∫ 1
ex+1 dx = x− log(ex + 1).

(h) Express µ as a function of N. Hint: Exponentiate both sides of eq. (1). It might be helpful to first bring the
equation to the form

βεF = βµ+ log
(
e−βµ + 1

)
(20)

by multiplying by π h
Am to save the amount of calculation steps.

Cont.
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Exercise 3 Phonon Gas

In this exercise, we will deepen our understanding of the thermal vibrations in a solid. We start by
repeating some simple calculations from exercise sheet 1 which are very important to understand this
topic.

(a) Consider a single (quantum) harmonic oscillator with frequency ω. Compute the (single particle)
canonical partition function of this system.

(b) What is the probability that the oscillator is the n-th energy state? What is the probability for this
system to have n phonons? How can we interpret this in the grand canonical ensemble?

(c) What is the average number of phonons and the expected energy of this system? How are the two
related?

(d) We now combine these insights with the Debye model of solids, in which the dispersion is given by

ω = c|k|. (21)

Compute the density of states for this system assuming no cutoff in the frequency.

(e) In reality, we need to introduce a cutoff energy ED. Derive / estimate this cutoff using two different
approaches:

1. by combining the total number N of particles with the density of states

2. by assuming that the atoms in the crystal have a lattice parameter of a: what is the largest
possible wave vector (smallest possible wavelength) in this case?

(f) Ignoring the cutoff ED, show that the energy E is proportional to T4 and deduce that the heat
capacity CV is proportional to T3 at all temperatures.

(g) What is the effect of adding a cutoff on the energy and heat capacity?

Cont.
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Solution to Exercise 1

Question (a). As in the example, we begin by computing the total number of states below the energy ε,
which will correspond to the number of points within a cutoff radius R on a grid of possible wave vectors
k with a separation of 2π/L in each direction. Since we are in two dimensions, this is

gtot(R) ≈
Area of Disc

Area per rectangle
=

πR2( 2π
L

)2 =
L2

4π
R2

As the next step, we express this radius as a function of the energy. Using the dispersion relation

ε =
 h2

2m
k2 ⇒ |k| =

√
2mε
 h2 = R (22)

we obtain:

gtot(ε) =
L2

4π
R2 =

L2

4π
2mε
 h2 =

L2m

2π h2 ε (23)

To obtain the density of states at energy ε, we differentiate with respect to ε to obtain

g(ε) =
dgtot

dε
=
L2m

2π h2 . (24)

As a final adjustment, we recall that electrons have two possible spin states, so the actual number will be
twice as large, namely

g(ε) =
Am

π h2 . (25)

Using the fact that L2 = A corresponds to the surface area of the interface, we can also write

g(ε) =
Am

π h2 (26)

Question (b). There are N electrons in the system, which at T = 0K will fill up all energy levels up to
the Fermi level EF. The total number of states in the energy interval [0,EF] therefore has to be equal to the
number of electrons. We thus solve the equation

N =

∫EF
0
g(ε)dε =

∫EF
0

Am

π h2 dε =
Am

π h2 EF (27)

Thus, solving for EF, we get

EF =
π h2N

Am
. (28)

We can see that the Fermi level is proportional to the number density N/A of electrons.

Question (c). We use the general relation

N =

∫
R

f(ε)g(ε)dε.

In our case, we only have states at energies ε > 0 and use the fermionic function for f, leading to

N =

∫∞
0

1
eβ(ε−µ) + 1

Am

π h2 dε =
Am

π h2

∫∞
0

1
eβ(ε−µ) + 1

dε (29)

Cont.
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We can bring the integral to the form∫
1

ex + 1
(30)

by first shifting the integration variable by µ, i.e. y = ε− µ leading to∫∞
0

1
eβ(ε−µ) + 1

dε =

∫∞
−µ

1
eβy + 1

dy (31)

and then by rescaling the variable x = βy∫∞
−µ

1
eβy + 1

dy = kBT

∫∞
−βµ

1
eβx + 1

dx = kBT [x− log (ex + 1)]∞−βµ (32)

For the upper integral limit, we can see that

log(ex + 1)→ log(ex) = x (33)

as x→∞. Thus, the integral vanishes as

x− log (ex + 1)→ x− x = 0. (34)

For the lower limit, we simply plug in −βµ and obtain

kBT
(
βµ+ log

(
e−βµ + 1

))
= µ+ kBT log

(
e−βµ + 1

)
. (35)

Combining this with all the prefactors, we finally get

N =
Am

π h2

∫∞
0

1
eβ(ε−µ) + 1

dε =
Am

π h2

(
µ+ kBT log

(
e−βµ + 1

))
. (36)

To examine this result, we can bring the factors of Am/π h2 to the other side:

π h2N

Am

(b)
= EF = µ+ kBT log

(
e−βµ + 1

)
(37)

We can thus interpret the second term as the correction to the chemical potential as we increase the tem-
perature.

Question (d). By exponentiating both sides of the equation, we get

eβEF = eβµ ·
(
e−βµ + 1

)
= 1 + eβµ (38)

This can easily be solved for µ, namely

eβµ = eβEF − 1 (39)

µ = kBT log
(
eβEF − 1

)
, (40)

where EF can be expressed in terms of N using the result from (b).
Question (e). The energy can in principle be obtained from the integral

E =

∫∞
0
εf(ε)g(ε)dε =

∫∞
0
ε

1
eβ(ε−µ) + 1

Am

π h2 dε =
Am

π h2

∫∞
0

ε

eβ(ε−µ) + 1
dε (41)

For a given (T ,N,A), we can first compute the chemical potential µ using the formula in the previous part
and numerically evaluate this integral for these fixed values of T and µ.

Cont.
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Solution to Exercise 2

Question (a). The energy levels of a quantum mechanical harmonic oscillator at frequency ω are given
by

εn = n hω (42)

ignoring the constant term 1
2
 hω which is irrelevant to experimental predictions. This leads to the partition

function

Q =

∞∑
n=0

e−βεn =

∞∑
n=0

e−βn
 hω =

∞∑
n=0

(
e−β

 hω
)n

=
1

1 − e−β hω
(43)

Question (b). The probability of being in the n-th state is given by

P(n) =
1
Q
e−βεn =

e−nβ
 hω

1 − e−β hω
(44)

Question (c). The expected value of the energy can be obtained as

E = −
∂ logQ
∂β

= +∂ log(1 − e−β
 hω)/∂β =

 hωe−β hω

1 − e−β hω
=

 hω

e+β hω − 1
(45)

Question (d). For the phonon energy, we obtain

ε =  hω = c h|k|. (46)

Using this and the fact that two valid wave vectors are separated by 2π/L in the three coordinate directions,
we obtain the radius in wave vector space

|k| =
ε

c h
=: R (47)

get for the total number of states below and energy ε:

gtot(R) ≈
Volume of Ball

Volume per box
=

4π
3 R

3( 2π
L

)3 =
L3R3

6π3 =
V

6π3c3 h3 ε
3

Differentiating with respect to ε and taking into account that there are three possible polarizaions of elastic
waves (2 transversal + 1 longitudinal), we get the density of states

g(ε) = 3 · dgtot

dε
=

3V
2π3c3 h3 ε

2. (48)

Question (e). We can argue in two ways why there has to be a cutoff. First, we know that each atom
contributes 3 vibrational modes, meaning that there should only be 3N modes in total.
Note that the density of states allows us to calculate the total number of vibrational states between energies
E1 and E2 as

∫E2
E1
g(ε)dε. This leads us to the equation

3N =

∫ED
0

g(ε)dε (49)

for ED. Which is simply

N = gtot(ED) − gtot(0) = gtot(ED) =
V

6π3c3 h3E
3
D (50)

Cont.
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and thus

ED =

[
6π3c3 h3N

V

] 1
3

= πc h

[
6N
V

] 1
3

(51)

An alternative and more crude way to estimate ED is to recognize that in a crystal with nearest neighbor
distance a, the smallest possible wavelength of any elastic wave is 2a, and thus the maximal wave vector
equal to

kmax =
2π
λmin

=
π

a
(52)

Such a wave vector leads to an energy

Emax = c hkmax =
πc h

a
(53)

We can compare this crude estimate to ED that we obtained using the density of states. Note that V/N is
the typical volume per atom, so its cube root will provide us with an average distance d between atoms.
Thus,

ED ≈
πc h

d
(54)

up to factors on the order of 1 arising from the crude estimate in using the distance d. Thus, we see that
both approaches essentially yield the same result.
Question (f). Setting ε =  hω, the energy is given by

E =

∫∞
0
εf(ε)g(ε)dε =

∫∞
0

ε

eβε − 1
3V

2π3c3 h3 ε
2dε ∝

∫∞
0

ε3

eβε − 1
dε, (55)

where we ignored prefactors since only care about the behavior of E as a function of the temperature. We
now perform a change of variables βε = ε/kBT =: x, which leads to

E ∝
∫∞

0

ε3

eβε − 1
dε = T4

∫∞
0

x3

ex − 1
= T4 · some number (56)

Thus, E ∝ T4 as desired, and thus CV = ∂E/∂T ∝ T3.
Question (g). By introducing a cutoff, our calculations only become asymptotically correct for T → 0,
where the integral is dominated by the region around ε ≈ 0.
In the limit of high temperatures, E → 3NkBT and CV → 3NkB, which is the classical Dulong-Petit law.
We thus see that having a finite number of oscillation modes leads to a saturation of the heat capacity.
This can be understood in the following way: if the thermal energy is still small compared to the cutoff,
kBT < ED, then increasing the temperature has two effects: exciting oscillation modes that are already
active to even higher energy states + starting to excite energy levels that are even higher up. It is the
combination of both that leads to the T3 behavior that grows rapidly.
As the thermal energy exceed the largest possible Debye energy, kBT > ED, all the modes are already
active. Increasing the temperature further only brings preexisting modes to higher states, but doesn’t
activate new modes. Thus, the energy only grows linearly leading to a constant heat capacity as pre-
dicted from classical mechanics (because the thermal smearing is larger than the largest possible energy
separation in the system).

Cont.
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Solution to Exercise 3

Question (a).
The average number of electrons in each single-particle state follow the Fermi distribution, i.e.

n(εi) =
1

e(εi−µ)/kBT + 1
.

The electrons follow Fermi statistics because they are fermions obeying the Pauli exclusion principle.
Question (b). Because at each single particle state, the number of electron and the number of hole

must sum up to 1, so the distribution function for holes is

p(εi) = 1 −n(εi) = 1 −
1

e(εi−µ)/kBT + 1
.

Question (c). The average number of electrons with energy εi can be found by multiplying the Fermi
distribution n(εi) by the degeneracy gi, i.e.

n(εi,gi) =
gi

e(εi−µ)/kBT + 1
.

Question (d).
The Fermi level lies half way between Ec and Ev. It is the same thing as the chemical potential of

electrons.
Question (e).
As in semiconductors (Ec−µ)/kBT � 0, we can use Boltzmann statistics to describe the distribution of

electrons in the conduction band. Taking into account of the degeneracy, the average number of electrons
with energy εk is

nk =

√
2m∗2/3

c

π2 h3 (εk − Ec)
1/2e−(εk−µ)/kBT .

The total concentration of electrons in the conduction band is therefore

ne =

∫∞
Ec

nkdεk =
1√
2

(
m∗ckBT

π h2

)3/2
e(µ−Ec)/kBT .

Question (f). We do the same procedure as dealing with the electrons. The degeneracy number is

ghk =

√
2m∗2/3

v

π2 h3 (Ev − εk)
1/2.

The average number of holes with energy εk is

pk =

√
2m∗2/3

v

π2 h3 (Ev − εk)
1/2(1 −

1
e(εi−µ)/kBT + 1

),

which can be simplified into

pk =

√
2m∗2/3

v

π2 h3 (Ev − εk)
1/2e(εk−µ)/kBT .

The total concentration of holes in the valence band is therefore

p =

∫Ev
−∞ pkdεk =

1√
2

(
m∗vkBT

π h2

)3/2
e(Ev−µ)/kBT

Question (g).

nenh =
1
2

(
kBT

π h2

)3
(m∗cm

∗
v)

3/2e−Eg/kBT .

Cont.
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The smaller Eg, the higher the carrier concentration, which gives the semiconductor higher conductivity.
Question (h). We can tune the chemical potential through doping,

µ = µi +
kBT

2
ln

(
n

p

)
= µi +

kBT

2
ln

(
ni +Nd
pi +Na

)
,

where µi is chemical potential and ni and pi are concentration of electron and holes in the intrinsic case.

The End.


