

MSE-421 Statistical Mechanics

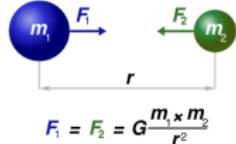
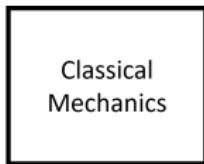
Exercise Session 2

Kevin Kazuki Huguenin-Dumittan

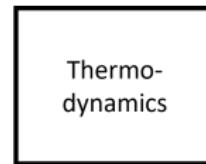
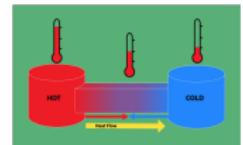
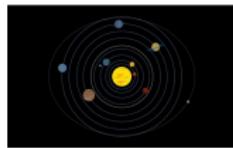
EPFL, Switzerland

March 23, 2023

Goal of Statistical Mechanics:

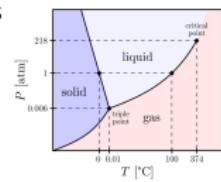


StatMech

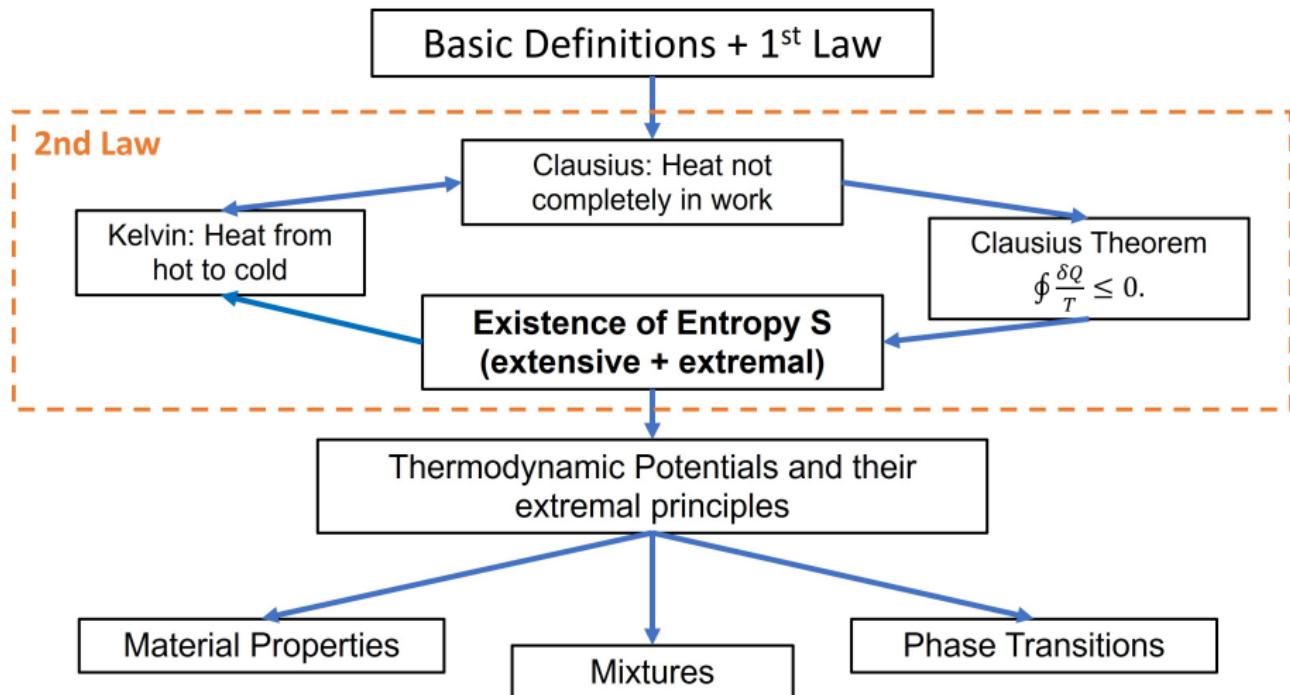


- Particles
- Forces
- Everything is Continuous
- Reversible time evolution

- Macroscopic Bodies
- Temperature
- Entropy
- Phase Transitions
- Irreversible Processes



Logical Structure of Thermodynamics



Key concept: Change of variables.

Example: Ideal gas law

$$pV = Nk_B T \quad (1)$$

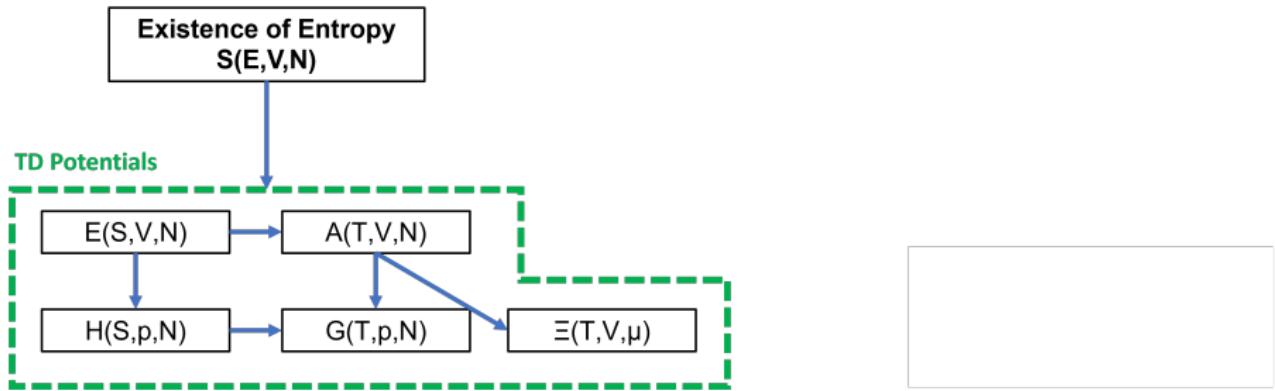
Describe system using (T, p, N) :

$$V = V(T, p, N) = \frac{Nk_B T}{p} \quad (2)$$

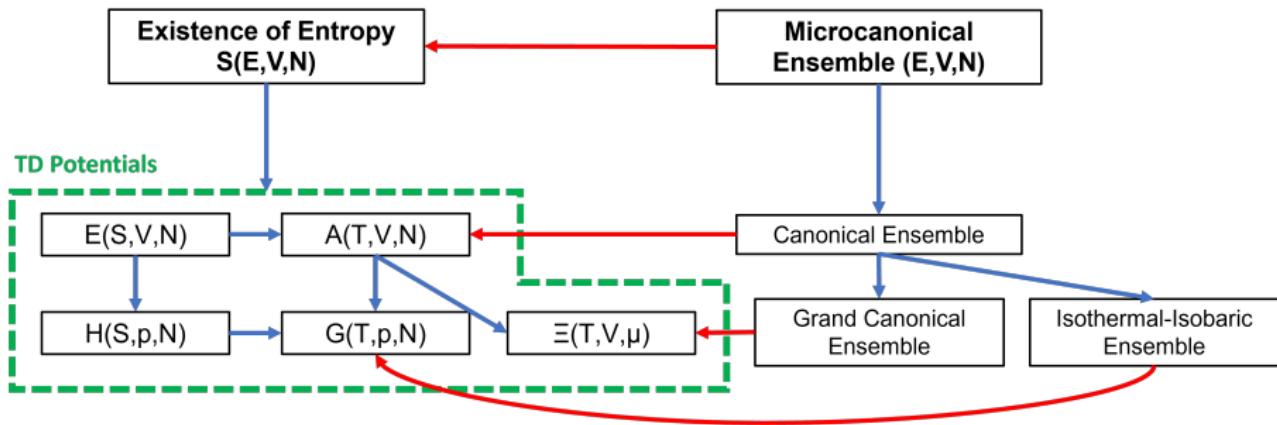
or using (T, V, N) :

$$p = p(T, V, N) = \frac{Nk_B T}{V} \quad (3)$$

Thermodynamic Potentials

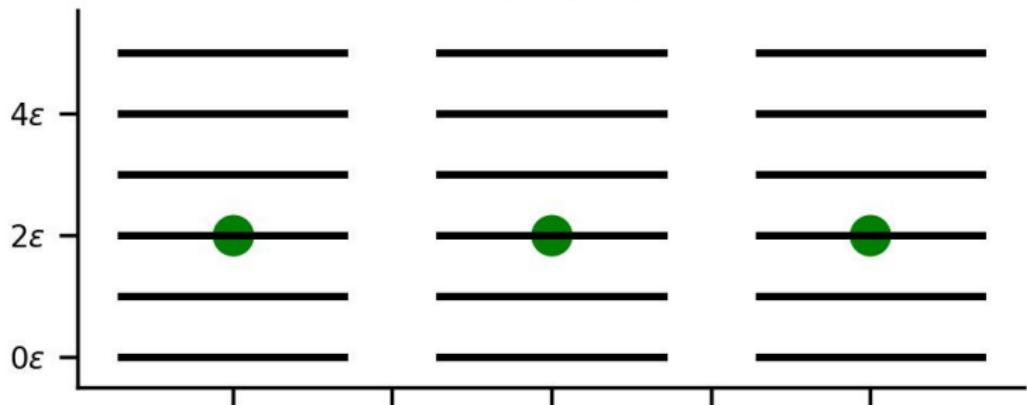


Thermodynamic Potentials



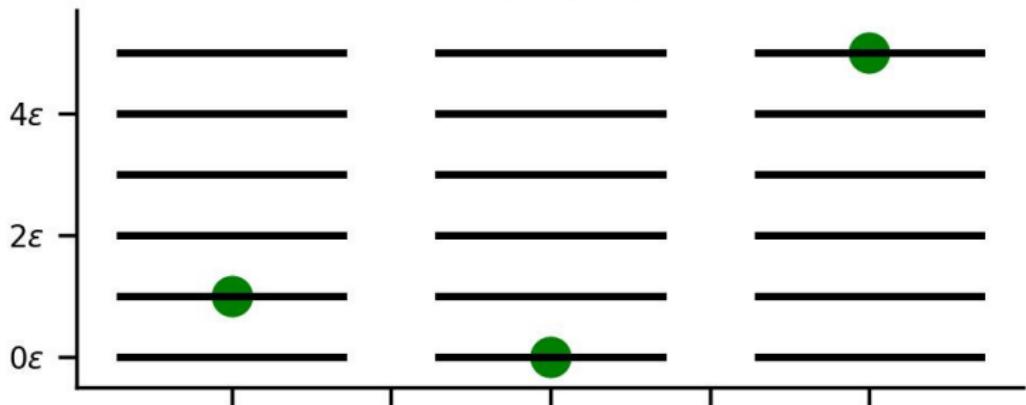
Example: Macrostate $(N, E) = (3, 6\epsilon)$, where $E = E_1 + E_2 + E_3$.
Microstate determined by three numbers (n_1, n_2, n_3) .

Microstate $(n_1, n_2, n_3) = (2, 2, 2)$



Example: Macrostate $(N, E) = (3, 6\epsilon)$, where $E = E_1 + E_2 + E_3$.
Microstate determined by three numbers (n_1, n_2, n_3) .

Microstate $(n_1, n_2, n_3) = (1, 0, 5)$



Microcanonical ensemble:

Given: (E, V, N)

$$P(\nu) \propto \begin{cases} 1 & \text{if } E_\nu = E \\ 0 & \text{else} \end{cases} \quad (4)$$

Microcanonical ensemble:

Given: (E, V, N)

$$P(\nu) \propto \begin{cases} 1 & \text{if } E_\nu = E \\ 0 & \text{else} \end{cases} \quad (4)$$

Normalization:

$$P(\nu) = \begin{cases} \frac{1}{\Omega} & \text{if } E_\nu = E \\ 0 & \text{else} \end{cases} \quad (5)$$

with Ω = number of microstates ν having the energy E

Canonical ensemble

Given: (T, V, N)

$$P(\nu) \propto e^{-E_\nu/k_B T} = e^{-\beta E_\nu} \quad (6)$$

Canonical ensemble

Given: (T, V, N)

$$P(\nu) \propto e^{-E_\nu/k_B T} = e^{-\beta E_\nu} \quad (6)$$

Normalization:

$$P(\nu) = \frac{e^{-E_\nu/k_B T}}{Q} = \frac{e^{-\beta E_\nu}}{Q} \quad (7)$$

with $Q = \sum_{\nu \in \text{microstates}} e^{-E_\nu/k_B T} = \sum_{\nu \in \text{microstates}} e^{-\beta E_\nu}$.

Boltzmann vs Gibbs Entropy

Microcanonical Ensemble: Boltzmann Entropy

$$S_{\text{Boltzmann}}(N, E) = k_B \log \Omega(N, E). \quad (8)$$

Canonical Ensemble (and others): Gibbs Entropy

$$S_{\text{Gibbs}}[P] = -k_B \sum_{\nu} P(\nu) \log(P(\nu)) = -k_B \langle \log P \rangle. \quad (9)$$

Theorem: Boltzmann entropy is a special case of Gibbs entropy in the special case of uniform probability.

Example: Dice roll with $\nu = 1, 2, \dots, 6 = \Omega$ outcomes with the same probability $P(\nu) = 1/6$. Then:

$$S_{\text{Boltzmann}} = k_B \log \Omega = k_B \log 6 \quad (10)$$

agrees with

$$S_{\text{Gibbs}} = -k_B \sum_{\nu=1}^6 P(\nu) \log(P(\nu)) = -k_B \sum_{\nu=1}^6 \frac{1}{6} \log \frac{1}{6} \quad (11)$$

$$= -k_B \cdot 6 \cdot \left(\frac{1}{6} \log \frac{1}{6} \right) = -k_B \log \frac{1}{6} = +k_B \log 6. \quad (12)$$

Example: Alice and Bob want to calculate the energy, temperature and entropy of a solid using (for example) the classical Einstein model.

- Alice uses the microcanonical ensemble (E, N)
- Bob uses the canonical ensemble (T, N)

Microcanonical ensemble:

What does Alice do?

- ① Fix the variables (E, N) .
- ② Count the number of states $\Omega(E, N)$.
- ③ Boltzmann entropy $S(E, N) = k_B \log \Omega(E, N)$
- ④ Temperature from $\frac{1}{T(E, N)} = \frac{\partial S}{\partial E}$.

For the classical Einstein model, she gets

$$T = \frac{E}{3Nk_B}. \quad (13)$$

Thus, starting from $E = 200\text{J}$, she obtains $T = 350\text{K}$, $S = 400\text{J/K}$ etc.

Canonical ensemble:

What does Bob do?

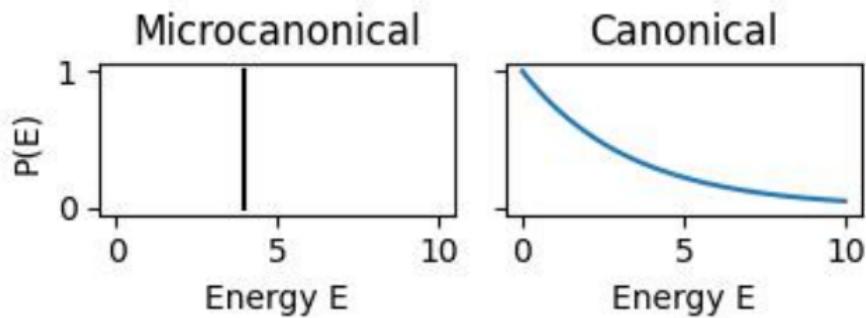
- ① Fix the variables (T, N) .
- ② Compute the Partition function $Q(T, N)$.
- ③ Internal energy $E(T, N) = -\frac{\partial \log Q}{\partial \beta}$
- ④ Entropy $S = -k_B \langle \log P \rangle$

For the classical Einstein model, he gets

$$E = 3Nk_B T. \quad (14)$$

Thus, starting from $T = 350\text{K}$, he obtains $E = 200\text{J}$, $S = 400\text{J/K}$ etc.

Quantity	Alice (micro, E)	Bob (canon, T)
E	200J	200J
T	350K	350K
S	400J/K	400J/K
$P(\nu)$	$P(\nu) = \begin{cases} \frac{1}{\Omega} & \text{if } E_\nu = E \\ 0 & \text{else} \end{cases}$	$P(\nu) = \frac{e^{-\beta E_\nu}}{Q}$



Recall: In the **thermodynamic limit** $N \rightarrow \infty$, probabilistic predictions become exact! This will also be our savior to the inconsistencies!

Today: 3 Exercises

- ① Boltzmann vs Gibbs Entropy
- ② Microcanonical vs Canonical Ensemble
- ③ (optional): understand the solution to inconsistencies

Three key concepts to understand StatMech:

- ① Nature tries to minimize the (Helmholtz) free energy

$$A = E - TS \quad (15)$$

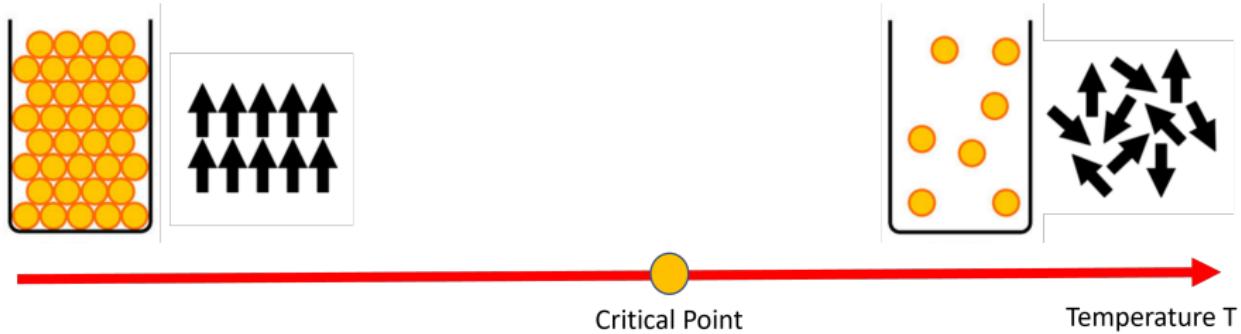
- ② The Boltzmann (Planck) entropy formula

$$S = k_B \log \Omega \quad (16)$$

- ③ The canonical probability measure

$$P(\nu) \propto e^{-\frac{E_\nu}{k_B T}} \quad (17)$$

Minimization of the free energy: $A = E - TS$

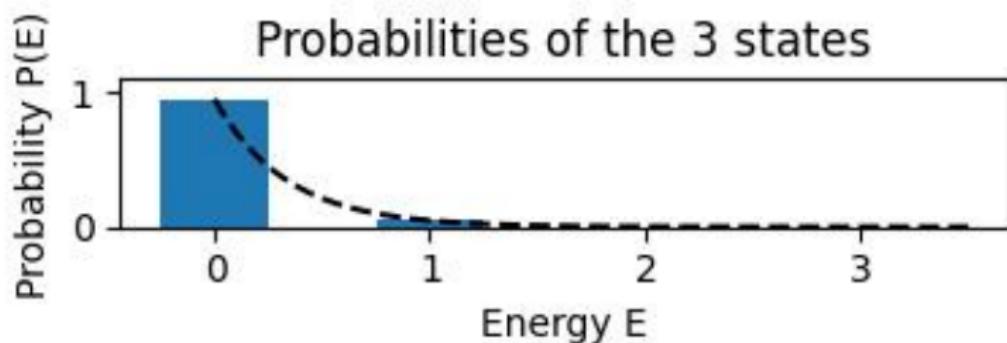


Example: 3 level system. $E_1 = 0, E_2 = 1, E_3 = 3$.

As $T \rightarrow 0$: Entire probability concentrated in ground state

$$P(1) = 1, \quad P(2) = 0, \quad P(3) = 0 \quad (18)$$

$$E \rightarrow 0, \quad S \rightarrow k_B \log \Omega = k_B \log 1 = 0. \quad (19)$$

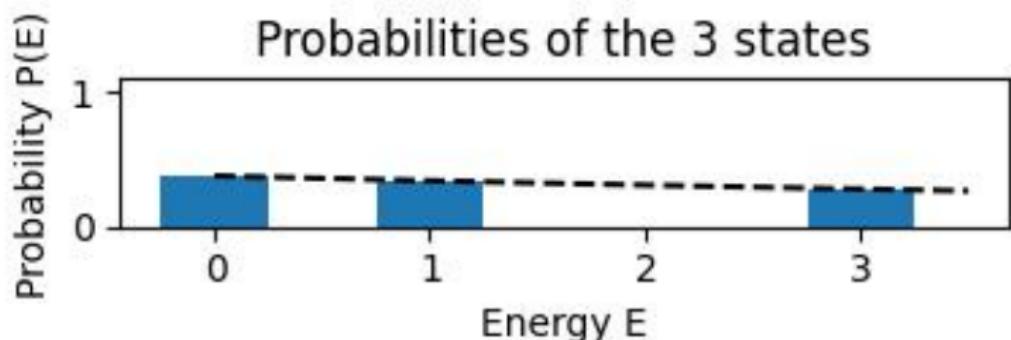


Example: 3 level system. $E_1 = 0, E_2 = 1, E_3 = 3$.

As $T \rightarrow \infty$: All three states have equal probability.

$$P(1) = \frac{1}{3}, \quad P(2) = \frac{1}{3}, \quad P(3) = \frac{1}{3} \quad (20)$$

$$E \rightarrow \frac{E_1 + E_2 + E_3}{3} = \frac{4}{3}, \quad S \rightarrow k_B \log \Omega = k_B \log 3 \quad (21)$$



In reality, we have N independent and identical particles. What then are the energies and entropies as $T \rightarrow 0, \infty$? Due to independence:

$$E = N \cdot E_{\text{single}}, \quad S = N \cdot S_{\text{single}} \quad (22)$$

In reality, we have N independent and identical particles. What then are the energies and entropies as $T \rightarrow 0, \infty$? Due to independence:

$$E = N \cdot E_{\text{single}}, \quad S = N \cdot S_{\text{single}} \quad (22)$$

- As $T \rightarrow 0$:

$$E \rightarrow 0 \quad S \rightarrow 0 \quad (23)$$

- As $T \rightarrow \infty$:

$$E \rightarrow \frac{4}{3}N, \quad S \rightarrow Nk_B \log 3 \quad (24)$$

Calculation tricks using the Stirling approximation for $N \rightarrow \infty$

$$\log N! \sim N \log N - N \quad (25)$$

Application to combinatorial expressions:

$$\log \binom{n}{k} = \log({}_n C_k) = \log \frac{n!}{k!(n-k)!} \quad (26)$$

$$= \log n! - \log k! - \log(n-k)! \quad (27)$$

Calculation tricks using the Stirling approximation for $N \rightarrow \infty$

$$\log N! \sim N \log N - N \quad (25)$$

Application to combinatorial expressions:

$$\log \binom{n}{k} = \log({}_n C_k) = \log \frac{n!}{k!(n-k)!} \quad (26)$$

$$= \log n! - \log k! - \log(n-k)! \quad (27)$$

reduces to only 3 terms

$$\log \binom{n}{k} \sim n \log n - k \log k - (n-k) \log(n-k) \quad (28)$$

→ just use $\log N! \approx N \log N$ without the “ $-N$ ” part (these cancel).

Let us take derivatives of

$$\log \left(\frac{n}{k} \right) \sim n \log n - k \log k - (n - k) \log(n - k) \quad (29)$$

Let us take derivatives of

$$\log \left(\frac{n}{k} \right) \sim n \log n - k \log k - (n - k) \log(n - k) \quad (29)$$

A similar cancellation yields:

$$\frac{\partial}{\partial n} \log \left(\frac{n}{k} \right) = \log n - \log(n - k) = \log \left(\frac{n}{n - k} \right) \quad (30)$$

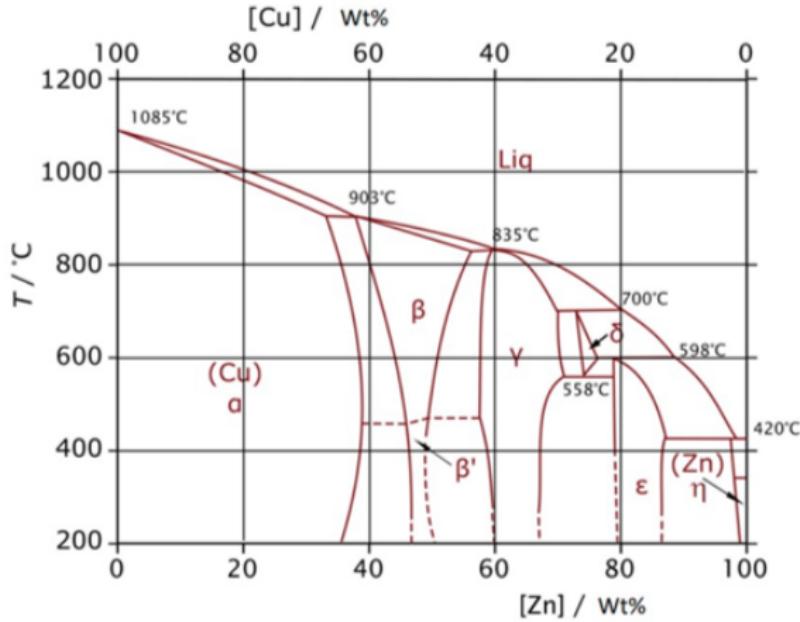
$$\frac{\partial}{\partial k} \log \left(\frac{n}{k} \right) = \log(n - k) - \log k = \log \left(\frac{n - k}{k} \right). \quad (31)$$

Cheat sheet for exercise session 2:

- Boltzmann entropy $S_{\text{Boltzmann}} = k_B \log \Omega(N, E)$
- Gibbs entropy $S_{\text{Gibbs}}[P] = -k_B \sum_{\nu} P(\nu) \log(P(\nu))$
- Temperature from entropy: $\frac{1}{T} = \frac{\partial S}{\partial E}$
- Stirling approximation $\log N! \sim N \log N - N$
- Shortcut for combinatorial expressions of the form $\binom{n}{k}$:
Just use $\log N! \sim N \log N$ (the other term cancels)
- For equations like $\log x - \log y = E$, write $\log \frac{x}{y} = E$ and thus $\frac{x}{y} = e^E$ (fraction form is simpler).
On the other hand, if you need to take derivatives (e.g. with respect to x or y), keep it as $\log x - \log y$.

Boltzmann vs Gibbs Entropy:

Phase diagram of brass:



Given $N = 10^{24}$ total atoms and a desired composition for β brass.
How do we compute the entropy (of mixing) for this system?

Given $N = 10^{24}$ total atoms and a desired composition for β brass.

How do we compute the entropy (of mixing) for this system?

Alice (fixed M): For a composition of $p = 0.5 = 50\%$, I assume that the number of Zn atoms is exactly $M = N/2 = 5 \cdot 10^{23}$. Then:

$$S_{\text{Boltzmann}} = k_B \log \left(\frac{N}{M} \right). \quad (32)$$

Given $N = 10^{24}$ total atoms and a desired composition for β brass.

How do we compute the entropy (of mixing) for this system?

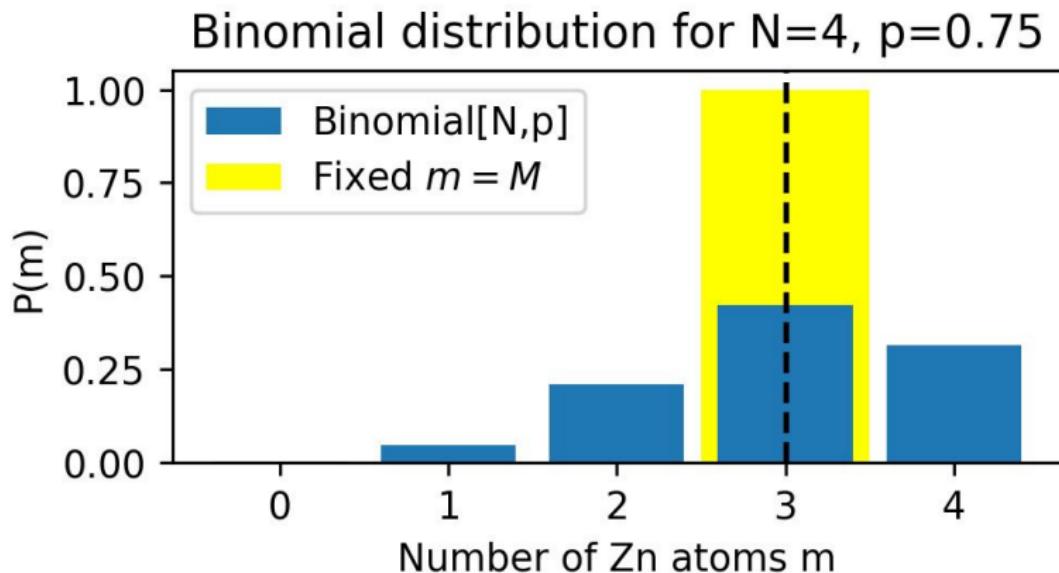
Alice (fixed M): For a composition of $p = 0.5 = 50\%$, I assume that the number of Zn atoms is exactly $M = N/2 = 5 \cdot 10^{23}$. Then:

$$S_{\text{Boltzmann}} = k_B \log \left(\frac{N}{M} \right). \quad (32)$$

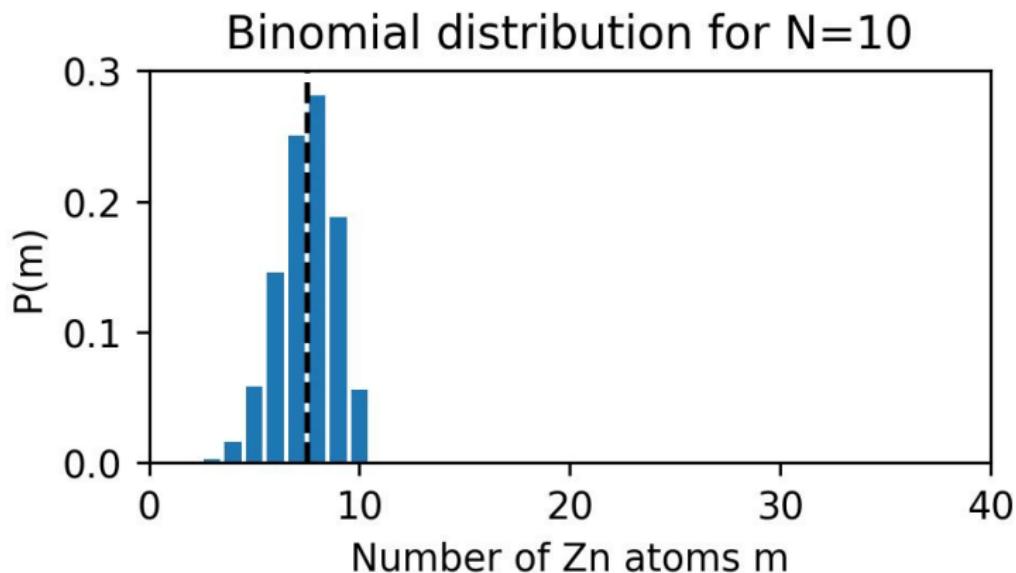
Bob (fixed p): For a composition of $p = 0.5$, I will assume that each position in the lattice is occupied by a Zn atom with a probability of p . Thus:

$$S_{\text{Gibbs}} = -Nk_B [p \log p + (1 - p) \log(1 - p)]. \quad (33)$$

Boltzmann vs Gibbs entropies: Comparison of probability distributions at fixed M with $\binom{N}{M}$ states vs fixed $p = \frac{M}{N}$.

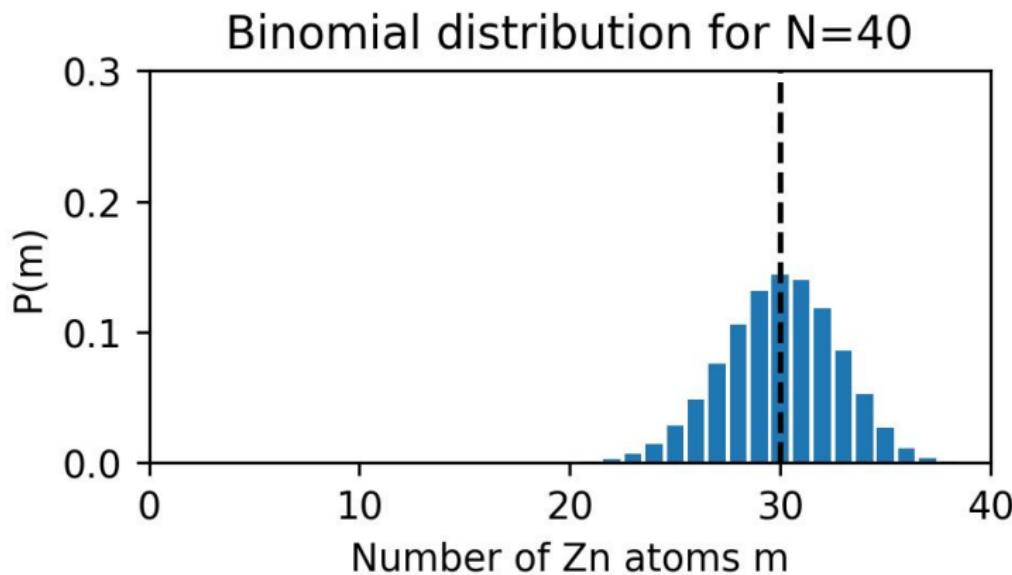


Boltzmann vs Gibbs entropies: Comparison of probability distributions at fixed M with $\binom{N}{M}$ states vs fixed $p = \frac{M}{N}$.



Boltzmann vs Gibbs entropies: Comparison of probability distributions at fixed M with $\binom{N}{M}$ states vs fixed $p = \frac{M}{N}$.

Boltzmann vs Gibbs entropies: Comparison of probability distributions at fixed M with $\binom{N}{M}$ states vs fixed $p = \frac{M}{N}$.



Same plots, but fix the x-axis so that the mean is always in the same spot.

Thus, in a certain sense, the probability measure at fixed p

$$P_{\text{canonical}}(m) = \binom{N}{m} p^m (1-p)^{N-m} \quad (34)$$

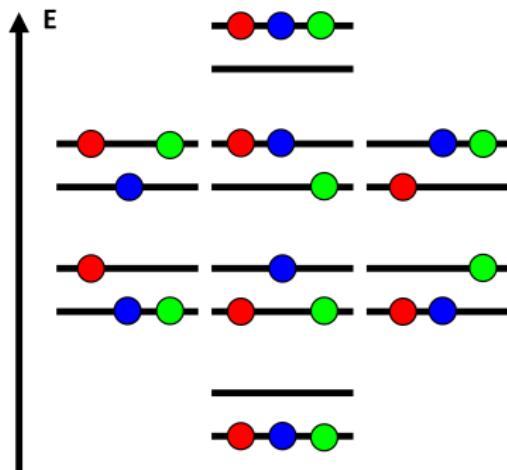
converges to the probability measure at fixed $m = M$

$$\tilde{P}_{\text{micro}}\left(\frac{m}{N}\right) = \begin{cases} 1 & m/N = p \\ 0 & \text{else} \end{cases} \quad (35)$$

And hence the asymptotic equivalence as $N \rightarrow \infty$:

$$S_{\text{Alice}} \sim S_{\text{Bob}} \quad (36)$$

Microcanonical vs Canonical: 2-level system. Each particle can have energies 0 or ϵ (example for $N = 3$).



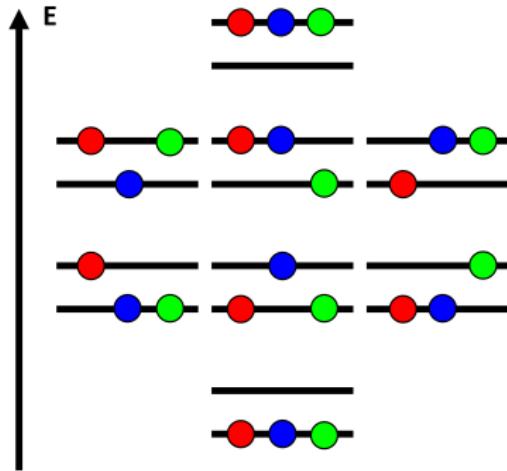
Alice (microcanonical):
Fix total energy E .

$$P(\nu) = \begin{cases} \frac{1}{\Omega} & \text{if } E_\nu = E \\ 0 & \text{else} \end{cases} \quad (37)$$

For the energy:

$$P_{\text{micro}}(E') = \begin{cases} 1 & E' = E \\ 0 & \text{else} \end{cases} \quad (38)$$

Microcanonical vs Canonical: 2-level system. Each particle can have energies 0 or ϵ (example for $N = 3$).



Bob (canonical):
Fix temperature T .

$$P(\nu) = \frac{1}{Q} e^{-\beta E_\nu} \quad (39)$$

For the energy:

$$\begin{aligned} P_{\text{canonical}}(E) &= \sum_{\nu: E_\nu = E} P(\nu) \\ &= \sum_{\nu: E_\nu = E} \frac{e^{-\beta E_\nu}}{Q} = \Omega(N, E) \frac{e^{-\beta E}}{Q}. \end{aligned}$$

In the canonical case, since $\log Q$ is extensive, the mean and variance scale as:

$$\langle E \rangle = -\frac{\partial \log Q}{\partial \beta} \propto N \quad (40)$$

$$\text{Var}[E] = -\frac{\partial^2 \log Q}{\partial \beta^2} \propto N \quad (41)$$

and thus

$$\sigma(E) = \sqrt{\text{Var}[E]} \propto \sqrt{N} \quad (42)$$

Convergence of the canonical $P(E)$ to the microcanonical one:

Where does this come from? Recall:

$$P_{\text{canonical}}(E) = \sum_{\nu: E_\nu = E} P(\nu) = \sum_{\nu: E_\nu = E} \frac{e^{-\beta E_\nu}}{Q} = \Omega(N, E) \frac{e^{-\beta E}}{Q}.$$

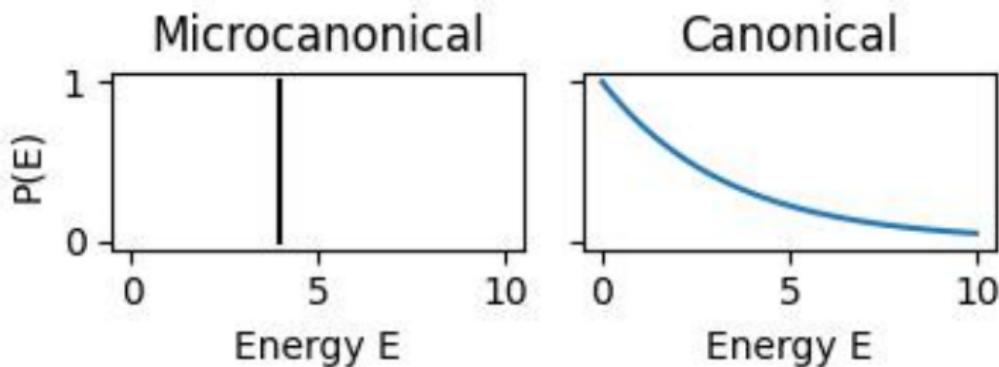
One example for possible behavior:

$$\Omega(N, E) \propto E^N \quad (43)$$

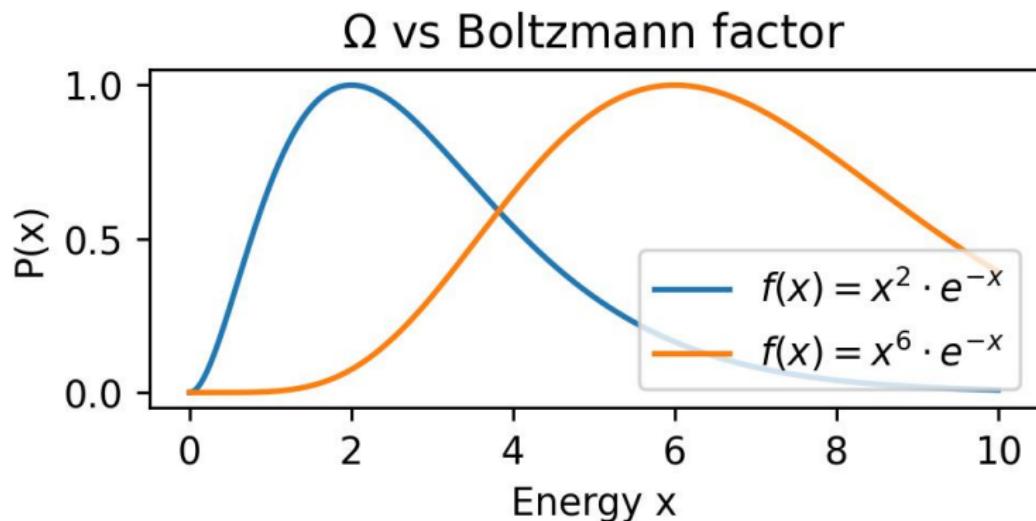
Then:

$$P(E) \propto \Omega e^{-\beta E} \propto E^N e^{-\beta E} \quad (44)$$

Example for $P(E) \propto \Omega e^{-\beta E} \propto E^N e^{-\beta E}$:



Example for $P(E) \propto \Omega e^{-\beta E} \propto E^N e^{-\beta E}$:



Where is the peak of the probability?

Where is the peak of the probability? Using

$$S = k_B \log \Omega \Leftrightarrow \Omega = e^{\frac{S}{k_B}}, \quad (45)$$

we get:

$$P_{\text{canonical}}(E) \propto \Omega(N, E) e^{-\beta E} = e^{\frac{S}{k_B}} e^{-\beta E} = e^{-\beta(E - TS)} \quad (46)$$

Where is the peak of the probability? Using

$$S = k_B \log \Omega \Leftrightarrow \Omega = e^{\frac{S}{k_B}}, \quad (45)$$

we get:

$$P_{\text{canonical}}(E) \propto \Omega(N, E) e^{-\beta E} = e^{\frac{S}{k_B}} e^{-\beta E} = e^{-\beta(E - TS)} \quad (46)$$

The maximum of $P_{\text{canonical}}(E)$ is at the minimum of $E - TS$. Thus, the probability peaks where the **free energy is minimized!**

Three key concepts to understand StatMech:

- ① Nature tries to minimize the (Helmholtz) free energy

$$A = E - TS \quad (47)$$

- ② The Boltzmann (Planck) entropy formula

$$S = k_B \log \Omega \quad (48)$$

- ③ The canonical probability measure

$$P(\nu) \propto e^{-\frac{E_\nu}{k_B T}} \quad (49)$$