
STATISTICAL MECHANICS Problems & Exercises Problem Sheet 2

Understanding the Key Concepts from the Lecture

Exercise 1 What is the Partition Function Q? Mathematical Meaning

The goal of this exercise is to understand the partition function Q from a mathematical point of view.
Consider a coin toss, where the outcome can either be heads (H) or tails (T). Furthermore, we know that
the probabilities of the two states are in a ratio of 3:5, which means that we can almost write

P(H)
?
= 3 P(T)

?
= 5 (1)

This, of course, is not entirely correct. We know that for probabilities, the sum over all possible states∑
x

P(x) = 1 (2)

needs to be equal to one. There is a simple way to fix this, namely by setting

P(H) =
3
8
=

3
Q

P(T) =
5
8
=

5
Q

, (3)

where we defined the normalization constant Q = 8, which is also called partition function in statistical
mechanics. This is now a correct probability distribution, since P(H) + P(T) = 1. Note that we obtained it
by calculating Q = 3 + 5, since this is simply the sum of the weights for the two states H and T.

(a) Consider an atom that can be in two states 1 and 2 with energies E1 and E2. We know that the
probabilities P(1) and P(2) are in a ratio of 4:7. Calculate the partition function Q, the probabilities
P(1) and P(2) of the two states and the mean energy 〈E〉 = P(1)E1 + P(2)E2.

(b) Repeat the same exercise, but now for three states with energies E1,E2 and E3, where the correspond-
ing probabilities are in a ratio of 1 : 2 : 3.

The same idea can also be used for continuous distributions. Consider the Gaussian function f(x) = e−
x2
2a

for some a > 0. We want to define a probability

P(x) ∝ e−
x2
2a = f(x) (4)

, where the symbol “∝” means “proportional to” or “equal up to a constant”. In this form, this is not a
probability distribution, since∫

f
(x)dx =

∫∞
−∞ f(x)dx =

√
2πa 6= 1, (5)

at least in general (unless a = 1/
√

2π). Also in this case, we define the Q =
√

2πa =
∫
f(x)dx. Then,

P(x) =
1
Q
f(x) =

1√
2πa

e−
x2
2a (6)

satisfies
∫
P(x)dx = 1 and thus is a correctly normalized probability distribution (also called probability

measure). The idea behind this trick is that Q measured by how much the integral of f is too big. If it is
too big by a factor of 3, we can divide by 3 to turn f into a probability distribution etc.
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(c) Consider the function f defined on the interval [0,∞) and given by f(x) = x2e−x. Calculate an
appropriate partition function Q for this function and turn it into a valid probability distribution.
Hint: You can use that

∫∞
0 x2e−x dx = 2.

Exercise 2 What is the Partition Function Q? Connection to Materials Science

In this exercise, we will discuss the most important mathematical trick that is used to do calculations in
all of statistical mechanics. It was already discussed in the lecture, but since it is so important (also for the
exam), we will guide you through a step by step derivation to help you really understand why the trick
works.
For simplicity, we use the letter x for the microstate of a material, and let E(x) be the energy in state x. Then,
the canonical probability distribution (also called canonical probability measure) for the temperature T
is defined up to a constant by

P(x) ∝ e−βE(x) = e−
E(x)
kBT , (7)

where β = 1
kBT

is the inverse temperature of the system. We then define the canonical partition function

Q =
∑
x

e−βE(x) (8)

which can be used to define the correctly normalized probability measure

P(x) =
1
Q
e−βE(x) =

e−βE(x)∑
x e

−βE(x)
. (9)

Once we knowQ, we have fully specified the probability measure P, and are now able to calculate material
properties such as the internal energy

〈E〉 =
∑
x

P(x)E(x) (10)

from which we can compute experimentally measurable quantities like the heat capacity C = ∂E
∂T .

In fact, the partition function Q is so useful that we can obtain 〈E〉 without even having to calculate the
expectation value, namely by using

〈E〉 = −
∂ logQ
∂β

(11)

The goal of this exercise is to understand why this trick works.

(a) Starting from the definition of Q, show that

−
∂Q

∂β
=

∑
x

E(x)e−βE(x) (12)

(b) Use the chain rule to show that

−
∂ logQ
∂β

= −
1
Q

∂Q

∂β
(13)

and combine this with the previous part to show that 〈E〉 =
∑
x P(x)E(x). Hint: What was the explicit

formula for P(x)?

Cont.
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(c) Similarly to part (a), show that the second derivative

∂2Q

∂β2 =
∑
x

E(x)2e−βE(x) (14)

and conclude that 〈E2〉 = 1
Q
∂2Q
∂β2 . This trick was used in the lecture to show that the variance Var[E] =

〈E2〉− 〈E〉2 of the energy is related to the heat capacity CV of the system via Var[E] = kBT2CV .

(d) This trick is not restricted to derivatives with respect to β. Consider the probability measure

P(x) ∝ e−αN(x)−γM(x), (15)

where N(x) and M(x) are some material properties for the state x of the material, and α, ,γ are some
parameters whose meaning is not so important for now. Define an appropriate partition function Q
for this probability measure and show that

〈N〉 = −
∂ logQ
∂α

, 〈M〉 = −
∂ logQ
∂γ

(16)

The last part shows that we can essentially get any material property by taking appropriate derivatives of
partition functions. This is why this differentiation trick is so powerful and important!
In fact, it is known in thermodynamics that we can get all material properties by taking derivatives of
thermodynamic potentials with respect to suitable variables. Since we can also get all material properties
from logQ, this suggests that there is a connection between logQ and thermodynamic potentials. . . In this
case, we will see that the Helmholtz free energy A = −kBT logQ, which provides a connection between
thermodynamics and statistical mechanics!

Cont.
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Application: Einstein Model of Solids

Now that we have discussed how important the partition function Q is, it is time to practice calculating it
with many examples. We will do so with one of the first successful mathematical models to describe the
properties of solids which was proposed by Albert Einstein in 1907, which also was very important for
the discovery of quantum mechanics!
Einstein imagined that the atoms in a solid oscillate around their equilibrium position with a frequency
ω. A material is thus a collection of many oscillators.
We begin in Exercise 3 by studying the thermal properties of a single harmonic oscillator, and compare
the results obtained using classical mechanics against quantum mechanics. Together, these provide us
with one example each for a continuous and discrete probability measure. We then move on to Exercise
4, where we study the properties of real solids by considering a collection of many oscillators.

Exercise 3 Statistical Mechanics of Single Harmonic Oscillator

In classical physics, the energy of a harmonic oscillator as a function of the position q and momentum
p = mv is given by

E(p,q) = Ekin(p) + V(q) =
1

2m
p2 +

1
2
mω2q2, (17)

where ω is the angular frequency (ω =
√
k/m for a spring). You might only have seen this in the form

E = 1
2mv

2 + 1
2kq

2, but you should convince yourself that the two expressions are the same.
In quantum mechanics, on the other hand, a harmonic oscillator has discrete energy levels

E(n) =  hω

(
n+

1
2

)
≡  hωn (+const.) , (18)

where n = 0, 1, 2, . . . and we have ignored the extra term of 1
2
 hω in the last equation since it is only a

constant shift in the energy that does not affect experimentally measurable quantities.
We start calculating the thermodynamic properties for the quantum mechanical version, since the math is
slightly simpler. We thus have

PQM(n) ∝ e−βE(n) = e−β hωn (19)

for n = 0, 1, 2, . . . .

(a) Calculate QQM. Hint: use the geometric series
∑∞
n=0 x

n = 1
1−x .

(b) Conclude that the probability of being in the n-th energy level is equal to

PQM(n) =
(

1 − e−β
 hω
)
e−β

 hωn (20)

(c) Calculate 〈E〉

We now compare this with the results from classical mechanics. Here, the probability measure P(q,p)
depends on two variables (the position and momentum) and is given by

PCM(q,p) ∝ e−
β

2mp
2−βmω2

2 q2
(21)

(d) Calculate QCM. Hint: You will need to evaluate a double integral, but using ex+y = exey, you
should be able to split it into two single integrals of Gaussians.

Cont.
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(e) Conclude that the probability density for a particle to have position q and momentum p is given by

PCM(q,p) =
ωβ

2π
e−

β
2mp

2−βmω2
2 q2

(22)

(f) Calculate 〈E〉

(g) Show that the heat capacity CV = ∂E
∂T = kB (which is just a constant!).

As mentioned in the introduction, this model of oscillators played a key role in the discovery of quantum
mechanics.
In fact, even to this day, statistical mechanics provides us one of the best ways to understand the relation
between classical and quantum physics. Roughly speaking, classical mechanis is the “high temperature
limit” of quantum mechanics. The colder the temperature of a system, the more quantum it behaves. This
is why everyone who is developing quantum computers works at very low temperatures on the order of
a few Kelvins or even milli-Kelvins.

(h) Show that for high temperatures T →∞, the quantum partition function asymptotically approaches
the classical one up to a factor of h (the Planck constant), i.e. QQM → 1

h ·QCM. Hint: Instead of
T →∞, use β→ 0 and combine this with ex ∼ 1 + x for small x.

Exercise 4 From Single Oscillators to Real Materials

In a solid with N particles, each particle can oscillate in the x, y, and z-directions, leading to 3N oscillator
modes in total. Thus, if we let q1, . . . ,q3N be the 3N position coordinates and p1, . . . ,p3N the correspond-
ing momenta, the classical energy can be written as

E (p1, . . . ,p3N,q1, . . . ,q3N) =

3N∑
i=1

1
2m

p2
i +

1
2
mω2q2

i. (23)

In the quantum case, the energy of each of the 3N oscillator modes needs to be specified by a separate
quantum number n1,n2, . . . ,n3N. The total energy (ignoring the + 1

2
 hω contributions) then is

E (n1,n2, . . . ,n3N) =

3N∑
i=1

 hωni, ni ∈ {0, 1, 2, . . . }. (24)

(a) Begin with a quantum system consisting of two oscillators, so

E(n1,n2) =  hωn1 +  hωn2 (25)

Show that the quantum mechanical 2-oscillator partition function QQM,2 is related to the single-
oscillator partition function QQM,1 by

QQM,2 = Q2
QM,1 (26)

(b) By extending the argument, show that for a 3D material consisting of N atoms and thus having 3N
oscillator modes, the total partition function Q is given by

QQM,Material = Q
3N
QM,1 (27)

(c) Show that logQQM,Material is extensive, and in fact simply 3N times the original logQ for a single
oscillator. In particular, conclude that the energy 〈E〉, heat capacity CV etc. of the material are simply
3N times the values you calculated for a single oscillator in the previous exercise.

(d) Make sure that you can also perform the same arguments as in parts (a) and (b) using classical
mechanics, and show that the heat capacity is equal to CV = 3NkB, which is the famous Dulong-
Petit law!

The End.


