STATISTICAL MECHANICS PrROBLEMS & EXERCISES ExERrCISE 1

Useful Mathematical Tricks for this Course

In this document, we will always use the convention that
logx =Inx ey

is the natural logarithm, and not log,, x or log, x as is more common in other courses.

Exercise 1 Understanding the Stirling-Approximation

The goal of this exercise is to better understand where the Stirling-approximation comes from, and why it
is justified to use it.

(a) Using properties of the logarithm and the definition N! =1-2..... N, show that

logN! =log2 +---+logN 2

(b) Explain how the above sum for log N! simply corresponds to the total area of the first N — 1 rectangles
shown in grey in[Figure 1| from x = 1 up to x = N. Hint: Argue that the area of the “first rectangle”
(from x =1 to x = 2) is equal to log?2, the area of the “second rectangle” is equal to log 3 etc.

— y=logx
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Figure 1: Visual Representation of Stirling-Approximation

(c) When we define integrals for the first time in our lives, we probably visualized the integral fz f(x) dx
of a function as the area under the curve of f, for which we can obtain better and better approxima-
tions by using rectangles under the curve. In other words, we usually use the area of rectangles as
an approximation to the continuous integral. Here, we do the opposite: Use the approximation

N
log1+---+logNzJ log x dx ©)]
1
to derive the Stirling-approximation
logN! ~ NlogN —N, 4)

where you may need to neglect some terms (see next exercise for a detailed discussion).
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(d) The full version of the Stirling formula is

1 1 1 1 1
= — Z - — —
logN! = NlogN N+210gN+2log27t+12N 360N3+O(N5) ®)
If N = 10%, explain how big roughly the terms in this expansion are (just the order of magnitude
is enough). How can we justify the fact that we usually only keep the first two terms? How precise
would our experimental devices need to be to measure the first correction term? Hint: log 10 ~ 2.3.

Exercise 2 Stirling-Approximation applied to Combinatorics

We now show a nice trick using the Stirling-approximation that is used a lot in the lecture, which will
allow you to do complicated calculations from combinatorics in just a few seconds!

(a) In combinatorics, we will often use the expression

n n!
(k) T Km—k)! ©)

which is pronounced as “n choose k”. Depending on the country, this expression can also be written
as Cp x or nCx. The combinatorial interpretation of this expression is the following: this is the
number of ways we have for choosing k objects out of n. Please make sure that you understand
this, since this will be used in the lecture multiple times, and also in the next exercise. If you need
a refresher, |here is a video that explains it} Also, do not hesitate to ask the TAs to explain it to you
(not just for this question, but in general)!

(b) Let us now apply the Stirling-Approximation to the logarithm of the combination formula

log (E) = log (k'(r:lik)') =logn! —logk! —log(n —k)! -

Naively, we need to apply the Stirling formula three times, and each of those leads to two terms
since logn! = nlogn —n etc. What a mess! But thankfully, half of the terms will cancel, and we
obtain the much simpler formula

log (E) =nlogn —klogk — (n —k)log(n —k) 8)

which can be obtained by simply using logn! ~ nlogn. Starting from the better expression logn! ~
nlogn —n, show that the second term with —n does indeed cancel out between the three terms.

Remark: the Stirling-approximation used on such combinatorial expressions appears multiple times in the
lecture, e.g. in slides 3 pages 10, 11 and 14, slides 4 pages 5 and 8, slides 5 page 19 etc.

How to Calculate Material Properties from the Entropy

Exercise 3 2-Level System in Microcanonical Ensemble

We now study the thermodynamic properties of a simple model system using the microcanonical ensem-
ble: a 2-level system.

The system consists of N atoms, and we assume that each of the N atoms can either have an energy of 0
or an energy of € > 0 if the atom is in the excited state. We will later see that this can (effectively) be used
as a simple model of magnetic properties of materials.

Working in the microcanonical ensemble means that we know the total number of atoms N and the total
energy E of the system.

Cont.
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Let us assume that E = Me for some natural number M = E/e. This means that out of all N atoms,
M are in the excited state, and N — M are in the ground state. How many ways Q(N, E) are there to
select the excited atoms?

Show that the entropy S(E, N) of the system can be compactly written as

S(E,N)

. = NlogN —MlogM — (N —M]log(N —M). 9)
B

Hint: we used two tricks here: firstly, we use M = E/e instead of E to save some space. Also,
the Boltzmann constant kg would usually be on the right side, since S = kg log Q, but we write
% = log O instead. Bringing kg to the left side is often useful because we will now do some
calculations with the right side of the equation, and kg is just a constant multiplication factor, so
there is no need to keep doing all calculations with this extra factor. If we don’t use these tricks, we

need to write
E E E
S(E,N) = kg Nlongglong(Nfg)log(N—E) (10)

which is harder to read and makes the equation look scarier than necessary.

Differentiate the previous equation with respect to E to show that

€ N—-—M

£
kgT 87 M

Hint: Instead of working with E, it is easier to work with M. A derivative with respect to E can be
turned into a derivative with respect to M by using the chain rule

of of oM 1 of

9E OM JE  edM
Here, € is just a constant number, so you can multiply the entire equation to bring it to the right side
(just like kg) to simplify your calculations.

(11

(12)

The combination 1/kg T appear so often in statistical mechanics that we give it a special symbol: we
define 3 = 1/kgT. Using this shortcut, show that
Ne

E(T,N) = 11 ebe (13)

Hint: Keep using M and first show that M = ; +]2|3€

Show that the energy per particle is equal to

E €

N 1+ ebe = € Mexcited (14)

and explain how we can interpret Neycited = ﬁ as the fraction of particles that are in the excited
state as a function of temperature, or as the probability that a particle is in the excited state.

Show that
. . 1
_11_1_)11710 MNexcited = 0 Th—rgo MNexcited = E (15)

Can you come up with an interpretation of these results?

We now want to connect this with experimentally measurable quantities. Describe which mathe-
matical steps would be necessary (you don’t need to do the actual calculation) to calculate material
properties like the heat capacity C(T, N) or the entropy S(T, N) (but now as a function of temperature
instead of energy!).

The End.



