

MSE421

Exercise Session 1

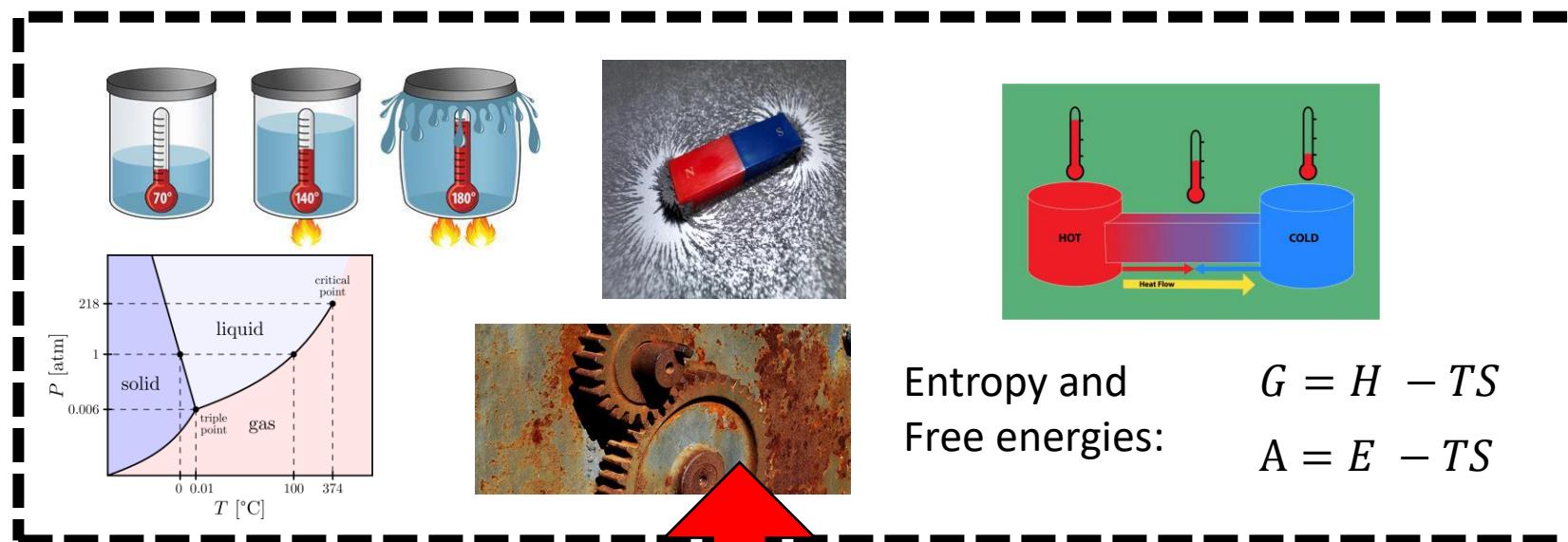
07.03.2024

Kevin Kazuki Huguenin-Dumittan

1. What is the most central concept in thermodynamics?
2. What have been the most important ideas during Monday's lecture?

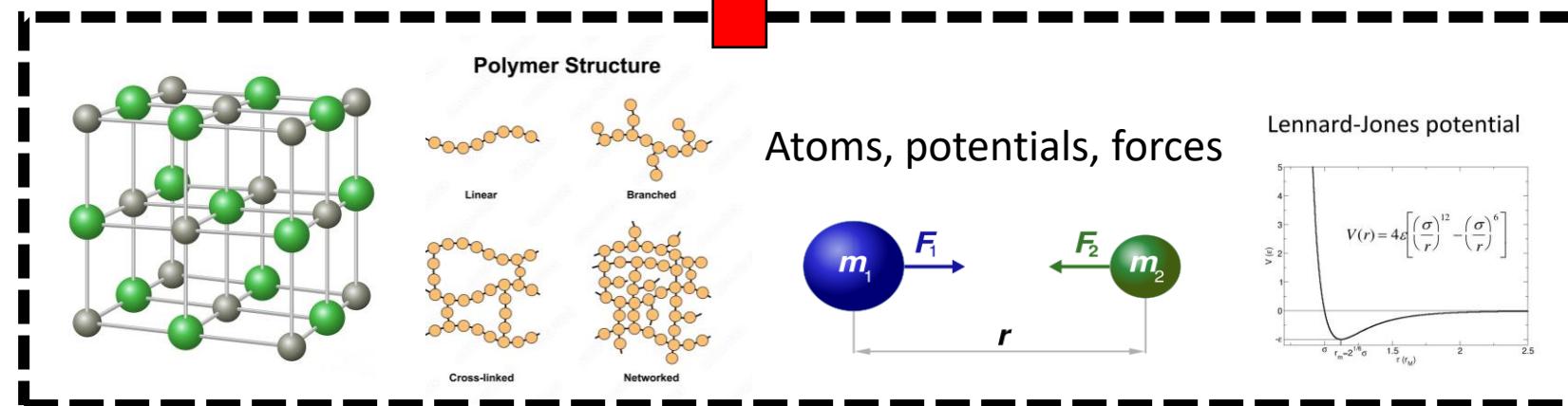
Goal of Statistical Mechanics

Macroscopic World



Thermo-dynamics

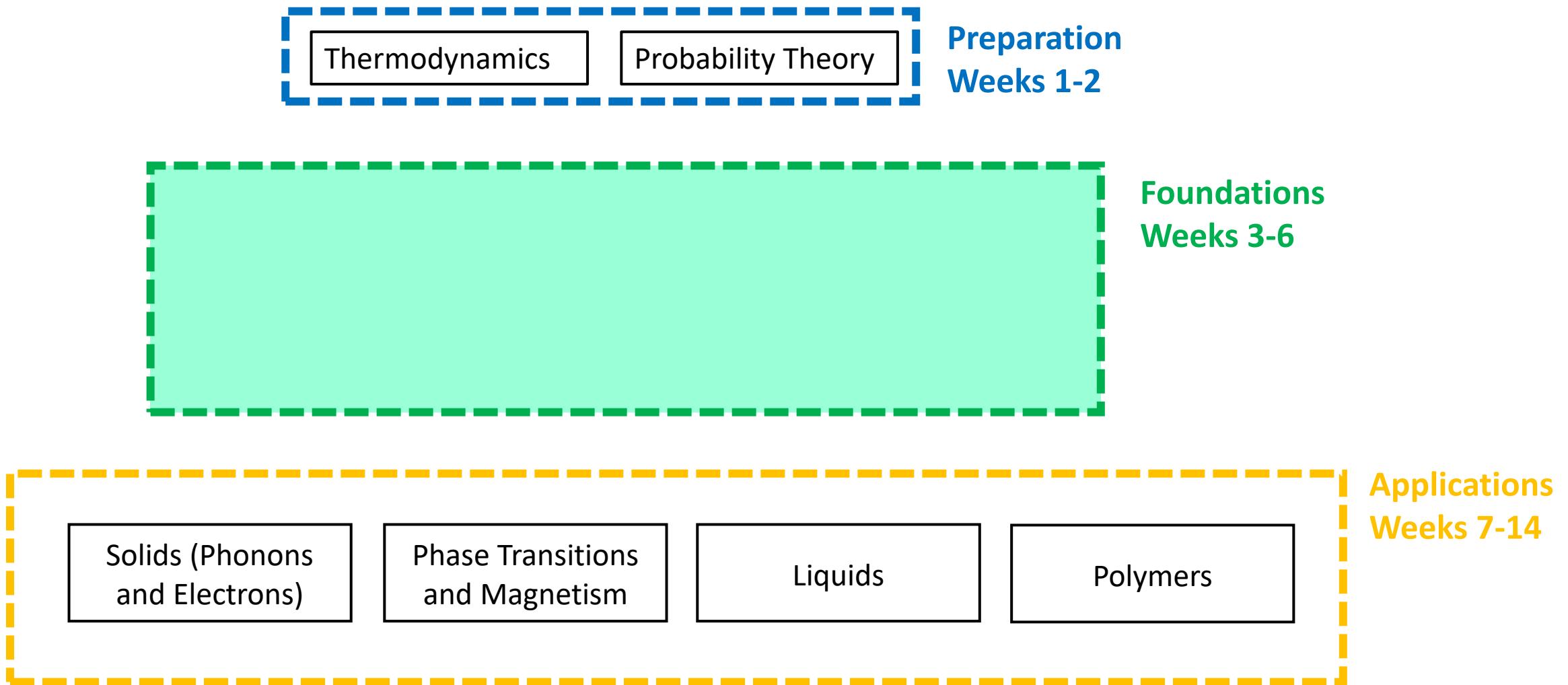
Microscopic World



Mechanics

StatMech

Structure of this Course

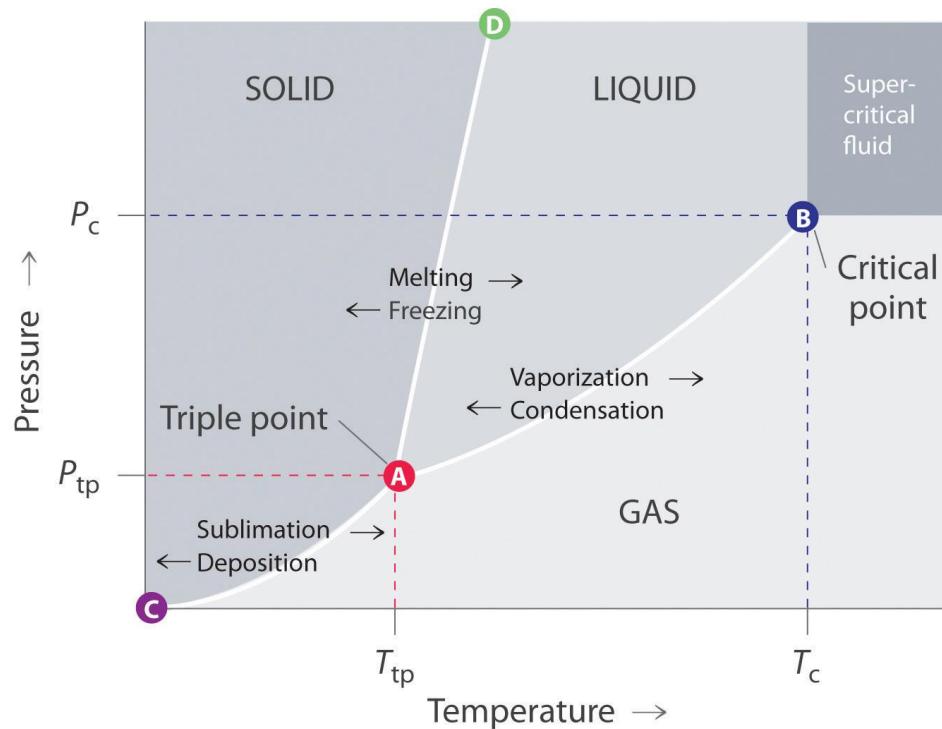
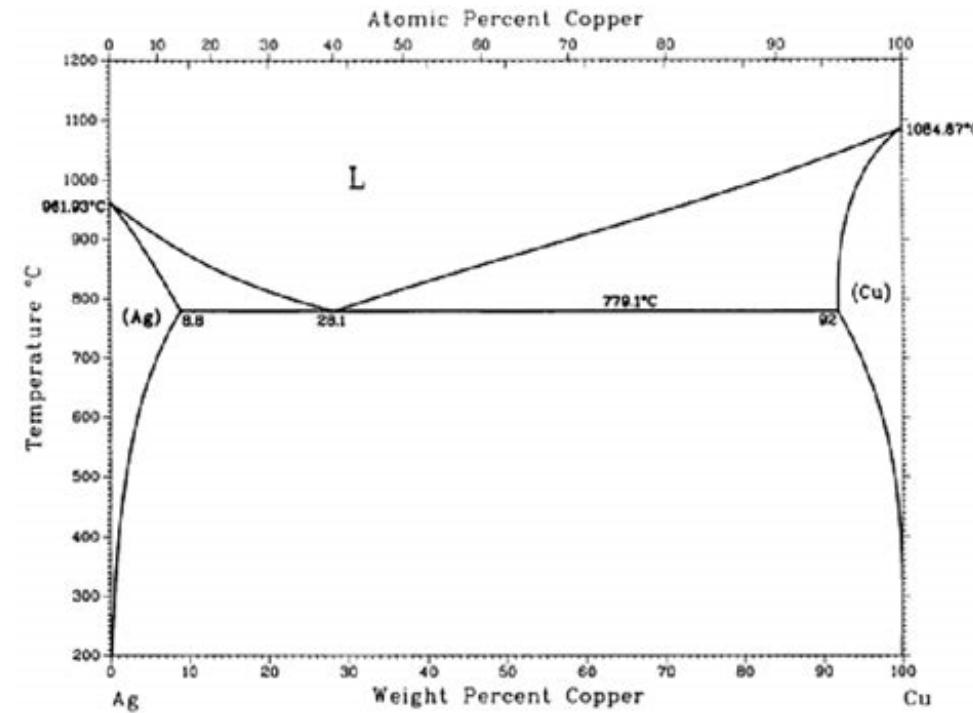


What is the most fundamental concept in thermodynamics?

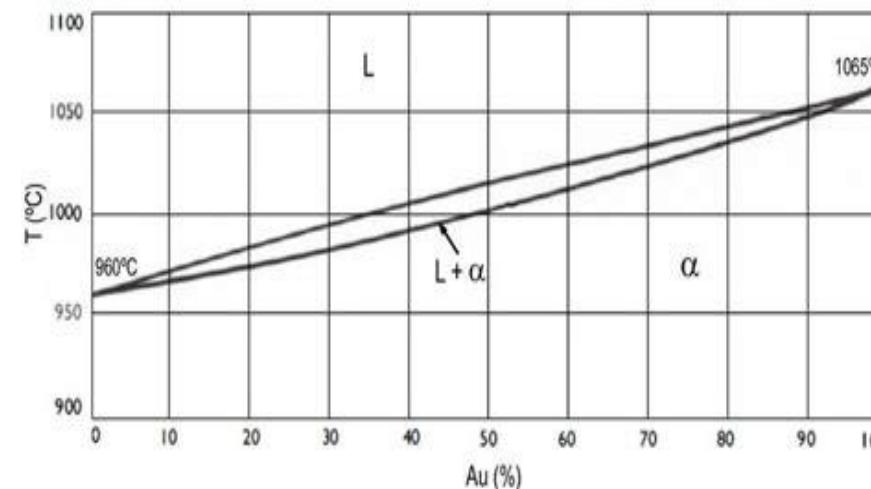
Some Questions that can be answered by (equilibrium) thermodynamics:

- Phase transitions:
 - Why and at which temperature does a material melt?
 - Which compositions of the binary Ag-Au system can exist?
- Reactions:
 - For a chemical reaction $A+B=C$, what is the reaction constant?
 - Why is material A more corrosion resistant than material B?
- Material constants:
 - How does the volume of a material depend on temperature and pressure?
 - Why are some materials magnetic, while others aren't?

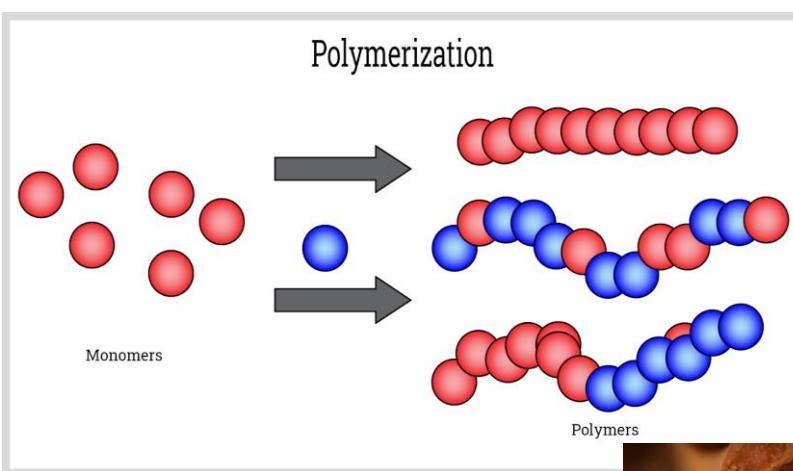
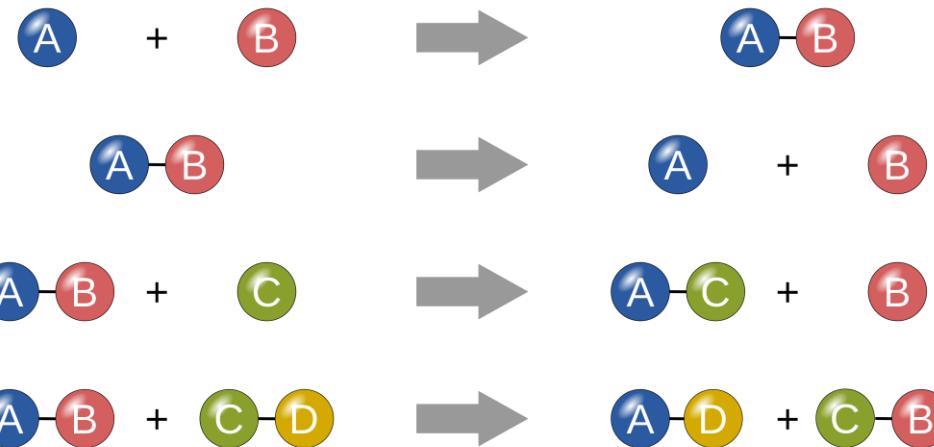
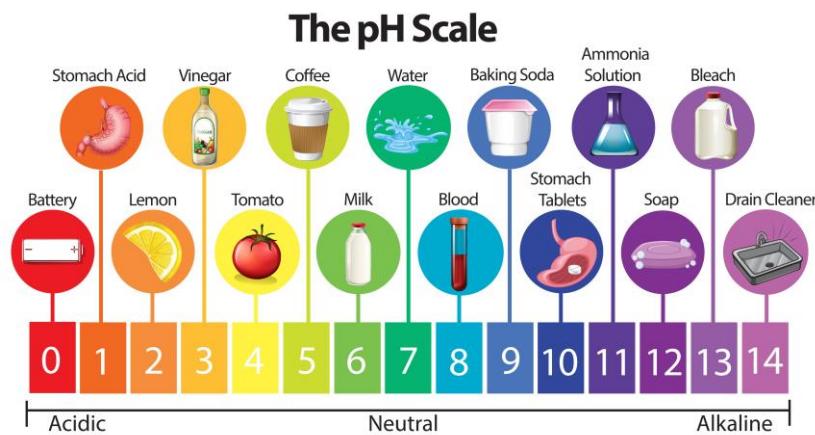
Phase Diagrams



Ag-Cu (top) vs Ag-Au (bottom)



Reactions



Mathematical Structure of Thermodynamics

Different Equivalent Formulations of the 2nd Law

Basic Definitions and 1st Law

"Heat flows from hot to cold"

There is a quantity $S(E, V, N)$

1. Extensive (additive)
2. Maximal at equilibrium

Carnot's Theorem

Clausius' Theorem

Foundations = Thermodynamic Potentials and their minimization properties

$E(S, V, N)$

$A(T, V, N)$

$\tilde{G}(T, V, \mu)$

$H(S, p, N)$

$G(T, p, N)$

Single Component Phase Diagrams

Binary Phase Diagrams

Chemical Reactions

Material Properties

Applications

Entropy in Statistical Mechanics

Main result

$$S(E, V, N) = k_B \log \Omega(E, V, N)$$

where Ω is the number of possible microstates of the system for a given total energy E .

The entropy is an extensive quantity that is maximal at equilibrium.

Why do we work with G instead of S?

Ideal gas law

$$pV = Nk_B T$$

If T, V, N are the primary variables: $p = \frac{Nk_B T}{V}$

If T, p, N are the primary variables: $V = \frac{Nk_B T}{p}$

Why do we work with G instead of S ?

Minimization / maximization theorems depend on primary variables!

- If E, V, N are fixed (isolated system): S is maximal
- If T, V, N are fixed: Helmholtz free energy $A = E - TS$ is minimal
- If T, p, N are fixed: Gibbs free energy $G = E - TS + pV$ is minimal
- If S, V, N are fixed: internal energy E is minimal
- If S, p, N are fixed: enthalpy H is minimal
- If T, V, μ are fixed: grand canonical potential Ξ is minimal

Mathematical Structure of Thermodynamics

Different Equivalent Formulations of the 2nd Law

Basic Definitions and 1st Law

“Heat flows from hot to cold”

There is a quantity $S(E, V, N)$

1. Extensive (additive)
2. Maximal at equilibrium

Carnot’s Theorem

Clausius’ Theorem

$E(S, V, N) \rightarrow A(T, V, N) \rightarrow \tilde{G}(T, V, \mu)$

$H(S, p, N) \rightarrow G(T, p, N)$

Foundations = Thermodynamic Potentials and their minimization properties

Single Component Phase Diagrams

Binary Phase Diagrams

Chemical Reactions

Material Properties

Applications

Problem Set 1

Exercise	Topic	Exam Questions
1	Stirling formula Visualization	3
2	Stirling formula applied to Combinatorics	3
3	Microcanonical Ensemble	2 and 5

Stirling formula

Usual form $\log n! \approx n \log n - n$

Common form in statistical mechanics: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

And hence

$$\log \binom{n}{k} = \log \left(\frac{n!}{k!(n-k)!} \right) = \log n! - \log k! - \log(n-k)!$$

Applying Stirling gives

$$\log \binom{n}{k} \approx n \log n - k \log k - (n-k) \log(n-k)$$

Recipe for Microcanonical Ensemble

Step 1: Calculate $\Omega(E, N, V)$

Step 2: Calculate $S(E, N, V) = k_B \log \Omega(E, N, V)$

Step 3: To get the temperature, use (hint: second version is nicer)

$$\frac{1}{T} = \frac{\partial S}{\partial E} \quad \beta = \frac{1}{k_B T} = \frac{\partial \log \Omega}{\partial E}$$

Step 4: Solve the equation for the energy E to get $E(T, N, V)$

Step 5: Calculate other quantities of interest, such as $C_V = \frac{\partial E}{\partial T}$ etc.