

MSE-421

Exercise session 1

06.03.2025

Statistical mechanics

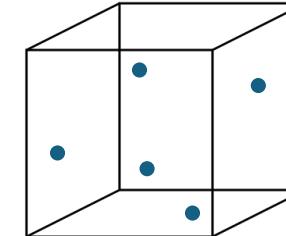
Revision (weeks 1-2)

- Thermodynamics
- Probability

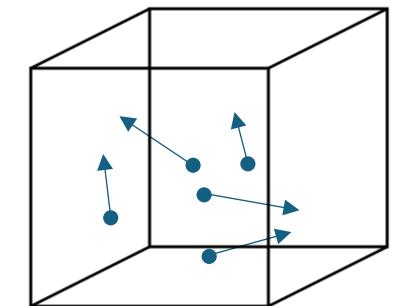
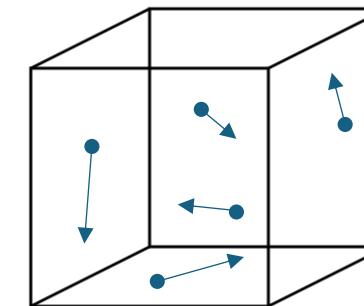
Theory (weeks 3-6)

- Microcanonical ensemble
- Canonical ensemble
- Grand-canonical ensemble

Applications (weeks 7-13)


- Solids (phonons and electrons)
- Phase transitions and magnetism
- Liquids
- Polymers

Ensembles



- Defined by fixing some macroscopic variables (e.g., N , V , T)
- Observe the microstates many, many times
 - Probability $P(\nu)$ or $P(p, q)$
 - Ensemble average:

$$\langle O \rangle = \int O(p, q) P(p, q) dp dq$$

$$\langle O \rangle = \sum_{\nu} \langle \nu | \hat{O} | \nu \rangle P(\nu)$$

$N = 5$
 $V = \text{cube volume}$
 $T = \text{ambient}$

The NVE (microcanonical) ensemble

- N, V, E are fixed
- Probability $P(\nu)$ is the same for all observable microstates ν
- Only their number matters: Ω
- Statistical definition of entropy:
$$S = k_B \ln \Omega$$

The NVE ensemble recipe

- Calculate $\Omega(N, V, E)$, nearly always by using combinatorics
- Find $S(N, V, E) = k_B \ln \Omega(N, V, E)$ and simplify with Stirling's approximation $\ln N! \approx N \ln N - N$
- If asked about the temperature, remember $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{N,V}$