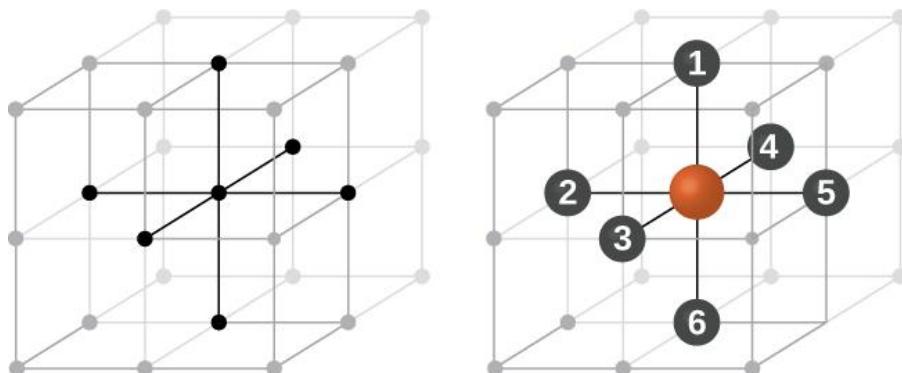


CERAMIC AND COLLOIDAL PROCESSING - EXERCISES

Prof. Paul Bowen
 Dr. Andrea Testino
 2021

Exercises 7


1. Calculate the surface tension of a liquid at temperature, T knowing its molar mass MM , its density ρ as well as the values of W_{AA} and Z_b . Example: perform the calculation for CCl_4 ($MM = 153.82$ g/mole) at $25^\circ C$,

With, $\rho = 1.6 \times 10^3$ [kg/m³], $W_{AA} = -1.78 \times 10^{-20}$ [J/bond] and $Z_b = 6$.

Note: Assume for simplicity that the CCl_4 molecules form a simple cubic structure in the liquid phase. (length of unit cell = side of cube = $c = ((MM/\rho)/(N_A))^{1/3}$)

Solution.

By transferring a liquid molecule from the bulk to the surface, its coordination changes from $Z_b = 6$ to $Z_s = 5$. i.e. central orange atom below as bulk $Z_b = 6$ and atom 1 for surface, $Z_s = 5$.

Knowing the density and assuming for simplicity a simple cubic arrangement of molecules in the liquid, we calculate the side of the cube

$$c = [(153.82 \cdot 10^{-3} / 1.6 \cdot 10^3) / (6.0 \cdot 10^{23})]^{1/3} = 5.42 \cdot 10^{-10} \text{ [m]} = 0.542 \text{ [nm]}$$

So the area A of a face of the cube is:

$$A = c^2 = 2.94 \cdot 10^{-19} \text{ [m}^2\text{]} = 0.294 \text{ [nm}^2\text{]}$$

From Eq. (2.1.3) we calculate :

$$E_s/A = 0.5 \times (-1.78 \cdot 10^{-20}) \times (5-6) / (2.94 \cdot 10^{-19}) = 3.02 \cdot 10^{-2} \text{ [J/m}^2\text{]} = 30.2 \text{ [mN/m]}$$

2 Given the respective surface tensions of water and benzene (in air) are :

$$\gamma_{\text{water}} = 72.8 \text{ [mN / m]}, \gamma_{\text{benzene}} = 28.9 \text{ [mN / m]},$$

and the interfacial tension for the water / benzene interface is

$$\gamma_{\text{water / benzene}} = 35.0 \text{ [mN / m]},$$

calculate the initial water – benzene spreading coefficient.

After equilibration, a little benzene dissolves in the water which brings its surface tension to $\gamma_{\text{water}} = 62.4 \text{ [mN / m]}$. What happens to the water-benzene spreading coefficient?

Solution.

Using Equation 2.1.15b –

$$S_{SL} = -\Delta G_{SL} = (\gamma_{SV} - \gamma_{SL}) - \gamma_{LV}$$

$$S(\text{init.}) = 72.8 - (28.9 + 35.0) = 8.9 \text{ [mN/m]} > 0 : \text{benzene spread on water ;}$$

$$S(\text{eq.}) = 62.4 - (28.9 + 35.0) = -1.5 \text{ [mN/m]} < 0 : \text{benzene no longer spreads on water.}$$

3. Capillary Rise

Determine the height h [cm] that a liquid rises in a capillary tube, knowing γ_{LV} , the surface tension of the liquid, ρ_L , the density of the liquid, r , the internal radius of the tube, and θ , the wetting angle of the tube wall by the liquid.

Example: the liquid is water ($\gamma_{\text{'eau}} = 72.8 \text{ [mN / m]}$, $\text{MM} = 18.02 \text{ [g / mole]}$, $\rho = 1'000 \text{ [kg / m}^3\text{]}$), the wetting angle $\theta = 20^\circ$, and the radius of the capillary $r = 0.10 \text{ [mm]}$.

Solution.

Equation (2.2.4) gives, after transformation:

$$h = 2\gamma_{LV} \cos\theta / \Delta\rho gr ;$$

$$\Delta\rho = \rho_L - \rho_V \cong \rho_L \Rightarrow h = 2\gamma_{LV} \cos\theta / \rho_L gr$$

thus :

$$h = 2\gamma_{LV} \cos\theta / \rho_L gr = 2 \times 72.8 \times 10^{-3} \cos(20^\circ) / 1'000 \times 9.81 \times 1.0 \times 10^{-5} = 0.148 \times 0.940 \\ = 0.139 \text{ [m]} = 13.9 \text{ [cm]}$$

4. What is the Hamaker constant and its role in the attractive forces between 2 particles?

Solution.

With Van der Waals attractive forces, the intensity of the interaction energy is

$$V_A(h) = -A \cdot H$$

Where h is the separation distance between particles, H is a geometric factor and A is the Hamaker constant. This constant depends on the dielectric properties of the particles and of the medium separating them and determines the magnitude of the attractive VdW force.