Lecture 2
- Pauling rules, bonding and structures - continuation
 Simple crystalline structures — important examples
» Crystalline symmetry
* Macroscopic crystalline symmetry & point groups

 Point groups and real structures



Pauling rules -3, 4, 5

* Rule 3: The bond is strongest when coordination polyhedra
share corners, less stable when they share edges, and least
stable when they share faces.

 Rule 4: Coordination polyhedra of small cations with large charge tend to
share corners (or not share any elements: olivine (Mg,Fe),SiO4 -

.&b..‘,’.
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 Rule 5: Simpler structures are more likely than complex’ ‘}‘\“ “& °
¢ ¢ ©
(the rule of parsimony) } . }. o i |




Polyhedra sharing — Rules 3 and 4

BaTiO3, perovskite structure

pu

c

Ti**is small, heavily charges, and corresponding polyhedra share corners
- Compare this to Ba*?
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Pauling rules - MgO

For MgO: @\

rMg+2 = 0.86A, rO = 1.26A

rMg+2/rO = 0.86/1.26 = 0.68 --> CN(Mg)= 6 for Mg2+
Bonding force around Mg+ 2: +2 / 6=1/3

Oxygen CN: CN(O) x1/3 +(-2) =0-->CN(O) =6

Are other Pauling rules obeyed?




« What is the structure based on rules 1 and 27

Pauling rules — ReOg,

For ReO3:
rRe+6 = 0.76A, rO = 1.26A

rRe+6/rO = 0.77/1.26 = 0.61 --> CN(Re)= 6 for Re+6 ReV'0Q'3

Bonding force around Re+6: +6 / 6=1

Oxygen CN(O): CN(O) x1 + (-2) =0-->CN(0) =2

Which type of coordination for O?
Each O is connected to 2 Re i.e.
each O is the bridge between

two octahedra.

Are other Pauling rules satisfied?

- Corners of octahedra are shared %

s
it

R/ NC

>.225 4
>.414 6
>.732 8
>1.00 12

Figure 10.9. The structure of ReO,. The Re are the smaller black spheres. The fact that Re is
octahedrally coordinated and O is in two-fold coordination was deduced from Pauling’s first
two rules.
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Pauling rules for structures with two cations
-example of BaTiO;

* Apply Pauling rules to determine coordination numbers (CN)
for all ions in BaTiO;. Specify coordination numbers of the
anions to each cation.

« We start by finding radii of all ions.

Recommendation: use the table composed after Shannon and
Prewitt from the previous lecture,



Pauling rules for structures with two cations
-example of BaTiOS3-

We recall conditions for coordination of cation with respect to near-neighbor
anions, which is given by:

rcation/ranion CN(CatiOH)
>.225 4 j> CN(Ba)= 12

>414 6 CN(Ti)=6
>.732 8

>1.00 12




Pauling rules for structures with two cations
-example of BaTiO3-

We now need to find coordination number of oxygen, CN(O).

For this we use Pauling second rule. When there are two cations around

oxygen, then the rule refers to both cations considered together:

CN(O)g,*(Bond strength around Ba)+ CN(O);*(Bond strength around Ti)
=absolute value of charge (valence) of oxygen.

We first find bond strengths for the cations:
For Ba: Bond strength around Ba=(valence of Ba)/CN(Ba)=2/12=1/6
For Ti: Bond strength around Ti=(valence of Ti)/CN(Ti)=4/6=2/3



Pauling rules for structures with two cations
-example of BaTiOS3-

We get:
CN(O)g, *(Bond strength around Ba)+ CN(O);,*(Bond strength around Ti)=
absolute value of charge of oxygen --->

CN(O)g, *(1/6)+ CN(O)y*(2/3)=2

This gives: CN(O)g, =4, CN(O)1=2

—

Therefore, each O anion is linked to 2 Ti ions, and 4 Ba ions. We write:

BCZXH Tl-VI 03[] +V _ BCZXH Tl-VI Oéfl



BaTiO; perovskite structure

Check coordination numbers for oxygen:

CN(O)g, =4, CN(O);=2

BaTiO3
Black:Ti; orange: O; Purple: Ba
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Pauling rules

-coordination number check-
. Taking ASN(A) BIS?N(B) XSN(X)

where X is an anion, and A and B are cations, then:

aCN(A4) +bCN(B)=xCN(X)

Check that the ratio between ions of different
kinds is respected

BaXHTz’VIOg/I ) 1*¥12+1*6=3%6

For BaTiO3:
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Pauling rules — limitations - comment on sharing of polyhedra
example: Al,O5 (corundum, alumina)

Unit cell view

Orange: O; Black: Al

Edge-shared octahedra

(we expect is shares corners rather than edges)

HCP, 2/3 of octahedral sites are filled, primitive
trigonal, distorted tetrahedron
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Pauling rules — comment on sharing of polyhedra
example: Al,O5 (corundum, alumina)

Side-sharing octahedra



Pauling rules — comment on sharing of polyhedra
example: Al,O5 (corundum, alumina)

Octahedra are deformed to make distance between cations larger
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Pauling rules — comment on sharing of polyhedra
example: Al,O5; (corundum, alumina)

there are empty spaces in the structure, which
allow for the distortion of tetrahedra
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Important simple structures

AX: MgO (rock-salt), CsCl (cesium cloride), ZnO (wurtzite),

SiC (zinc blend) and its polymorphs
AX2: SiO, (quartz), ZrO, (fluorite), TiO, (rutile)...
A2X3: Al,O3 (corundum)...

ABX3: BaTiO5 (perovskite)...



AX structures

Rock salt: LiF, KCI, MgO, NiO, CaO, TiC,... close cubic (FCC) packing-
all octahedral sites are filled, tetrahedral sites empty;
Cubic structure Fm-3m

111 view

Mg: blue
O: orange
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AX structures

Zincblende: ZnO, ZnS, BeO, SiC, BN, GaAs,... close cubic packing (FCC)-
Small cations in tetrahedral sites. Half of tetrahedral sites filled.

Cubic structure F-43m — it is different from the example on the previous slide

Orange: O
Gray: Zn

A

tahedral

Cubic but not centrosymmetric! - Zincblend is piezoelectric: to be discussed later



AX structures

Wurtzite: ZnO, AIN, SiC,,... hexagonal close packing (HCP)-
Small cations filling tetrahedral sites. Half of tetrahedral sites filled.

Hexagonal structure

|

%‘ Orange: O

Gray: Zn

This structure is polar: to be discussed later 19




Polytypes and polymorphs

« Zincblend and wurtzite are polytypes:
— FCC or hexagonal, half of tetrahedral sites filled

the same atoms arranged in a different packing
SiC: a large number of polytypes (dozens)

Polymorphs: compound appears in different crystalline forms.

If transformation from one phase to another can take place by
small displacements of atoms the transformation is called
displacive. If transformation requires bond braking it is called
reconstructive.



AX, structures

SiO2 (silica) - Si filling half of tetrahedral sites.
Trigonal structure

Alpha-quartz is noncentrosymmetric (piezoelectric)
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Polymorphs of quartz

Glass-ceramic technology, W. Hoeland & G. Beall, The American Ceramic Society, 2002
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AX, structures

Fluorite: CaF,, ZrO,, Ce0,,...
8-fold coordination of cations. 4-fold coordination of anions

Cubic structure, some ditortions may result in materials with new
properties (e.g. Ferroelectricity/antiferroelectricity)

Orange: O,F Blue: Cation
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AX, structures

Rutile: TiO2, Sn02, Pb0O2, VO2, NbO2, TeO2, Mo02, W02, MnO2,
RuO2, 0s02, Ir02, Ge02

HCP packing; One half of octahedral sites filled by cations;
Tetragonal structure
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AX, structures

Anatase: TiO, polytype; A tetragonal structure;
CCP packing;

Here oxygen octahedra are sharing edges (Pauling rule is not respected — a metastable structure)
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TiO2

Rutile Anatase Brookite

Tio, Tio, TioO,
Form.Wt. 79.890 79.890 79.890
Z 2 3 8
CrystalSystem Tet Tet Orth
PointGroup 4 /mmm 4 /mmm mmm
SpaceGroup P4,/mnm I4,/amd Pbca
UnitCell
a(a) 4.5845 3.7842 9.184
b(A) 5.447
c(A) 2.9533 9.5146 5.145
Vol 62.07 136.25 257.38
MolarVol 18.693 20.156 19.377
Density 4.2743 3.895 4.123
n oy | 2..53 2.64

High density - high
refractive index

Natural polymorphs

of totania mixed CCP-HCP

HCP CCP



AX, structures

Layer structures: Molybdenum disulfide: MoS, polytype, WS,,
Van der Waals bonds between planes. Hexagonal structure

Trigonal prismatic coordination of S around Mo
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MoS, applications

MOLY PRO-SPEC® Motor Oil

Molybdenum
Disulfide

e HIGH LEVEL OF MOLY

INCREASES FUEL ECONOMY

¢ REDUCES WEAR, FRICTION AND
HEAT

¢ REDUCES OIL CONSUMPTION

HIGH TBN

e USES SUPER-FINE MOLY
PARTICLES

The MoS2 platelets are capable of supporting up to
500,000 psi at the same time they offer little resistance
to shear forces which tend to slide the platelets over
one another thus reducing friction and wear.

Graphene and molybdenite combine into a flash memory prototype. Yellow-
black molecules: molybdenite; gray hexagons: graphite (credit: EPFL)

- MoS; is a transition metal dichalcogenide (TMD) with a layered structure similar to graphene.

- Unlike graphene (which is gapless), monolayer MoS, has a direct bandgap (~1.8 eV), making
it highly suitable for transistors, photodetectors, and optoelectronic applications.
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ABXj structures

ABX3: perovskites BaTiO;, Pb(Zr,Ti)O3, CH;NH;Pbl;
FCC derived structure; cubic parent structure, distortion in low-
temperature phases (tetragonal, rhombohedral) — new properties

BaTiO3
Black:Ti; orange: O; Purple: Ba
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ABXj structures

Perovskite structure ABX3:
CH;3;NH;Pbl;; orthorhombic
structure or tetragonal or...

Methylammonium Lead lodide
methylammonium trihalogenoplumbates

Distorted octahedra;
Large atom (Pb) in the center of

octahedra,

Compare:

Red: I; Black: Pb; Small atoms: H,N,C- CH3;NH; molecule

organic molecules are at the place of A-atoms —solar cells



Crystalline symmetry

Macroscopic crystalline symmetry
and point groups

31



Translational symmetry in 3D

[ = pa, erg2 + na,

\

translation vector \ /

fundamental translation vectors

pP,m,n |integer

Translation vector makes lattice (Bravais Lattice)

‘Cll‘ ‘az‘ ‘613‘ lattice constants



These crystalline structures have the same
Bravais lattice

- —— - —— 0) 0) @) (@)
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Crystalline Symmetry

Reflections

ﬂ
ﬂ
ﬂ
ﬂ

l
l

mirror planes



Crystalline Symmetry

2-fold axes:

rotation axes:

Order 2, 3,4, 6

BN
Do
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N

Crystalline Symmetry

Reflection + translation

Symmetry element

reflection

+a/2 translation

glide plane

36



Crystalline Symmetry

rotation + translation

Symmetry element

180 ° rotation+

a/2 translation

2-fold screw axis

37



Elements of crystalline symmetry

X, Y, Z
translations center of symmetry \
mirror plane X, -y, -2
glide plane 27

n

gp =
n-fold rotation axis &\‘

n- fold screw axis )
n=2,3,4,6 o

n- fold inversion axis /

38



Elements of crystalline symmetry

CsCl

mirror plane

|
Q : Cl
\ | /
N |
N L/ -
DA _
RSN I/ - -
P N Cs _
b AR 2-fold axis
- / I
_ /o
3-fold axis /o
O
|
| center of symmetry
4-fold axis - Not all symmetry elements are independent

- A 2-fold rotoinversion axis is equivalent to a
mirror plane , that is why a symbol “bar 2” is
rarely used

39



Elements of crystalline symmetry
Hexagonal Close-packed Structure (hcp)

A-layer tops Stacking A+ B+ A

O QQ

Stacking A+ B + C

40

6-fold screw axis

Other symmetry elements:
- mirror planes (passing through atoms)
- glide planes (passing between the atoms)




Elements of MACroscopic crystalline symmetry

Fine symmetry MACroscopic symmetry

translations

center of symmetry center of symmetry

mirror plane :
mirror plane

glide plane
n-fold rotation axis
n-fold rotation axis

n- fold inversion axis
n- fold screw axis

n- fold inversion axis
41



Elements of MACroscopic crystalline

symmetry
Fine symmetry MACroscopic symmetry
230 space groups 32 point groups

group = set of symmetry elements of an object

42



AlIN-based
filter

Space group > point group
(example)

P6smc -

6mm
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Crystal system The 14 Bravais lattices Defining
symmetry
Triclinic
azb #c
a¢B¢v¢90° Triclinic 1-fold axis
Monoclinic
L7 I L
wy =90° {
azbzc; F/ /./ KR 2-fold axis
a=y= 90°; [3 #+ 90 Simple Base-centered 7
Monoclinic monoclinic . "b
Orthorhombic
abv /e / -
azb #c ’}L 3 x 2 fold axis
a=B=y=90° C e
Simple Body-centered Base-centered Face-centered

orthorhombic

orthorhombic orthorhombic

orthorhombic
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Tetragonal
a=b #c
a=B=y=90° 4-fold axis
Simple Body-centered

tetragonal tetragonal
Rhombohedral
( trigonal) 0 k‘t s

e D 3-fold axis
a=b=c h’ \ \i N\
v\ -\
a=B=y#90° S = -
Rhombohedral P Triconal R LR
Hexagonal
a=b#c 6-fold axis
a=p=90, y=120°
Hexagonal

Cubic
a=b=c @ P-.
a:B:v:QOo ‘ . .

Simple Face-centered Body-centered 4 x 3-fold axis

cubic cubic cubic




Stereographic Projection

Stereographic projection is used in

crystallography for 2D representation of (001)
orientation of crystal axes and faces
7 (111)
(111)
(010)
(010)
\
(111)
(111)
_ (111)
(001)

For building up stereographic projection the crystal is imagined to be at the centre of a sphere (called
hereafter a stereographic sphere). The normals to the faces are imagined to radiate from the centre led
to intersect the sphere in an array of points...



Now to we represent this 3D array of points in 2D as shown
below i.e. we project them on the equatorial plane of the
stereographic sphere using south pole as a projection center

(001)

(111) ,

(010)

(111)
— (111)
(001)

Wulff net is used for measuring
angles between the poles

a)
cut)lc crystal:

N

Wulff net

(011
7

(111) | | -
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Systems

Triclinic

Monoclinic

Orthorhombic

Trigonal

Tetragonal

Hexagonal

Cubic
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O

rotation axes

2(2) .

uuz(i).
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inversion

—
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inversion axes

3,3,3,3
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Systems

Triclinic

Monoclinic

Orthorhombic

Trigonal

Tetragonal

Hexagonal

Cubic

Si

R/

R/I-P

In

Ro

Su 4= Types
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(c,) (s,) (D,,) (,) (C,) 0,) 0,,)

6 6 62m 6/m 6mm 622 6/mmm
(C,) (C,,) (D.,) (C,,) (C,,) (D) (D,,)

23 m3 43m 432 m3m

(T)

(1,)

(T,)

Q)

(0,)

Si = simple

R/l = inversion axes

R/l - P = inversion axes +
planes

| = inversion

P = planes

Ro = rotations only

Su = super
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4/mmm, D,

center of
symmetry

Tetragonal

Centrosymmetric

bottom
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4/m, C,,

center of
symmetry

Tetragonal

Centrosymmetric

bottom
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Tetragonal
4mm, C,,

Non-centrosymmetric

bottom

S7



Symmetry of CsCl structure

1 1
(c,) ()
2 m 2/m
(C,) (c.) (Cy)
mm2 222 mmm
(C,) (D,) 0,)
3 3 3m 32 3m
(c,) (S,) (C,) (D) 0,,)
4 4 42m 4/m 4mm 422 4/mmm
(c,) (s,) (D,,) (,) (C,) (,) 0,)
6 6 62m 6/m 6mm 622 6/mmm
(c,) (C.,,) (D,,) (C,,) (C,,) (D,) (Dg)
v]v
rl4
23 m3 43m

_\
]

(7,)

P

Cubic

m§m

Centrosymmetric
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Symmetry of ZnS
zinc blende structure

\ |
\ I
1

As

3-fold

Cubic 43m

Non-centrosymmetric
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Miller indices for planes

pag, 0 0 0 ma, 0

Plane passing through points

0 0 na,

(h &k 1):(é L éj

p m n

with minimal possible b

60



Miller indices for planes

plan (111) plan (221)
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Miller indices for directions

[ = pa, +ma, +na,

P
h k [|=|—
ik 0=
p?m?nﬂhﬂkﬁlﬂb
integer

m
b

.
b_

—1=1

with maximal possible b

[001]

[111]  [o11]

L. T

[010]

[110]
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Miller indices for directions

Directions equivalent by symmetry =
Directions that can be obtained from a given direction
by application of the point symmetry operations of the

structure _
[001

001} [010]  [ooT
T ? 010 <1 OO>

‘ 010
[100
symmetry m?m [_ 00:

@

-




Miller indices for planes

Planes equivalent by symmetry =
Planes that can be obtained from a given plane
by application of the point symmetry operations of the

structure
(111)
_ (111
v (111) (I11) (111)
iy | 11
( I
(117)
ety m3m e |




Macroscopic symmetry of non-crystalline
materials

o0 :
—m Curie group
m

Symmetry operations link
macroscopically indistinguishable
states
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Macroscopic symmetry of non-crystalline
materials

A A oom Curie group

Symmetry operations link
macroscopically indistinguishable
states
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Macroscopic symmetry of non-crystalline
materials

NP cocomr  Curie group

Symmetry operations link
macroscopically indistinguishable
states
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Macroscopic symmetry of non-crystalline

materials
Curie group Geometrical bodies
0000 O sphere
0 | mm 8 cylinder
0O a cone
0000 o0 ~

0 ©/m
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Macroscopic symmetry of non-crystalline
materials

ocooom O000

'/F\) 'F—\)&
- ~

tee without sugar tee with sugar
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Macroscopic symmetry of non-crystalline
materials

molecular water

H,0

mirror image
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Sugar (D-glucose)

/7

CeH1206

D-glucose sweet

mirror image

K.

L-glucose Dbitter
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Macroscopic symmetry of non-crystalline
materials

o000 — 0000 difference may have important consequences

0000 materials are optically active

Electric field
of light

Electric field of light

tee with sugar
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Macroscopic symmetry of non-crystalline
materials

Right-handed screws, tips up

Y.

'

L

left-handed screws, tips up
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Macroscopic symmetry of non-crystalline
materials

ooZR

Right-handed screws,
50% tips up+ 50% tips down

T

@é é
JEe
02,

Left-handed screws,
50% tips up+ 50% tips down
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Macroscopic symmetry of non-crystalline
materials

Crystalline vs. non-crystalline group
relation

2,3,4,6 = o
222,32,422,622 = 02

mm?2, 3m, 4mm, bmm = oom

2/m,6,4/m,6/m = oo/m

mmm, 4/ mmm,6/mmm = oo/ mm
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Essential |

MiCroscopic symmetry MACroscopic symmetry

32 point
crystallographic

230 space groups groups
+

7 Curie groups

-Additional literature for basics of crystallography: “The basics of
Crystallography and Diffraction” (Ch. Hammond)
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