
Lecture 2

• Pauling rules, bonding and structures - continuation

• Simple crystalline structures – important examples

• Crystalline symmetry

• Macroscopic crystalline symmetry & point groups

• Point groups and real structures
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Pauling rules -3, 4, 5
• Rule 3: The bond is strongest when coordination polyhedra

share corners, less stable when they share edges, and least 
stable when they share faces.
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• Rule 4: Coordination polyhedra of small cations with large charge tend to
share corners (or not share any elements: olivine (Mg,Fe)2SiO4)

• Rule 5: Simpler structures are more likely than complex
(the rule of parsimony)

Why?



Polyhedra sharing – Rules 3 and 4
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BaTiO3, perovskite structure

Ti+4 is small, heavily charges, and corresponding polyhedra share corners
- Compare this to Ba+2
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For MgO:
rMg+2 = 0.86Å, rO = 1.26Å
rMg+2/rO = 0.86/1.26 = 0.68 --> CN(Mg)= 6 for Mg2+
Bonding force around Mg+ 2: +2 / 6=1/3
Oxygen CN: CN(O) x 1/3 + (-2) = 0 --> CN(O) = 6

Are other Pauling rules obeyed?

Pauling rules - MgO



Pauling rules – ReO3

• What is the structure based on rules 1 and 2?
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For ReO3:
rRe+6 = 0.76Å, rO = 1.26Å
rRe+6/rO = 0.77/1.26 = 0.61 --> CN(Re)= 6 for Re+6
Bonding force around Re+6: +6 / 6=1
Oxygen CN(O): CN(O) x1 + (-2) = 0 --> CN(O) = 2
Which type of coordination for O?
Each O is connected to 2 Re i.e.
each O is the bridge between
two octahedra.

Are other Pauling rules satisfied?
- Corners of octahedra are shared

ReVIOII3

R/ NC
>.225  4
>.414  6
>.732  8
>1.00  12



Pauling rules for structures with two cations
-example of BaTiO3

• Apply Pauling rules to determine coordination numbers (CN) 
for all ions in BaTiO3. Specify coordination numbers of the 
anions to each cation. 

• We start by finding radii of all ions. 
Recommendation: use the table composed after Shannon and 
Prewitt from the previous lecture,  
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Pauling rules for structures with two cations
-example of BaTiO3-
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We recall conditions for coordination of cation with respect to near-neighbor 
anions, which is given by:

CN(Ba)= 12 

CN(Ti)= 6 



Pauling rules for structures with two cations
-example of BaTiO3-
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We now need to find coordination number of oxygen, CN(O).

For this we use Pauling second rule. When there are two cations around 
oxygen, then the rule refers to both cations considered together:

CN(O)Ba*(Bond strength around Ba)+ CN(O)Ti*(Bond strength around Ti)
=absolute value of charge (valence) of oxygen. 

We first find bond strengths for the cations:
For Ba: Bond strength around Ba=(valence of Ba)/CN(Ba)=2/12=1/6
For Ti: Bond strength around Ti=(valence of Ti)/CN(Ti)=4/6=2/3



Pauling rules for structures with two cations
-example of BaTiO3-
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We get: 
CN(O)Ba *(Bond strength around Ba)+ CN(O)Ti*(Bond strength around Ti)=
absolute value of charge of oxygen --->

CN(O)Ba *(1/6)+ CN(O)Ti*(2/3)=2

This gives: CN(O)Ba =4, CN(O)Ti=2

Therefore, each O anion is linked to 2 Ti ions, and 4 Ba ions. We write:

BaXIITiVIO3
II+IV → BaXIITiVIO3

VI
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BaTiO3
Black:Ti; orange: O; Purple: Ba

BaTiO3 perovskite structure
Check coordination numbers for oxygen: 

CN(O)Ba =4, CN(O)Ti=2



Pauling rules
-coordination number check-

• Taking  

where X is an anion, and A and B are cations, then:
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Aa
CN (A)Bb

CN (B)X x
CN (X )

aCN (A) +bCN (B) = xCN (X )

BaXIITiVIO3
VI

For BaTiO3:

1*12+1*6=3*6 

Check that the ratio between ions of different 
kinds is respected



Pauling rules – limitations - comment on sharing of polyhedra
example: Al2O3 (corundum, alumina)

Unit cell view
Orange: O; Black: Al
Edge-shared octahedra
(we expect is shares corners rather than edges)
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HCP, 2/3 of octahedral sites are filled, primitive 
trigonal, distorted tetrahedron



Side-sharing octahedra
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Pauling rules – comment on sharing of polyhedra
example: Al2O3 (corundum, alumina)



Pauling rules – comment on sharing of polyhedra
example: Al2O3 (corundum, alumina)

Octahedra are deformed to make distance between cations larger
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Pauling rules – comment on sharing of polyhedra
example: Al2O3 (corundum, alumina)
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there are empty spaces in the structure, which 
allow for the distortion of tetrahedra



Important simple structures

• AX: MgO (rock-salt), CsCl (cesium cloride), ZnO (wurtzite), 

SiC (zinc blend) and its polymorphs

• AX2: SiO2 (quartz), ZrO2 (fluorite), TiO2 (rutile)…

• A2X3: Al2O3 (corundum)…

• ABX3: BaTiO3 (perovskite)…

• …
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AX structures

Rock salt: LiF, KCl, MgO, NiO, CaO, TiC,… close cubic (FCC) packing-
all octahedral sites are filled, tetrahedral sites empty; 
Cubic structure Fm-3m

Mg: blue
O: orange

111 view
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AX structures
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Zincblende: ZnO, ZnS, BeO, SiC, BN, GaAs,… close cubic packing (FCC)-
Small cations in tetrahedral sites. Half of tetrahedral sites filled.
Cubic structure F-43m – it is different from the example on the previous slide

Cubic but not centrosymmetric! - Zincblend is piezoelectric: to be discussed later

Orange: O
Gray: Zn

A

B

Tetrahedral site

Octahedral
site



AX structures

19This structure is polar: to be discussed later

Orange: O
Gray: Zn

Wurtzite: ZnO, AlN, SiC,,… hexagonal close packing (HCP)-
Small cations filling tetrahedral sites. Half of tetrahedral sites filled.

Hexagonal structure



Polytypes and polymorphs

• Zincblend and wurtzite are polytypes:
– FCC or hexagonal, half of tetrahedral sites filled

the same atoms arranged in a different packing

SiC: a large number of polytypes (dozens)

Polymorphs: compound appears in different crystalline forms.
If transformation from one phase to another can take place by 
small displacements of atoms the transformation is called 
displacive. If transformation requires bond braking it is called 
reconstructive. 
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AX2 structures
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SiO2 (silica) - Si filling half of tetrahedral sites.
Trigonal structure

Alpha-quartz is noncentrosymmetric (piezoelectric)
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Polymorphs of quartz

hight T, cubic



AX2 structures
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Fluorite: CaF2, ZrO2, CeO2,…
8-fold coordination of cations. 4-fold coordination of anions 
Cubic structure, some ditortions may result in materials with new 
properties (e.g. Ferroelectricity/antiferroelectricity) 

Orange: O,F Blue: Cation



AX2 structures
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Rutile: TiO2, SnO2, PbO2, VO2, NbO2, TeO2, MoO2, WO2, MnO2, 
RuO2, OsO2, IrO2 , GeO2
HCP packing; One half of octahedral sites filled by cations; 
Tetragonal structure



AX2 structures
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Anatase: TiO2 polytype; A tetragonal structure;
CCP packing; 
Here oxygen octahedra are sharing edges (Pauling rule is not respected – a metastable structure)



TiO2



AX2 structures
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Layer structures: Molybdenum disulfide: MoS2 polytype, WS2,
Van der Waals bonds between planes. Hexagonal structure

Trigonal prismatic coordination of S around Mo
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MoS2 applications

- MoS₂ is a transition metal dichalcogenide (TMD) with a layered structure similar to graphene.
- Unlike graphene (which is gapless), monolayer MoS₂ has a direct bandgap (~1.8 eV), making 
it highly suitable for transistors, photodetectors, and optoelectronic applications.



ABX3 structures
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BaTiO3
Black:Ti; orange: O; Purple: Ba

ABX3: perovskites BaTiO3, Pb(Zr,Ti)O3, CH3NH3PbI3
FCC derived structure; cubic parent structure, distortion in low-
temperature phases (tetragonal, rhombohedral) – new properties



ABX3 structures
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Perovskite structure ABX3:
CH3NH3PbI3; orthorhombic 
structure or tetragonal or…

Distorted octahedra;
Large atom (Pb) in the center of 
octahedra,

Red: I; Black: Pb; Small atoms: H,N,C- CH3NH3 molecule

Compare: 

Methylammonium Lead Iodide
methylammonium trihalogenoplumbates

organic molecules are at the place of A-atoms – solar cells



Crystalline symmetry

Macroscopic crystalline symmetry 
and point groups
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Translational symmetry in 3D
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!"# !"!#!$% !!!!
++=

translation vector
fundamental translation vectors

!"# !! integer

Translation vector makes lattice (Bravais Lattice)

!"# !!! !!!
lattice constants



These crystalline structures have the same 
Bravais lattice
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Crystalline Symmetry
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Reflections

mirror planes  



Crystalline Symmetry
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2-fold axes: 

rotation axes:

Order 2, 3, 4, 6



Crystalline Symmetry
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Reflection + translation

glide plane

!!

Symmetry element 
= reflection + a/2 translation



Crystalline Symmetry
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rotation + translation

2-fold screw axis

!!

Symmetry element 
= 180 o rotation+ a/2 translation

180°



Elements of crystalline symmetry
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center of symmetry

mirror plane

glide plane

n-fold rotation axis

n- fold screw axis

n- fold inversion axis
n = 2, 3, 4, 6

x, y, z

-x, -y, -z

!
πϕ !

=

translations



Elements of crystalline symmetry
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center of symmetry

mirror plane

2-fold axis

3-fold axis

CsCl

4-fold axis

Cl

Cs

- Not all symmetry elements are independent
- A 2-fold rotoinversion axis is equivalent to a 
mirror plane , that is why a symbol “bar 2” is 
rarely used



Elements of crystalline symmetry
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Hexagonal Close-packed Structure (hcp)

x
• • • • •

A-layer tops

+
B-layer tops

6-fold screw axis

Stacking A + B + A 

Stacking A + B + C 

Other symmetry elements:
- mirror  planes (passing through atoms)
- glide planes (passing between the atoms) 



Elements of MACroscopic crystalline symmetry
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center of symmetry

mirror plane

glide plane

n-fold rotation axis

n- fold screw axis

n- fold inversion axis

translations

n-fold rotation axis

center of symmetry

mirror plane

n- fold inversion axis

MACroscopic symmetryFine symmetry



Elements of MACroscopic crystalline 
symmetry
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MACroscopic symmetryFine symmetry

230 space groups 32 point groups

group = set of symmetry elements of an object



Space group à point group
(example)
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AlN-based 
filter

P63mc 6mmà
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Lecture 1 45
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Stereographic projection is used in 
crystallography for 2D representation of 
orientation of crystal axes and faces

For building up stereographic projection the crystal is imagined to be at the centre of a sphere (called 
hereafter a stereographic sphere). The normals to the faces are imagined to radiate from the centre and 
to intersect the sphere in an array of points… 
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Stereographic Projection
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Now to we represent this 3D array of points in 2D as shown 
below i.e. we project them on the equatorial plane of the 
stereographic sphere using south pole as a projection center  

Wulff net is used for measuring 
angles between the poles 

cubic crystal:
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Monoclinic

Triclinic

Orthorhombic

Trigonal

Tetragonal

Hexagonal

Cubic

Systems 

no axis

!"#"

!"#""" ⊥⊥

!"!"!"!

32 point groups

!"#"

!"#"

!"#"

inversion

inversion axes

rotation axes
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Stereographic projections 

a point

P

p

p
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Stereographic projections 
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Stereographic projections 
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Stereographic projections 

4mm, C4v
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Si RoR/I R/I-P In P Su

Monoclinic

Triclinic

Orthorhombic

Trigonal

Tetragonal

Hexagonal

Cubic

Si = simple

R/I = inversion axes

R/I - P = inversion axes +
planes

I = inversion

P = planes

Ro = rotations only 

Su = super

Systems Types 
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Polarity 

Centrosymmetric

Non-centrosymmetric
Non-polar

Non-centrosymmetric
Polar
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4/mmm, D4h

Tetragonal

Centrosymmetric

center of
symmetry 

top bottom
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4/m, C4h

Tetragonal

Centrosymmetric

center of
symmetry 

top bottom
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4mm, C4v

Tetragonal

Non-centrosymmetric

top bottom
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3-fold

4-fold

Symmetry of CsCl structure

Cubic

Centrosymmetric

m3m
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Symmetry of ZnS 
zinc blende structure

As

Ga

3-fold4-fold

Cubic

Non-centrosymmetric

43m



Miller indices for planes
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Miller indices for planes
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Miller indices for directions
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Miller indices for directions
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Directions equivalent by symmetry =
Directions that can be obtained from a given direction
by application of the point symmetry operations of the

structure

[ ]!!"
[ ]!!"

!""
[ ]!"!

symmetry !!!

[ ]!""

[ ]!""

[ ]!"!
[ ]!"!

[ ]!!"



Miller indices for planes
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Planes equivalent by symmetry =
Planes that can be obtained from a given plane 

by application of the point symmetry operations of the
structure

!"""# !"""#

!"""#
!"""#
!"""#
!"""#
!"""#
!"""#
!"""#
!"""#

{ }!!!

symmetry !!!



Macroscopic symmetry of non-crystalline 
materials
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!
!
∞ Curie group

Symmetry operations link 
macroscopically indistinguishable

states  



Macroscopic symmetry of non-crystalline 
materials
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!∞ Curie group

Symmetry operations link 
macroscopically indistinguishable

states  



Macroscopic symmetry of non-crystalline 
materials
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!∞∞ Curie group

Symmetry operations link 
macroscopically indistinguishable

states  



Macroscopic symmetry of non-crystalline 
materials
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!∞∞

Curie group

!!!∞

!∞

Geometrical bodies

∞
!!∞!∞

∞∞

sphere 

cylinder 

cone 

?



Macroscopic symmetry of non-crystalline 
materials
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!∞∞ ∞∞!∞∞

tee without sugar tee with sugar

!∞∞ ∞∞



Macroscopic symmetry of non-crystalline 
materials
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H
O
H

molecular water

H20

water

mirror image

H
O
H

water
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D-glucose L-glucosesweet bitter

C6H1206

mirror image

Sugar (D-glucose)



Macroscopic symmetry of non-crystalline 
materials
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∞∞!∞∞

difference may have important consequences

tee with sugar

!∞∞ ∞∞−

∞∞ materials are optically active 

Electric field of light

Electric field
of light



Macroscopic symmetry of non-crystalline 
materials

73

!∞ !∞
Right-handed screws, tips up left-handed screws, tips up



Macroscopic symmetry of non-crystalline 
materials
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!!∞ !!∞
Right-handed screws, 

50% tips up+ 50% tips down
Left-handed screws,

50% tips up+ 50% tips down



Macroscopic symmetry of non-crystalline 
materials
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Crystalline vs. non-crystalline group 
relation

!!!! !!"#!$#"#!% ∞⇒

!!!!!!!! ∞⇒!"#"$"%

∞⇒!"#"$"%
!"!!#$!!#%!#!!! ∞⇒

!!!!!!!!!!! !!"#!$# ∞⇒



Essential I
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MACroscopic symmetryMICroscopic symmetry

230 space groups

32 point 
crystallographic

groups
+

7 Curie groups 

-Additional literature for basics of crystallography: “The basics of 
Crystallography and Diffraction” (Ch. Hammond)



Essential II
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Centrosymmetric

Non-centrosymmetric
Non-polar

Non-centrosymmetric
Polar


