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In the previous chapter we have laid down the basic concepts of the quantum mechan­
ical theory of electrons and nuclei in mutual interaction. According to the adiabatic 
principle, the system of light particles (the electrons) is preliminarly studied with the 
heavy particles (the nuclei) fixed in a given spatial configuration; the total groimd-state 
energy of the electronic system, thought of as a function of the nuclear coordinates, 
becomes then the potential energy for the nuclear motion. We are interested here in 
small displacements around the equilibrium configination of the ground adiabatic en­
ergy surface (supposed to be non-degenerate). Within the harmonic approximation, 
we describe the dispersion curves for normal mode propagation in crystals, and intro­
duce the concept of phonons, as travelling quanta of vibrational energy. In the study 
of the lattice vibrations of ionic or partially ionic crystals (polar crystals), essentially 
new features appear in the long-wavelength limit; in polar crystals, the coupling of op­
tical vibrational branches with the electromagnetic field leads to the concept of mixed 
phonon-photon quasiparticles, known as polaritons. 
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Fig. 1 Longitudinal displacements in a one-dimensional monatomic lattice. The equilibrium 
positions tn = na are indicated by circles; the displacements Un at a given instant are 
indicated by arrows. 

1 Dynamics of monatomic one-dimensional lattices 

To describe the lattice vibrations of crystals, we consider first linear chains of equal 
atoms (present section), then linear chains with a basis of different atoms (Section 2), 
and finally general three-dimensional structures (Section 3). This sequence of increas­
ing sophistication is adopted because some physical concepts are better illustrated 
in one-dimensional situations, where notations and technicalities can be kept at the 
essential. 

So, we begin by considering a one-dimensional chain, of lattice constant a, formed 
by a (large) number N of atoms of mass M. We indicate by Un the (longitudinal) 
displacement of the n-th atom from the equiUbrium position tn = na, at a particular 
time (see Fig. 1). We denote by Eo{{un}) the total groimd-state energy of the crystal 
Hamiltonian, with the nuclei fixed in the positions Rn = na-\-Un'', the energy Eo{{un}) 
is also called static lattice energy. The ground state of the crystal is supposed to be 
non-degenerate for all configurations {un} of interest. 

In agreement with the general adiabatic principles of Section VIII-2, the total 
ground-state energy Eo{{un}) of the interacting electronic-nuclear system, with the 
nuclei fixed in the configuration Un^ becomes the "potential energy" for the nuclear 
motion. It is also assumed that, the forces Fi = -'dEo{{un})/dui acting on the nuclei 
depend on the instantaneous nuclear positions {un}] retardation effects due to the 
finite propagation velocity of light are neglected at this stage and must be properly 
included, whenever necessary (see Section 7). 

In the study of small oscillations, it is convenient to expand the total ground-state 
energy Eo{{un}) in increasing powers of the displacements Un] we have the Taylor 
expansion 

1 v ^ / d^Eo \ , , , 

(derivatives evaluated at the equihbrium configuration carry the subscript 0). In the 
expansion (1), the linear terms in the displacements are not present since dEo/dun = 0 
at the equifibriiun configuration. The total ground-state energy -Eo(O) at the equilib-
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rium configuration is important in the discussion of the cohesive energy, but irrelevant 
m the discussion of lattice vibrations. The truncation to quadratic terms in the expres­
sion (1) is called "harmonic approximation"; in general the anharmonic terms (cubic, 
quartic terms and so on) are taken into account only after the harmonic approximation 
has been carried out. 

In the harmonic approximation, which is appropriate for sufficiently small displace­
ments, the total crystal energy (1) becomes 

4"'™^({"n}) = EO{0) + \Y1 Dnn'UnUn' , (2) 
nn' 

where 

\dundun'Jo 

denote the second derivatives of the static lattice energy Eo{{un}) evaluated at the 
equilibrium configuration. The quantities Dnn' are called force constants^ and the 
matrix D formed with the force constants Dnn' is called force-constant matrix. The 
force constants Dnn' represent the proportionality coefiicients connecting the forces 
acting on the nuclei with the displacements suffered by the nuclei; in the harmonic 
approximation, in fact we have 

OE^(harm) 

Fn = - ^ = -Yl ^r^n'Un' . (4) 
aun 

There are some general symmetries and constraints that must be obeyed by the 
force-constant matrix D. Prom the definition (3), it follows that the force-constant 
matrix D is real and symmetric 

Dnn' = Dn'n - (5a) 

The translational symmetry of the lattice requires 

Dnn' = Drum' if n̂ " ^n' — tm — ^m' • (5b) 

Furthermore we have the general and important "sum rule" 

^ Dnn' = 0 for any n ; (5c) 
n' 

this is a trivial consequence of the fact that the forces, given by Eq. (4), vanish not 
only when all nuclear displacements are zero, but also when all nuclear displacements 
are equal. Eq. (5a) and Eq. (5c) show that the sum of the matrix elements of any row 
or any column of the force-constant matrix D vanishes. 

We consider now the classical equation of motion for the nth nucleus of mass M in 
the position Rn = na-\-Un under the force Fn\ we have 

MUn = - X I ^rin'Un' (6) 



Mo?{q) = D{q) t 

n' 
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with n = 1,2,... , AT. The set of coupled differential equations (6) can be solved, in 
general, looking for solutions periodic in time of the form Un{t) = An exp{—iu t). In 
the present case, we can take advantage of the translational symmetry of the force-
constant matrix D in real space; this suggests to solve Eqs. (6) looking for solutions 
in the form of travelling waves, periodic in space and time, of the type 

iXn(t) = Ae^(^^"-^*) . (7) 

Replacing Eq. (7) into Eqs. (6), we have that the phonon frequencies a; are given by 
the relation 

The above expression can be recast in the form 

, ^ (8a) 

where 

' ~ " • (8b) 

notice that the Fourier transform D{q) of the force-constant matrix elements Dnn' 
does not depend on the specific value of n because of the property (5b). 

Equation (8a) provides the dispersion relation UJ = uj{q) connecting the phonon 
frequency to the phonon wavenumber of the travelling plane wave of type (7). Notice 
that the displacements (7), are unaffected by changes of q by integer multiples of 27r/a; 
the independent values of q are confined within the Brillouin zone —ir/a < q < n/a. 
When standard Born-von Karman boundary conditions are applied, i.e. one requires 
Un{t) = Un-\-N{t)^ the allowed values of q within the Brillouin zone become discretized 
with values m{27r/Na) and m integer; the number of allowed wavenumbers within the 
Brillouin zone equals the munber of unit cells of the crystal (see Section I-l). We now 
apply our analysis to the specific case of a linear chain of atoms with nearest neighbour 
interactions only. 

Linear monatomic chain with nearest neighbour interactions 

To show the essential aspects of the lattice vibrations in the hnear chain, we sup­
pose that the only relevant inter-atomic interactions occur between nearest neighbour 
atoms; in other words, we assume that the only force constants different from zero are 
Dnn^ Dnn-\-i and Dn-in- Ftom the general properties of the force constants summa­
rized by Eqs. (5), it is seen that there is a unique independent parameter (denoted 
below by C), and it holds 

Dnn = 2C, Dnn^l=Dn-ln = -C . (9) 

The energy (2) of the linear chain, in the harmonic approximation and nearest 



SOLID STATE PHYSICS 311 

Fig. 2 Phonon dispersion curve for a monatomic linear lattice with nearest neighbour inter­
actions only; the Brillouin zone is the segment between —7r/a and +7r/a. 

neighbour interaction becomes (taking £"0(0) as the reference energy) 

^(harm) ^ ^c'£{'^ul - U„U„+i - TX„U„_i) = ^Cj^Ct i^ - Un+x)' . (10) 
n n 

Equation (10) is quite intuitive and represents the elastic energy of a chain of atoms, 
connected to nearest neighbours with springs of constant C. 

The classical equations of motion (6) for the nuclear vibrations are thus 

MUn = -C{2Un - Un+1 - Un-l) (11) 

can for any n integer number. The set of discrete coupled differential equations (11) 
be solved looking for travelling waves, periodic in space and time, of the form Un{t) = 
A exp{iqna — iojt). By direct substitution, or equivalently from Eqs. (8), one obtains 

The dipersion relation for normal modes is thus 

/ 4 C , . 1 , 

(12a) 

(12b) 

and is illustrated in Fig. 2; we see that the spectrum of vibrational frequencies extends 
from zero to a cutoff frequency ĉ max = yJ^C/M. 

It is interesting to consider the normal modes in the long wavelength limit qa <^\. 
The dispersion relation (12b) takes the form 

u; = d — aq = Vsq [qa < 1) ; 

the proportionality coefficient Vs between phonon frequency u; and phonon wavenum-
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Table 1 Energy units of most frequent use for phonons. 

hu (i/ = 10̂ 2 hertz) = 4.1357meV 

leV//ic = 8065cm-^ 

for brevity: leV<—> 8065 cm ~̂  

lmeV<—y 8.065 cm"^ 

hLj{u; = 10̂ ^ rad/sec) = 6.5822 meV 

leV/kB = 11605 K 

leV^—y 11605 K 

1cm 0.124 meV 

ber q represents the velocity of the sound in the medium, and is given by 

Vs = a . (12c) 

From Eq. (12c), we can estimate the value of the cutoff angular frequency 

V M a 
10^cm/sec ^.n , , 

,^ / = 10^^ rad/sec . 
10-8 cm ^ 

A typical vibration spectrum extends in general to the infrared region, up to energies 
hu) of several tens of meV (see Table 1). 

In the long wavelength limit, we can perform a continuous approximation to the 
set of discretized coupled differential equations (11); in fact {—2un + Un-\-i + Un-i)/o? 
can be considered as the finite difference expression of the second order derivative 
d'^u/dx^. Equation (11) is thus equivalent to Mu = Ca?d'^u/dx^ and the propagation 
velocity of the elastic wave is again given by Eq. (12c). 

2 Dynamics of diatomic one-dimensional lattices 

We consider now the dynamics of a diatomic linear chain, of lattice constant ao, with 
two atoms of mass Mi and M2 in the unit cell; this model can be considered as the 
prototype of a crystal with basis. In the equilibrimn configuration, we assume that 
the atoms of mass Mi occupy the sublattice positions Ith = nao, while the atoms of 
mass M2 occupy the sublattice positions E^^ = {n-\- l/2)ao (see Fig. 3). 

We denote by Un the displacements of the atoms of mass Mi and with Vn the 
displacements of the atoms of mass M2. For simplicity we assume that only near­
est neighbour atoms interact with elastic forces of spring constant C. The classical 
equations of motion for the two types of particles are 

Miiin = -C{2Un - Vr^i - Vn) 
(13) 

for any integer number n. 
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Fig. 3 Longitudinal displacements in a one-dimensional diatomic lattice. The equilibrium 
positions of the two sublattices of atoms, of mass Mi and M2, are indicated by black and 
white circles, respectively; the displacements Un and Vn at a given instant are indicated by 
arrows. 

y2C/M* 

Fig. 4 Phonon dispersion curves of a diatomic linear chain, with nearest neighbour atoms 
interacting with spring constant C. The masses of the atoms are Mi and M2 (with Mi > M2); 
M* is the reduced mass. 

To solve the set of discrete coupled differential equations (13), we look for travelling 
waves, periodic in space and time, of the form 

Unit) = Ai e^(9n«0-u;t) ^jjd ^^(^) ^ ^ 2 e^(9^«o+9ao/2-a;t) (^4) 

We notice that the vibrations of atoms of the same sublattice in different cells have 
the same amplitudes and phase relations of Bloch type. 

Replacing (14) into (13), we obtain 

- M l u^Ai = -C{2Ai - A2 e-^^^°/2 - A2 e^^" /̂̂ ) 

-M2 u;^A2 = -C{2A2 - Ai e'^^^^/^ - Ai e^^^ /̂̂ ) . 

The two linear homogeneous equations in the two unknown amplitudes Ai and A2 
have a non-trivial solution if the determinant of the coefficients of Ai and A2 is zero, 
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namely 

2 C - M i a ; 2 _ 2 C c o s ^ 

- 2 C c o s 2 ^ 2 C - M 2 a ; 2 
= 0 . 

The eigenvalues are given by 

and the corresponding amplitudes satisfy the relation 

Ai 2Ccos(gao/2) 
(15b) 

A2 2C-Miu^ 

The dispersion relations (15a) are illustrated in Fig. 4. We have now two branches, 
the lower one called "acoustic" and the upper one called "optical", with a frequency 
gap between them. In the particular case that Mi=M2, the gap between the acoustic 
branch and the optical branch disappears and we recover the result of the previous 
section [in the case Mi = M2, Fig. 4 and Fig. 2 coincide exactly, once the trivial 
folding due to the fact that ao = 2a is performed]. 

Long wavelength limit of a diatomic linear chain: acoustic and optical modes 

We consider now the normal modes of a diatomic chain in the long wavelength limit 
qao <C 1. For small gao, the two roots a;̂  and the corresponding amplitudes (given by 
Eqs. 15) are 

2C / ao \2 
u;^ = 

Mi-hM2 
( "^ ) (f -^ 0{q^) Ai = Ai acoustic branch 

and 
2 _ ^ ^ , f^f 2 \ 

~ TP "̂  ^ ( ^ ) MxA\ = -M1A2 optical branch , 

where M* is the reduced mass given by 1/M* = (1/Mi) + (I/M2). 
In the acoustic branch, in the long wavelength hmit, the atoms vibrate in phase and 

with the same amplitude; the frequency u; is proportional to the wavenumber g, and 
the proportionaUty coefficient, the sound velocity v^, is given by 

/ (J oo 
^ ' " " y (Ml + M2)/2 2 * 

The above relation is the obvious counterpart of expression (12c), if we notice that the 
average mass (Mi -hM2)/2 replaces the mass M; a and oo/2 denote nearest neighbour 
distance in the monatomic and diatomic models, respectively; C is the spring constant. 

In the upper branch, A\ and A2 have opposite signs and absolute values inversely 
proportional to atomic masses; this means that the two atoms in the unit cell move in 
opposite directions, while the "center of mass" of the unit cell remains fixed. As ^ —)> 0, 
the frequency ct;(g) of the optical branch tends to the finite value CJQ = \ /2C/M*. 
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It is instructive to consider the optical modes of the diatomic chain in the continuous 
approximation; this is useful also to justify the origin of the name attached to such a 
branch. For optical modes in the long wavelength limit, we can assume that nearest 
neighbour atoms on the same sublattice have the same displacements. Eqs. (13) can 
be recast in the form 

Miil = - 2C{u - v) (16a) 

M2V = - 2C{v - u) , (16b) 

where the discretized index n is now replaced by the continuous variable x in the 
argument of the functions u{x,t) and v{x,t). In optical modes, the atoms in the two 
sublattices move against each other; so it is convenient to discuss optical vibrations via 
the relative displacement variable w = u — v.liwe divide both members of Eq. (16a) 
by Ml, both members of Eq. (16b) by M2, and subtract, we obtain 

w = —LJIW (17) 

where UQ = y/2C/M*; the relative motion of the atoms Mi and M2 around the center 
of mass of the unit cell is harmonic with frequency ĉ o-

The optical modes owe their name to the fact that they are expected to couple 
strongly with electromagnetic fields (of appropriate frequency). Suppose in fact that 
the diatomic crystal can be pictured as composed by ionic (or partially ionic) units, 
with effective net charge ±e* {polar crystals). In the presence of electric fields, the 
equations of motion (16) have to be modified in the form 

Miil = - 2C{u -v) + e*£ioc (18a) 

M2V = - 2C{v -u)- e*Eioc . (18b) 

We have indicated with Eioc the local electric field acting at the lattice sites, as 
this field may be different from the average macroscopic electromagnetic field; the 
distinction between local and average fields (if any) is discussed in Section 7-3. In 
terms of the relative displacement w we have 

e* 
w = -LJIW + ; ^ ^ i o c ; (19) 

the above equation describes the forced oscillations of a mechanical system of proper 
frequency CJQ, coupled to a driving field of some frequency a;; coupling effects are 
expected to be particularly significant when the frequency UJ is resonant or almost 
resonant with the optical mode frequency UJQ. A detailed analysis of the coupHng of 
photon and phonon modes in polar crystals, and the resulting polariton effects are 
discussed in Section 7. 

3 Dynamics of general three-dimensional crystals 

Crystal dynamical matrix and phonon frequencies 

In the previous two sections, we have discussed the lattice dynamics of one-dimensional 
crystals, with or without a basis. We complete now the subject, addressing the general 
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problem of lattice dynamics of three-dimensional crystals, with or without a basis; for 
this purpose, we follow step-by-step the script of the previous two sections. 

Consider a general three-dimensional crystal, with N unit cells, translational vectors 
tn, and a basis of atoms in the positions d i , d2, . . . , dn,,. We label atoms with 
two indices {ni/)y where the (Latin) index n denotes the imit cells of the crystal 
and the (Greek) index u the atoms inside the unit cell. According to the general 
principles of the adiabatic approximation, we consider first the nuclei fixed in the 
positions tn + dî  -|-Uni/, and we denote by Eo{{unu}) the total ground-state energy (or 
static lattice energy) of the electronic-nuclear system. The expansion of EQ up to second 
order in the displacements from the equilibrium positions {harmonic approximation) 
gives 

4^"^'"^({Un.}) = Eo{0) + i Yl Dnucc.n'u'a'UnucUn'u'cc' (20a) 

where a, a' = x^y^z; i/, z/' = 1,2,... , n^; n = 1,2,... , N. The "force constants" are 
defined as the second derivative of Eo{{uni,}) evaluated at the equiUbrium configura­
tion 

Dnua,n'uW = (^—^ ) • (20b) 

In the expansion (20a), the linear terms in the displacements are not present since 
dEo/dUni/a = 0 at the equilibriima configuration. 

The matrix D, formed with the "force constants" elements -Dni/a,n'i/'a'? obeys some 
general properties and constraints. Prom the definition (20b), we have immediately 
that the matrix D is real and symmetric, with 

The translation symmetry of the lattice implies 

(the presence of point symmetry operations may imply further constraints, that can 
be analysed with group theory considerations). Furthermore we have the general and 
important "sum rule" 

Y^Dnucc^n'u'cc'^^ (21c) 
n'v' 

[the proof is a straightforward generalization of what already done for the demonstra­
tion of Eq. (5c)]. 

The classical equations of motion for the nuclei in the instantaneous positions t^ + 
di/ -K Uni/ under the forces Fm/ = -dE^^^^dunu are 

MyUnvQ. = — 2_^ DnuoL.n'y'a' Un'u'a' (22) 
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where n, n' = 1,2,... , iV; z/, i/' = 1,2,... , n^; a, a' = x, 2/, 2;. The presence of transla-
tional symmetry suggests to solve the set of coupled differential equations (22) looking 
for solutions in the form of travelling waves of the type 

u„,(i) = A, (q ,a ; )e^( '»*"- ' ) . (23a) 

The polarization vectors Ai,a(q,a;) (i/ = 1,2,... ,72 ;̂ a = x,t/,2) of the vibrations of 
the nuclei within the primitive cell are left unspecified and are determined below by 
solution of an appropriate secular equation. Replacing (23a) into (22), we have 

n'l/'a' 

Non trivial solutions of Eq. (23b) are obtained by solving the determinantal equation 

(23c) Duaya'i^) " ^v^ ^a(x'^vy\\ = 0 

where 

^VQ.yot'\S\} — / ^^nvoc^n'v'oi' ^ 
- iq-(t - t „ / ) (23d) 

The matrix jD(q), with elements -Di/a,t/'a'(q) is called "t/ie dynamical matrix of the 
crystaF in reciprocal space. 

Equation (23c) is the fundamental eigenvalue equation for the normal modes of a 
crystal. The dynamical matrix P(q) has dimension 3nb, where Uh is the number of 
atoms forming the basis of the unit cell. The secular equation (23c) produces 3nb 
eigenvalues (called phonons or normal modes); at every vector q we have thus 3n6 
normal modes, giving rise to 3nb phonon branches as q is varied within the first Bril-
louin zone. For a crystal with N unit cells, the total number of normal modes equals 
^n^N, i.e. 3 times the total number of atoms. Let a;(q,p) (p = 1,2,... 3nb) denote the 
frequency of the p-th normal mode of wavevector q, and Aiy(q,p) (i/ = 1,2,... , n^) 
the corresponding polarization vectors. A mode a;(q,p) is called "longitudinal" (or 
"transverse") in the case the polarization vectors Ai,(q,p) are parallel to q (or per­
pendicular to q). Modes which involve oscillating electric dipoles are called "optically 
active" since they can couple directly with electromagnetic fields. 

Prom the standard algebraic properties of matrix eigenvalue equations, the eigen­
vectors of the secular equation (23c) satisfy the orthogonality relations 

^M^A*^(q,p) A^a(q,y) = W • 

The above relation can be written in extended form 

Ml At (q, p) • Ai (q, p') + • • • + Mn,A*„^ (q, p) • A „ , (q, p') = S^,^, . (24) 

In the case of a monatomic three-dimensional Bravais lattice, n^ = 1 in Eq. (24), and 
for the three branches it holds A*(q,p) • A(q,p') = Sp^pf. 
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It is interesting to consider the eigenvalue equation (23c) in the long wavelength 
limit q —> 0. Prom the sum rule (21c) and Eq. (23d) it follows 

^ i ^ z . a x a ' ( q = 0 ) = 0 ; 

in particular we have 

YlD,ayc.'{ci=0)^a. = 0 . (25a) 

The above equation shows that vibrations, with amplitudes Ajy'a' = A^' equal for 
all the atoms of the basis, satisfy the secular equation (23c) with frequency a; = 0. 
Thus any three-dimensional crystal presents three acoustic branches with a;(q) —> 0 as 
q ^ ' 0, with all atoms in the unit cell vibrating in phase and with the same amplitude. 
The remaining Srib — 3 "optical" modes vibrate in such a way that the motion of the 
center of mass of the cell is unaltered; in fact the orthogonality relation (24) to the 
acoustic modes, with polarization vectors A* independent from the atomic index, gives 

MlAi -f M2A2 + . . . + M^^An^ = 0 (25b) 

for any of the optical modes. 
Before considering a few examples of phonon branches in crystals, it is convenient 

to summarize the basic approximations contained in the dynamical matrix approach. 
According to the general adiabatic principle (see Section VIII-2), one preUminarily 
considers the nuclei fixed in a given configuration {Ri}, and determines (ab initio 
or semiempirically) the total ground-state energy Eo{{Ri}) versus {Ri} (the ground 
state is supposed to be non-degenerate). Then, the crucial assumption is done that 
the static lattice energy Eo{{Rj}), which is just a static property, actually controls 
the nuclear dynamics. To justify this crucial point, it is required that transitions from 
the ground adiabatic surface to the excited adiabatic surfaces, induced by the nuclear 
motion, can be neglected. It is also required that the forces acting on the nuclei depend 
on the instantaneous nuclear positions, so that retardation eff'ects can be neglected too. 
Finally, it is assumed that the displacements from equilibrium positions are sufficiently 
small to justify the expansion of Eo{{Ri}) to second order in the displacements. In 
summary, the basic approximations of the crystal dynamical matrix approach include 
(z) the adiabatic approximation, (ii) the harmonic approximation, and (Hi) instantly 
interparticle interactions. 

Phonon dispersion curves with the crystal dynamical matrix and short-range or 
long-range nature of force constants 

We wish now to provide a few illustrative examples of phonon dispersion curves in crys­
tals, obtained with the force constant approach. First principle methods based on the 
density functional theory have permitted the accurate calculation of the total ground-
state energy of several materials (with the nuclei fixed in chosen configurations); this 
has made it possible the more ambitious project of calculating the inter-atomic force 
constants in a number of cases. First principle calculations of force constants are in 
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Fig. 5 Phonon dispersion curves of aluminum along symmetry directions. The solid lines 
represents the calculations of A. A. Quong and B. M. Klein, Phys. Rev. B46, 10734 (1992) 
(copyright 1992 by the American Physical Society). Longitudinal and transverse acoustic 
branches are indicated by LA and TA (or TAi and TA2), respectively. The experimental 
points are from the papers of G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 (1966) and 
R. Stedman, S. Almqvist and G. Nilsson, Phys. Rev. 162, 549 (1967). 

general very demanding; thus most often, empirical assumptions and special models 
of interaction are made. The assumption of "two-body" central forces, acting between 
pairs of atoms composing the lattice is the most common; however in many cases 
this approximation is too drastic, and angular forces and torsional forces are to be in­
cluded appropriately. Often the force constants of the dynamical matrix are considered 
as disposable or semi-empirical parameters. 

Once a specific model of interatomic forces has been chosen, the dynamical matrix 
in reciprocal space can be set up and diagonalization at several points of the Bril-
louin zone provides the phonon dispersion curves of the crystal. Some crystals can 
be intuitively described as consisting of neutral atoms interacting with short-range 
forces] the force constants extend to a reasonably small number of shells (say nearest 
neighbours, second nearest neighbours and possibly a few more up to ten shells or so) 
and become safely negligible afterwards. Examples of crystals with short-range nature 
of inter-atomic forces include simple Bravais lattices, metals, homopolar elemental 
semiconductors (such as silicon and germanium). 

In polar crystals, such as ionic crystals and heteropolar semiconductors, the crystal 
lattice can be intuitively described as constituted by charged ions interacting both 
with short-range forces and long-range Coulomb forces. In the ionic picture of polar 
crystals, appropriate site dependent "Born effective charges" are attributed to the ions 
of the different sublattices, to mimic long-range interactions. 

The crystal dynamical matrix for polar crystals is obtained by direct summation 
of short-range terms and Ewald method for long-range Coulomb terms. It should be 
noticed that the dynamical matrix of polar crystals at small q is particularly vulnerable 
to the long-range nature of the force constants in real space; actually, the dynamical 
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Fig. 6 Phonon dispersion curves and density-of-states of Si and Ge calculated by P. Gian-
nozzi, S. de Gironcoli, P. Pavone and S. Baroni, Phys. Rev. B43, 7231 (1991) (copyright 1991 
by the American Physical Society). Longitudinal and transverse acoustic (or optical) modes 
are indicated by LA and TA (LO and TO), respectively. The experimental points are from 
G. DoUing, in "Inelastic Scattering of Neutrons in Solids and Liquids" edited by S. Ekland 
(IAEA, Vienna 1963) Vol.11, p.37; G. Nilsson and G. Nelin, Phys. Rev. B3, 364 (1971) and 
Phys. Rev. B6, 3777 (1972). Conversion to meV units can be done noting that 1 cm~^ = 
0.124 meV. 

matrix has a pathological behaviour (called "non-analyticity"), which is responsible 
of the transverse-longitudinal splitting of optical phonons (see Section 7 for further 
aspects). The effects due to the long-range nature of inter-atomic forces are evident in 
the optical phonon branches of polar semiconductors (see Fig. 7), and are even more 
important in typical ionic crystals (see Fig. 8). 

In Fig. 5 we show the phonon dispersion curves of aluminum, together with the ex­
perimental measurements obtained with coherent inelastic scattering of slow neutrons. 
Since aluminum crystallizes in a simple fee Bravais lattice, the phonon dipersion curves 
consist of three acoustic branches. The acoustic modes are degenerate at q = 0 ; along 
the high symmetry directions FL and FX the two transverse modes are degenerate; in 
directions of low or no symmetry, the three branches are non-degenerate. 

In Fig. 6 we show the phonon dispersion curves of silicon and germanium. Since 
these elemental semiconductors crystaUize in a fee lattice with two atoms per unit 
cell, we have now three acoustic branches and three optical branches. The acoustic 
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Table 2 Frequencies UJLO and UTO (in cm~^) of longitudinal optical and transverse optical 
phonons for six semiconductors. The calculations are taken from P. Giannozzi, S. de Gironcoli, 
P. Pavone and S. Baroni, Phys. Rev. B43, 7231 (1991), to which we refer for further details; 
experimental data are in parentheses. The static and the high frequency dielectric constants 
are also given; notice that the ratio UJIO/^TO equals (within experimental error) the ratio 

Si Ge GaAs AlAs GaSb AlSb 

u)LO 517 (517) 306 (304) 291 (291) 400 (402) 237 (233) 334 (344) 

UTO 517 (517) 306 (304) 271 (271) 363 (361) 230 (224) 316 (323) 

^ 1 1 1.15 (1.17) 1.22 (1.24) 1.06 (1.08) 1.12 (1.14) 

Ss 

£^oo 

12.1 

12.1 

1 

16.5 

16.5 

1 

12.40 

10.60 

1.17 

10.06 

8.16 

1.23 

15.69 

14.44 

1.09 

12.04 

10.24 

1.17 

branches as well as the optical branches are degenerate at q = 0. Along the high 
symmetry directions FX and FL the two transverse acoustic modes and the two trans­
verse optical modes are degenerate; in direction of low or no symmetry, all modes are 
non-degenerate. 

In Fig. 7 we show the phonon dispersion curves for heteropolar semiconductors 
GaAs, AlAs, GaSb and AlSb. In these crystals the inter-atomic forces include long-
range Coulomb interaction, because of the partial ionic nature of the chemical bond. 
Since these heteropolar semiconductors crystallize in a fee lattice with two atoms per 
unit cell, the phonon curves present three acoustic and three optical branches; as 
expected, the acoustic and optical branches are well separated in crystals where the 
mass difference of the two atoms in the unit cell is large. A most important feature of 
Fig. 7 is the longitudinal-transverse splitting of optical modes at q « 0; this splitting 
is the fingerprint of the long-range nature of inter-atomic forces, and is connected with 
the break of cubic symmetry, due to the induced dipoles accompanying the vibrational 
modes. A simplified modeUistic study of the long-wavelength optical phonons is given 
in Section 7. In Table 2 we report for convenience the frequencies of the optical phonons 
at the center of the Brillouin zone for the elemental semiconductors Si and Ge, and 
for the polar semiconductors GaAs, AlAs, GaSb, AlSb. 

As a final example, we report in Fig. 8 the phonon branches of LiF. Lithium fluoride 
is a typical ionic material with the NaCl structure; there are two ions in the unit cell, 
and there are thus three acoustic and three optical branches. The long-range nature of 
interionic forces produces a strong longitudinal-transverse splitting of optical modes 
at q « 0. In LiF the ratio of the low-frequency dielectric constant {Ss = 8.9) and 
high-frequency dielectric constant (£oo = 1-9) is relatively large, and so is the squared 
ratio of the measured LO and TO mode frequencies. 
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Fig . 7 Calculated phonon dispersion curves and density-of-states for binary semiconductors 
GaAs, AlAs, GaSb and AlSb [from P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, 
Phys. Rev. B43, 7231 (1991); copyright 1991 by the American Physical Society]. Longitudinal 
and transverse acoustic (or optical) modes are indicated by LA and TA (LO and TO), 
respectively. 
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Fig. 8 Measured phonon dispersion curves along three directions of high symmetry in LiF; 
the sohd curves axe a best least-squares fit of a parameter model [from G. Dolling, H. G. 
Smith, R. M. Nicklow, P. R. Vijayaraghavan and M. K. Wilkinson, Phys. Rev. 168, 970 
(1968); copyright 1968 by the American Physical Society]. 

4 Quantum theory of the harmonic crystal 

In the previous sections, we have discussed the lattice vibrations by means of the clas­
sical equations of motion. We can reconsider the problem from a quantum mechanical 
point of view, and show that the classical and quantum treatments are completely 
equivalent as far as dispersion curves are concerned; on the other hand, the quantum 
treatment of the elastic field shows that energies are discretized into quanta, called 
phonons. 

In Section 1, we have considered the classical dynamics of a monatomic linear chain; 
we consider now the quantum mechanical counterpart of the same problem. In the 
harmonic approximation, and nearest neighbour interactions (see Eq. 10), the Hamil-
tonian of the linear chain becomes 

^ = m ? A J ^ ^ "^ 9 ^ I Z ( 2 ^ n - '^n^n+l " '^nUn-\) , (26) 

where Un and p^ are the coordinate and conjugate moment of the nucleus at the nth 
site; these observables obey the commutation rules 

[^^n,Pn'] = ^^n,n' , [^^n^^n'] = \Pn,Vn'\ = 0 . (27) 

Instead of the dynamical variables Un and Pn, it is convenient to perform a canonical 
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transformation, with the final aim to put in diagonal form the Hamiltonian (26). We 
define the "phonon annihilation operator" Gq and the "phonon creation operator" aj 
as the following linear combination of displacements and momenta of the nuclei 

*n L 

4-:4E''"-VN 

Muj{q) 
2h 2hMuj{q) Pn 

(28a) 

(28b) 

The angular frequency uj{q) is at the moment left unspecified, and determined later so 
that to diagonalize the operator H. According to Eqs. (28), the phonon annihilation 
and creation operators are defined as linear combinations of the dynamical variables 
of all the nuclei, with appropriate phase factors exp{iqtn) of the Bloch form. 

It is easily seen that the transformations (28) from the set of operators Un^ Pm to 
the set of operators a^, aj are canonical, i.e. the commutation rules are preserved. For 
this purpose we remember the standard properties 

1. 5 3 e-^C'-')*" = 6,,, and 1 J ] e-^'(*"-"') = 5„,„, . (29) 

Prom the first of relations (29) and commutation rules (27), it is immediate to verify 
that 

[ag,aj,j =6q^q^ and ag,ag/J = [4 '4 ' = 0 ; 

thus the transformation (28) is canonical. 
With the use of the second of the relations (29), we can invert Eqs. (28) and obtain 

"" = -^E ^^y2Mw{q) 
e '̂'*"[a, + aL,] 

"" = V ^ E / 
hMujq) _,,t„ [a<,-aL,] . 

VF^V 2 

Insertion of Eqs. (30) into Eq. (26) gives 

4 i : ;^s [«'+«'-.) [-'+4] he'"-«-"•] 
We now exploit the arbitrariness in the frequency uj{q) by choosing 

(30a) 

(30b) 

"<') = ; :4 )^< ' - ' * -iqa\ (31a) 



SOLID STATE PHYSICS 325 

notice the equivalence of Eq. (31a) and Eq. (12). The Hamiltonian (26) of the hnear 
chain then becomes 

f/ = 5]M9)(4«5 + J) (31b) 

which is the sum of the Hamiltonians of N independent Unear oscillators of frequency 
uj{q). The quanta of energy hLj{q) are called phonons. 

Completely similar analysis and conclusions could be performed for the diatomic 
linear chain of Section 2, and the general three-dimensional crystal of Section 3; the 
dispersion relations provided by the quantum mechanical treatment and by the classi­
cal treatment are the same, since the unitary transformation from localized variables 
to itinerant (or collective) variables are the same in the classical and quantum treat­
ment. The quantum theory thus recovers the same u = a;(q,p) dispersion curves of 
the classical theory; however the quantum theory leads to the quantization of the elas­
tic field in terms of phonons, which can be considered as travelling quanta of energy 
hw = /ia;(q,p), wavevector propagation q and branch index p (p = 1,2,... 3nb). 

5 Lattice heat capacity. Einstein and Debye models 

Consider a crystal composed by N unit cells and a basis of rib atoms in the unit 
cell; the crystal volume is V = NQ and the total number of atoms is Na = N rib^ 
In the harmonic approximation, the system of Na vibrating atoms is equivalent to 
a system of 3Na independent (one-dimensional) oscillators of frequency a; = a;(q,p), 
where q assumes N allowed values in the first Brillouin zone, and p runs over the 
3nb branches of the phonon dispersion curves. The average vibrational energy of the 
harmonic crystal is the sum of independent phonon contributions; according to the 
Bose-Einstein statistics, we have 

[/vibr(r) = ^ 
q p 

hjj{ci,p) 
-Y-h-?ia;(q,p) 

I g;ia;(q,p)/fcBT 

The lattice heat capacity at constant volume, using Eq. (III-23a), is given by 

Cv{T) da vibr 

dT = ^ V . fi^(q,p) 

q p 

(32) 

The above expression allows the numerical calculation of the lattice heat capacity of 
crystals, once the phonon dispersion curves a;(q,p) are known. In the following we 
consider the apphcation of Eq. (32) to simple models of dispersion cmrves, that can be 
worked out analytically. 

Einstein model 

In the Einstein model, the actual frequencies of the normal modes are replaced by 
a unique (average) frequency Ue (Einstein firequency). If Na is the total number of 
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atoms, Eq. (32) for the heat capacity at constant volume becomes 

Cv{T) = 3 i V . — ^ ^ ^ / , ^ ^ _ ^ = SNakB ^ ^ J ( , W f c . T _ l ) 2 -

The behaviour of Cv{T) in the low and high temperature Umits is 

Cv ^ e'^^/^^'^ for keT < tlWe , 

and 

Cv -> SAT̂ fcB for ksT > fia;^ . 

In the high temperature limit the Einstein model recovers the Dulong and Petit value 
SNakB' In the low temperature limit, the Einstein model predicts for Cv{T) an expo­
nentially vanishing behaviour, contrary to the T^ experimental law. The origin of this 
discrepancy is the presence in crystals of the phonon acoustic branches, which can­
not be mimicked by a unique Einstein frequency, and actually need a more realistic 
description. 

Debye model 

Any three-dimensional crystal, with or without a basis, presents three acoustic branches 
with linear dispersion LJ = VsQ for small q. For simplicity we assume the same sound 
velocity Vg for each of the three acoustic branches and extend the linear dispersion 
relation to the whole Brillouin zone. To avoid inessential details, we approximate 
the Brillouin zone with a sphere (Debye sphere) of equal volmne (in order to pre­
serve the total number of allowed wavevectors); we indicate with QD the radius of the 
Debye sphere and define UJD = VSQD as the cutoff Debye frequency. We notice that 
(4/3)7rg£) = (27r)^/fi, where Q, is the volume of the unit cell in the direct space. 

The density of phonon states corresponding to a branch with linear dispersion re­
lation u = Vsq is easily obtained. In fact the number of states D{cj) du with frequency 
in the interval [a;, u; -h da;] equals the number of states in the reciprocal space with 
wavevector between [q,q-\- dq]; namely: 

D{uj) du; = —-—Airq'^dq = 7^-73 47r ( ~ ) d— . 
(27r)'* (27r)'̂  \VsJ Vs 

It follows 

(27r)3^''t;3 "" (27r)3 3 uj^ ~ UJI 

{N is the number of unit cells of the crystal). 
The contribution of the three acoustic branches to the average vibrational energy 

(apart the constant zero point energy) is 

U!^-^^^\T) = 3^^ N'^^^J^^CL. . (34) 

It is convenient to perform the change of variables x = hu/kBT and define XD = 

^W = 7:^^'^ = 7 ^ ^ ^ = « ^ "i^i-o (33) 
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hLJo/ksT = TD/T^ where To = huJul^B is called Debye temperature. The expression 
(34) becomes 

^(a.ous«c)(y) = mksT [ ^ ' f j ^ dx . (35) 

In the high temperature limit To < T, xp < 1 and e^ -I ^ x. The integral in 
Eq. (35) then gives x | ) /3 and hence c/̂ ^^^°"«*î )(j) = '^NUBT] thus for T > TD, the 
heat capacity of the three acoustic branches approaches the value ^Nks of the Dulong 
and Petit law. 

In the low temperature limit T <t:TD we can replace XD = oo, and the integral in 
Eq. (35) equals 7r'^/15 [for a simple and instructive demonstration of the value of this 
integral see for instance B. D. Sukheeja, Am. J. Phys. 38, 923 (1970)]. Equation (35) 
thus gives 

u!^:r'"'\T) = l^*Nks^ T«Tr,. 

Correspondingly, in the low temperature region the heat capacity becomes 

Cv{T) = ^7r^NkB^ T<^TD 

and the correct experimental T^ behaviour is reproduced. 
The Debye model can be refined in several ways. For instance the three acoustic 

branches could be treated with different sound velocities. In the case of crystals with a 
basis, one could use the Debye model for the acoustic modes and the Einstein model for 
the optical modes. We notice that, in the high temperatm-e limit, anharmonic effects 
are of increasing importance, and corrections to the Dulong and Petit value are likely 
to be of significance. In metals, besides the vibrational contribution to the internal 
energy, we have to consider the electronic contribution; the electronic contribution 
to the heat capacity is proportional to T at any temperature and may become the 
dominant term at very low temperatures (see Section III-3). We notice finally that the 
T^ law depends on the crystal dimensionality. In a two-dimensional crystal, instead 
of Eq. (33), the density-of-states D{{JJ) is proportional to UJ and the low temperature 
lattice heat capacity is characterized by a T^ power law. Similarly, in an ideal one-
dimensional crystal, one would obtain a lattice heat capacity linear in the temperature. 

6 Considerations on anharmonic effects and melting of solids 

So far we have confined our attention to the harmonic approximation for the lattice 
vibrations; in this approximation, phonons are elementary excitations of the elastic 
field, which do not decay and cannot interact. The anharmonic terms, which corre­
spond to cubic, quartic and successive terms in the series expansion of the crystal 
potential energy, have quite important consequences; for instance, cubic terms make 
possible three-phonon processes in which one-phonon decays into two phonons or two 
phonons merge into one. Among the physical effects of anharmonicity, we mention the 
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thermal expansion of solids, the change of normal mode frequencies with temperatm-e 
(or other parameters), the thermal resistivity, the broadening of one-phonon peaks in 
neutron scattering experiments, the solid-hquid transition. It is not our intention to 
discuss the wealth of problems related to anharmonicity; here we simply provide some 
intuitive remarks concerning the amplitude of localized motions of the atoms and the 
Lindemann criterion of melting. 

The mean quadratic displacement of a given atom about its equilibrium position 
is an important quantity, which influences X-ray scattering, cold neutron scattering, 
Mossbauer effect, and also determines the solid-liquid transition. We wish thus to give 
an estimate of the mean quadratic displacement of an atom around its equilibrium 
position as a function of temperature. 

For simplicity we consider a three-dimensional crystal with N unit cells and one 
atom per unit cell. In this case the normal modes consist of three acoustic branches, 
of frequency a;(q,p) and polarization vectors A(q,p) {p = 1,2,3). We can expand the 
displacement Un of the atom at in in normal modes; as a straight generalization of 
Eq. (30a), we have 

°"-5\/2ArM^A(,.p)e''-[a„ + «L„]. (36) 

To avoid unessential details, we assume that the three acoustic branches are de­
generate, so that u;(q,p) does not depend on the polarization index p. Furthermore, 
for any wavevector, the three polarization vectors A{q,p) form an orthonormal triad, 
that we intend to orient parallel to some fixed reference frame. Then the component 
of Un along a direction, say z, dropping the now unnecessary polarization index p in 
Eq. (36) becomes 

^--Ey2iVMa;(q)^'^*'" Clq + a_q 

We can now calculate the ensemble average (^^z) ^^ ^^^ quadratic displacement 
u^^. Without loss of generality we take t^ = 0, and use the standard results 

^^""^ = exp(^, /fcBT) - 1 ' ^"-"^^ = ^"^"''^ + ' ' 

where (a^aq) is the well known Bose population factor (see Appendix A). The average 
square displacement {uD of each atom thus becomes 

{ni)=Y: 2NMu{q) exp{hu{(i)/kBT) - 1 
+ 1 (37) 

It is instructive to calculate the average square displacement for the Debye model 
of the phonon spectrum. We have already seen that the density-of-states for any of 



SOLID STATE PHYSICS 329 

the three branches is given by Eq. (33). Equation (37) thus becomes 

If we introduce the dimensionless variable x = huj/kBT and define tkJD = ^BTD, we 
have 

(<) = 3 . , , ^ , / + - xdx (38) 

The integral can be easily performed in the limits of very high temperatures {T ^TD) 
using a series development of the exponential, and of very low temperatures {T <^TD)-

We have respectively 

{uD = 
iwhrE f̂'̂  ^«^^ 

MkeTl 

(39) 

for T:^TD . 

Prom Eq. (39), it is seen that the value of (ul) at zero temperatme is only somewhat 
smaller than the value of (ul) at the Debye temperature; in fact {UI)T=TD ^ M'"'1)T=O-

We can now establish a simple qualitative criterion for melting. Let ro be the mean 
radius of the unit cell, and consider the ratio 

When the ratio / reaches a critical value /c (almost independent from the specific 
sohd in consideration), melting is expected to occur. The melting temperature is thus 
given by the Lindemann formula 

Tm = ^MkBTlrl ; (40b) 

the critical value fc turns out to be of the order of 0.2-0.3 in many solids. 
Another interesting conclusion can be done on the stability of one-dimensional and 

two-dimensional crystals. In these cases, the calculation of the mean quadratic dis­
placement in the plane or in the chain (using the appropriate density of phonon 
states), leads to a divergent value at any temperature. Thus one-dimensional and 
two-dimensional crystals are unstable in the harmonic approximation; some three-
dimensional interaction (whatever small with respect to intralayer or intrachain inter­
action) is necessary to stabilize low-dimensional structures. 

7 Optical phonons and polaritons in polar crystals 

7.1 General considerations 

In Section 3, we have studied the crystal lattice vibrations by means of the dynamical 
matrix formahsm. The dynamical matrix treatment implicitly assumes that the inter-
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Fig. 9 (a) Schematic behaviour of phonon dispersion curves of a cubic homopolar semicon­
ductor (or insulator) with two equal atoms per unit cell, along a high symmetry direction, 
(b) Schematic behaviour of phonon dispersion curves of a cubic heteropolar semiconductor 
(or insulator) with two different atoms per unit cell, when retardation effects are ignored, (c) 
Superimposed to the previous phonon dispersion curves, there is now the photon dispersion 
curve a;(q) = c q/y/e^^ assuming momentarily no coupUng between electromagnetic waves 
and lattice vibrations. We have indicated by ô ^ -y/eoo^To/c w {y/e^Vs/c){2ir/a) the point 
at which the photon-like dispersion curve crosses the transverse phonon dispersion curve. In 
the figure, the slope of the photon dispersion curve (of the order of the velocity of light) and 
the slope of the acoustic modes (of the order of sound velocity) could not be drawn in scale, 
(d) Schematic picture of polariton effects. Phonons and photons with nearly equal wavevec-
tors and energies interact and determine the polariton dispersion curve. Polariton effects 
extend from q = 0 to approximately qo, which is a fraction of the order ofvs/c « 10~^ of the 
Brillouin zone dimension (see Fig. 10 and Fig. 11 for an expanded scale and further details). 
Notice that polariton effects restore the threefold degeneracy of the state of frequency LJLO 

at g = 0. 

atomic interactions are instantaneous. For polar crystals (such as ionic crystals and 
heteropolar semiconductors), the long-range nature of inter-atomic Coulomb interac­
tions requires a proper account of retardation effects due to the finite velocity of light. 
The coupling of transverse mechanical waves and electromagnetic waves is particu­
larly important for wavevectors q in the range from g = 0 to approximately the value 
^0, which denotes the crossing point of the dispersion curves of (uncoupled) photons 
and phonons (see Fig. 9). Before considering a continuous model to describe the op­
tical phonons in polar crystals, we briefly smnmarize some relevant phenomenological 
aspects. 

As a preliminary to further considerations, let us compare the vibrational curves 
of homopolar and heteropolar cubic crystals with two atoms per unit cell (see Fig. 6, 
Fig. 7 and Fig. 8 for specific examples; see also Fig. 9 for a schematic summary of 
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the important features). Prom the general discussion of Section 3, we have seen that 
the dispersion curves of a diatomic crystal consist of three acoustic and three optical 
branches. In cubic crystals, for vectors q along high symmetry directions, there are 
two degenerate transverse acoustic modes (TA) and one longitudinal acoustic mode 
(LA). Similarly, there axe two degenerate transverse optical modes (TO) and one 
longitudinal optical mode (LO), whose frequencies go to i&nite values LJTO and ULO 

in the long wavelength limit. In nonpolar diatomic cubic crystals, the optical modes 
for small wavelengths are degenerate, i.e. ULO = ^TO (Fig- 9a). On the contrary, the 
frequencies CJLO and UTO of longitudinal and transverse optical phonons are different 
in polar crystals, in spite of the cubic symmetry (Fig. 9b); this symmetry-breaking 
eflPect is due to the long-range nature of the electrostatic forces. 

The longitudinal-transverse splitting has imphcations also on the infrared dielectric 
properties of polar semiconductors and insulators. These materials are strongly reflect­
ing in the frequency region UJTO <UJ < ULO^ repeated reflexions can be used to select 
a band of wavelengths of infrared radiation, which is known as Reststrahlen (resid­
ual rays) radiation. Furthermore, the frequencies ULO and UJTO satisfy the Lyddane-
Sachs-Teller relation 

^lo _ 
UJ. TO 

(41) 

where Ss is the static dielectric constant and ôo is the high-frequency dielectric con­
stant. By £00 we mean the infrared dielectric constant at frequencies much higher than 
a typical phonon frequency (so that ionic displacement contribution can be neglected) 
and much smaller than any electronic transition frequency; e^o is determined by the 
electronic contribution to the static dielectric constant. If ULO and UJTO are signifi­
cantly different, the same occurs for Sg and ôo (and vice versa); in some materials 
(such as ferroelectric ionic crystals), UJTO is anomalously small and Ss anomalously 
large. 

The electromagnetic coupling between a radiation field and transverse optical phonons 
leads to the concept of new quasiparticles, known as polaritons] photons and transverse 
phonons strongly interact near the crossing of the corresponding dispersion curves, 
which are modified into polariton dispersion curves (see Fig. 9c and Fig. 9d). We pass 
now to interpret the phenomenological properties of polar crystals mentioned above, 
with a suitable continuous model. 

7.2 Lattice vibrations in polar crystals and polaritons 

The continuous approximation for optical vibrational modes in isotropic materials 

We can establish a reasonable simple model for polaritons, combining a continuous 
approximation for the description of the mechanical waves of the optical modes and 
the Maxwell equations for the description of the electromagnetic waves [J.J. Hopfield 
and D. G. Thomas, Phys. Rev. 132, 563 (1963)]. We confine our attention here to 
polar cubic crystals with two atoms (cation and anion) in the unit cell, of effective 
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charge ±e*, mass Mi and M2 (and reduced mass M*). In optical vibrational modes, 
cations and anions move against each other, so we can discuss the motion of the ions 
in the unit cell by the relative displacement variable w. In analogy with Eq. (19), we 
expect for isotropic cubic crystals that the relative displacement variable w obeys the 
equation of motion 

w = - a ; 2 w - f ^ E . (42) 

Notice that in the case the eflFective charge e* vanishes, the three optical modes become 
degenerate, with frequency UTO =^LO = ^ O > and are dispersionless. The continuous 
model, smnmarized by Eq. (42), is rather simplified, but it has the merit to allow an­
alytic elaborations and to provide guidelines for more complicated situations. Among 
the limitations of the model, we notice that the local electric field acting on the site 
effective charge and the average electric field (due to any internal or external sources) 
are supposed to coincide; local field effects are introduced in Section 7.3. 

In order to estimate semi-empirically the quantity e*/M*, consider Eq. (42) in 
the presence of a static electric field Eg; the static ionic displacement is given by 
Ws = (e*/a;oM*)Es. The average ionic polarization of a crystal, of volume V and 
N unit cells, is Pion,s = (iV/F)e*Ws = (Ar/F)(e*V^o^*)Es. The static dielectric 
constant €s and the high-frequency dielectric constant ^oo are related by the expression 

Pion,s , 4niN/V)e*" 

Using the above equation, we can re-write Eq. (42) in the form 

The ionic contribution to the polarization (dipole per unit volimie) of the specimen 
is given by 

Multiplying both members of Eq. (43) by (iV/y)e* we obtain 

(44) 
47r 

Equation (44) is the very useful "constitutive" equation of polar crystals; it couples 
the electric polarization, produced by the vibrating lattice of ions, to the electric field 
in the crystal; the phenomenological coupling constant is given by uj%{e^ — £:oo)/47r. 

We consider first the propagation in the medium of longitudinal optical vibrations, 
in which case the polarization field and the electric field are also expected to be of 
longitudinal type with the form 

Pion(r, t) = Po e^(^—-*) with Pollq (45a) 

E(r, t) = Eoe^^^-'^-^*) with Eo||q . (45b) 
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We can easily show that for longitudinal fields we have 

EollPollq . 
47r 

hiQ = P o (45c) 

In fact the microscopic charge density accompanying the polarization field (45a) is 
given by pmicr = -divPion == -2gPoexp(iq • r - iut); the value EQ is determined so 
that divE = iqEoexp{iq^ • r — iut) = 47rpinicr/^oo- Also notice that the curl of the 
longitudinal fields (45) vanish identically. 

Inserting Eqs. (45) into Eq. (44), it is found that the frequency u for the longitudinal 
waves satisfies 

—(jj 
2 2 ^s ^o 2'-^s 

-LUn 

(46) 

Thus the longitudinal waves are characterized by the dispersionless relation 

2 2 ^s _ 2 

The effect of the long-range Coulomb field on the longitudinal optical vibrations does 
not introduce any dispersion; it however does increase the "restoring forces" and does 
increase the oscillation frequency from LJQ (the value neglecting long-range contribu­
tions) to ULO' 

We consider now the propagation in the medium of transverse optical vibrations, in 
which case the polarization field and the electric field are of transverse type, with the 
form 

Pion(r, t) = Po e (̂̂ '̂ —*) with Po 1 q 

E(r, t) = Eo e (̂̂ -̂ -'̂ *) with Eo JL q . 

It is shown below that for transverse fields we have 

Eo = 
Anu^ 

c^Q^ - Soo^'^ 
EollPolq. 

(47a) 

(47b) 

(47c) 

From Eq. (47c) it is seen that the ratio EQ/PQ for transverse fields depends both on 
q and a;, contrary to the situation for longitudinal fields expressed by Eq. (45c); also 
notice that for g —̂  0 and finite a;, Eq. (47c) coincide with Eq. (45c), and the transverse 
and longitudinal polaritons become thus degenerate. 

It is worthwhile to remark that the divergence of the transverse fields vanishes 
identically (in particular pmicr = -d iv Pion = 0 means that no microscopic charge is 
accompanying the polarization wave, and thus also divE = 0). For transverse fields 
curlE ^ 0; before considering the correct treatment of curlE with the Maxwell equa­
tions, we examine the so called electrostatic limit (also called the c -^ oo limit, or 
instantaneous interaction limit, or omission of retardation effects), which just consists 
in taking curlE = 0. Since also divE = 0, we conclude that the electric field accompa­
nying a transverse optical vibration vanishes; the frequency of the optical transverse 
modes would be unchanged with respect to UQ in the electrostatic approximation. 



334 IX LATTICE DYNAMICS OF CRYSTALS 

For the correct determination of curl E, we have to resort to the appropriate Maxwell 
equations 

c u r l E = — (48a) 
c at 

\dl> eoo^E 47r5Pion , . . , x 
c u r l H = - - — = — - ^ + ;T— . (48b) 

c at c at c at 
From the curl of both members of Eq. (48a), and using Eq. (48b) (in non-magnetic 
materials B = H), we have 

For transverse fields divE = 0; using the vectorial identity curlcmrl = graddiv — V^, 
it follows 

_V2E = - ^ E - ^ P i o „ ; (49) 

it is then seen by inspection that Eq. (47a) and Eq. (47b) imply Eq. (47c). 
We insert now Eqs. (47) into the constitutive Eq. (44) and obtain the compatibihty 

condition 

Eoot̂ ^ - (w^£8 + (?q^W + ^4^(1^ = 0 • (50) 

We can solve for oî  and obtain the dispersion relation for polaxitons 

1 

curl curl E = - ^ E - -^Pio„ . 

2eo 
ujle^ + c^q^ ± ^(a;ges + c2«2)2_4^2c2^2g^ (51) 

The dispersion ciuves for polaritons, given by Eq. (51), are schematically shown in 
Fig. 10. 

It is interesting to examine the lower and upper polariton branches in the Umit of 
q < qo and q > qo^ where qo is the point for which (c/y/e^) qo = UTO- For q > qo^ 
the two solutions of Eq. (51), and the corresponding amplitudes EQ and PQ given by 
Eq. (47c) are 

u^ =UJI = U^Q EO = 0 Po 7̂  0 

and 

UJ^ = — g ^ Po = 0 Eo 7̂  0 ; 

thus for q :$> qo the lower branch is a pure mechanical wave (with EQ = 0) and the 
upper branch is a pure electromagnetic wave (with PQ = 0). 

For q <^qo^ the two solutions of Eq. (51), and the corresponding amphtudes EQ and 
Po given by Eq. (47c) are 

, ,2 __ , ,2 ^s ___ 2 p . _ T̂T 

and 

, ?• — rP- T> ~ ££—£22.1? 
a; — —q f 0 = —;; -"̂ o • 
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Fig. 10 Schematic description of polaritons. The dispersion curves of uncoupled transverse 
phonons and photons are shown by dashed lines; ô is the crossing point qo = U)TO/{c/y/e^)\ 
dispersion curves of the longitudinal phonon and transverse polaritons are shown by solid 
lines. In the lower polariton branch, the character of the dispersion curve changes from 
photon-like for g < go to phonon-like for g > go; in the upper branch, the character changes 
from phonon-like to photon-like as q increases. 

Thus for q smaller or near q^ the polariton modes have the character of coupled 
mechanical-electromagnetic waves, with EQ and PQ simultaneously different from zero. 
Notice in particular that for u; = UJLO we have EQ = — (47r/£:oo)Po both for transverse 
and longitudinal waves (see Eq. 45c); thus the degeneracy of transverse and longitu­
dinal modes is restored at q = 0. 

As an illustrative example of the concepts developed so far, we report in Fig. 11 
the polariton dispersion curves in GaP. The dispersion curves for optical phonons of 
long wavelength, in the absence of coupling to photons, are horizontal straight lines; 
transverse optical phonons and photons with nearly the same energy and wavevector 
are strongly coupled by the phonon-photon interaction and lead to the polariton 
dispersion curves. 

We have seen that transverse optical phonons and photons with nearly the same 
energy and wavevector are strongly coupled; we notice that quite similar coupling 
effects occur also for photons and transverse excitons (exciton states have been studied 
in Section VII-1). The mixed exciton-photon states are called exciton-polaritons and 
their dispersion curves have a behaviour qualitatively similar to the polariton curves 
so far discussed [see for instance L. C. Andreani in "Confined Electrons and Photons: 
New Physics and Devices" edited by E. Burnstein and C. Weisbuch, Plenum Press 
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Fig. 11 Polariton dispersion curves in GaP. In Fig. 11a the vector diagram of Raman spec­
troscopy measurements is also indicated; ICL, ks and q are the wavevectors of the incident 
laser photon, scattered Stokes photon, and polariton; 9 is the scattering angle. Values of 
energies and wavevectors which are kinematically possible at angle 6 are shown by long-
dashed lines. In Fig. l ib the plot of the observed energies and wavectors of polaritons and 
LO phonons are given. The figures are taken from C. H. Henry and J .J . Hopfield, Phys. Rev. 
Lett. 15, 964 (1965); copyright 1965 by the American Physical Society. 

1995, p.57, and references quoted therein]. An example of dispersion curves of exciton-
polaritons in CuCl is reported in Fig. 12. 

Infrared dielectric properties of polar crystals 

We can now discuss the infrared dielectric properties of polar crystals exploiting the 
"constitutive" equation (44), that couples the ionic polarization to the electric field 
in the medium. We consider the response of the system to a time-dependent driving 
electric field, periodic in space and time, of the form 

E(r, t) = Eo ê (<i-'̂ -'̂ *)ê * ; (52a) 

the electric field is turned on adiabatically from ^ = — oo, and this is achieved through 
the exponential factor exp{rjt) with 77 ~> O"*". By analogy to Eq. (52a), we assume for 

the expression 

Pion(r,t)=Poe^(^-^-'^*)e^* 

Replacing Eqs. (52) into Eq. (44), one obtains 

Po = ^ 0 

UQ — {u-\- ir]f 47r 
En 

(52b) 

(53) 

(for the present model under consideration, it is irrelevant whether EQ and PQ are 
parallel or orthogonal to the vector q). 

The dielectric function is given by e{u) = e^ -^ ATTPQ/EQ, where as before ^oo 
denotes the dielectric constant due to the electronic polarizability (at frequencies well 
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Fig. 12 Dispersion curves of the transverse exciton-polaritons of CuCl in the anomalous 
dispersive region. The dashed lines refer to the laser energies used to study luminescence 
line shape due the decay from bound pairs of excitons [from J. K. Pribram, G. L. Koos, 
F. Bassani and J. P. Wolfe, Phys. Rev. B28, 1048 (1983); copyright 1983 by the American 
Physical Society]. 

below any electronic transition resonance). Using Eq. (53), we obtain for the dielectric 
function of the polar crystal 

s{u) ,+ 
UJn 

UJK Up' — irju 
(es .) (54) 

(where 2r] has been relabelled as rj). The real and imaginary parts of the dielectric 
function are schematically indicated in Fig. 13. 

In the limit of ry —> 0"*" the real and imaginary parts of Eq. (54) become 

ei{uj) = £00 + 
^ 0 

O^n • UJ' 
r(^s .) = 

£sct;§ ) ^ 
CJn • LJ^ 

and 

e2{u)) = 
7ra;o(£g - Epo) 

[6{u - UQ) - 6{u; + uo)] 

(55a) 

(55b) 

At positive frequencies, ei{(jj) exhibits a pole for u = UJO = U^TO (transverse phonon 
frequency) and has a zero for u = uoy/sT/TZ = ^LO (longitudinal phonon frequency); 
the values OJTO a^id CJLO satisfy the Lyddane-Sachs-Teller relation (41). 

The dielectric function ei{u) is negative for UTO < U; < ^LO- In this region the 
reflectivity equals one, and the electromagnetic propagation in the crystal is forbidden. 
Outside the interval [U)TO^^LO] the dielectric function £1(0;) is positive and e2{uj) 
vanishes (when ry -> 0"^); in this region, the dispersion relations for electromagnetic 
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(es-Eoo) 

Fig. 13 Schematic behaviour of the real and imaginary part of the dielectric function £{UJ) 
of a polar crystal in the infrared region. Since ei{u;) and e2(^) are even and odd functions of 
a;, respectively, only the part a; > 0 is indicated. For rj -^ 0^, the real part ei{u) presents a 
pole at (jj—ivo, while the imaginary part €2{uj) presents a ^-like singularity at a;=a;o. 

(56a) 

waves propagating in a medium are determined by the requirement 

c 
(jj = q 

(see also the discussion at the end of Section XI-1). We have uj'^ei{oj) = c^q^; using 
for €i{(jj) the expression (55a), we obtain 

UJ' 
2 ^s ^0 ^ ^oo ^ .2^2 

Un —Up' = c-g (56b) 

It can be immediately seen that Eq. (56b) coincides exactly with Eq. (50), and defines 
thus the dispersion curves of the polaritons in the crystal. 

7.3 Local field effects on polaritons 

The internal field according to Lorentz 

In the discussion of Section 7.2 we have assumed that the macroscopically averaged 
electric field E and the local field Eioc are the same. In soUds, however, there can be 
significant diff^erences betweeen the two fields, and a central (and not easy) problem 
in the theory of dielectrics is the calculation of the electric field at the position of a 
given atom or molecule. Without entering in all the subtleties of this problem, we here 
briefly discuss the internal field according to Lorentz. 

Consider an isotropic dielectric crystal with the shape of a bar, very long in the 
z-direction (see Fig. 14). Imagine that microscopic electric dipoles are set up at the 
lattice points so to give rise to a uniform polarization P in the z direction. We notice 
that since P is uniform, we have pnjicr = —divP = 0 and no volume microscopic charge 
density is accompanying the polarization. We also notice that the geometry of the 
(thin and very long) bax is chosen so that P is parallel to the surface of the sample; 
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+ 
Fig. 14 Schematic representation of the Lorentz cavity for the calculation of the local electric 
field. The sample (with the ideal shape of a thin and infinitely long bar) is supposed to be 
uniformly polarized with P parallel to the surface of the sample. 

thus no discontinuity of the normal component of P occurs at the surfaces, and no 
microscopic surface charge density occurs either. Because of the absence of any internal 
and external charges, we have div E = 0; in stationary situations also curl E = 0 and 
the electric field is thus zero. 

Although the imiformly polarized specimen in the geometry of Fig. 14 is in a null 
electric field, it is easily realized that the local electric field acting on the microscopic 
dipoles, which are the origin of the macroscopic polarization field P , is in general 
different from zero. For simplicity, we confine our attention to the extreme tight-
binding limit, in which the crystal can be viewed as a collection of microscopic electric 
dipoles, well localized around the lattice sites; in this case, the local field can be 
obtained with the following arguments. 

Imagine we carve a small spherical region around the site at which the local field 
is to be evaluated. The medium contained in this region is considered as a discretized 
collection of dipoles and we determine the electric field at the center of the cavity by 
smnming up the electric fields generated by every dipole (except the one at the origin); 
when certain conditions of symmetry are fulfilled, the smn may vanish. For simplicity, 
we focus our attention on structures with sufiiciently high local symmetry (some cubic 
structures, for instance), so that the electric field generated by the point-like dipoles 
within the cavity vanishes at its center. 

The uniformly polarized medium outside the Lorentz cavity is dealt with in the con­
tinuum approximation (Fig. 14). The contribution due to the dipoles outside the ideal 
cavity, of radius R, can be obtained noticing that the discontinuity of the component 
of P normal to the surface implies a microscopic density of surface polarization charge 
given by 

(j^ = Pr. — —P cos 6 . 
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The electric field in the z direction at the center of the cavity due to the polarization 
charges at the cavity surface is 

r - 1 47r 
E o = / (-Pcose)-iid^-27r/isine-—2 cosl9= — P . (57) 

From Eq. (57), we see that in (above specified) isotropic materials in null electric 
field, the local field is (47r/3)P. If the electric field E applied to the material is different 
from zero, we have that the local field acting on the dipoles is the smn of E and 
(47r/3)P. In smnmary, in the Lorentz model, the relationship between local field, 
average macroscopic field and electric polarization is given by 

47r 
E,oc = E + y P . (58a) 

The above expression has several Umitations. These may be due to the overlapping of 
electronic clouds, or dipolar fields far from homogeneity. At times the Lorentz field is 
better approximated by the generalized form 

47r 
E,OC = E + 7 Y P , (58b) 

where 7 is a semi-empirical parameter. The case 7 = 0 indicates no distinction between 
local and average field (this is the case of free electrons or essentially spread out 
wavefunctions), while 7 = 1 is the case of strong localized dipoles in highly symmetric 
crystals. In even more refined models, 7 may be different for different sublattices. 

Internal field, polarizability and dielectric constant of materials 

Consider a system that can be visualized as constituted by N atoms (or molecules) in 
the volume V, and suppose for simplicity that the interaction between different atoms 
(or molecules) can be neglected. We wish to express the dielectric constant s of the 
material in terms of the polarizability a of the composing units. 

In the presence of an applied field E, the average polarization due to induced dipoles 
of polarizabihty a is 

P = - a Eioc = ya{E + 7 y P) • 

Hence 

p _ {N/V)a p ..^. 
l -7(47r/3)( iV/F)a ^ ^ 

It is interesting a brief discussion of Eq. (59). In the case the local field and the 
macroscopic field are the same (7 = 0), we have P = {N/V)aE; the polarization P is 
thus finite for any finite polarizabihty. In the case the local field and the macroscopic 
field are different (7 7̂  0), the polarization tends to diverge if ^{47r/3){N/V)a -* 1; 
this condition is known as "polarization catastrophe". For ordinary dielectrics, the 
denominator in Eq. (59) is safely far from vanishing condition. For very special crystals, 
candidate to become ferroelectric, the polarization catastrophe considerations are basic 
for understanding physical and structural properties near phase transition. Notice that 
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the polarization catastrophe concept is inherent to the local field theory (7 7̂  0) and 
is essentially a cooperative effect. 

Prom Eq. (59), we obtain for the dielectric constant {e = I + ATTP/E) the expression 

47r(Ar/V)a 
l -7(47r /3)( iV/y)a 

(60) 

Equation (60) expresses the dielectric constant in terms of the polarizability a of the 
composing units and of the parameter 7, which characterizes the local field. In the 
specific case 7 = 1 (Lorentz field), Eq. (60) becomes 

--^^l-(4V)(iV/y)a' ^''^^ 
The Lorentz formula (61a) can also be written in the form 

£ + 2 a y ' ^ ^ 

which is named Lorentz-Lorenz (or Clausius-Mossotti) relation. 

Infrared dielectric function and polaritons in polar crystals in the presence of local 
field effects 

In Section 7.2 the study of polaritons and optical properties of polar crystals in the in­
frared region has been done starting from the equation of motion (42). In the presence 
of local field effects we have rather to consider the equation of motion of the type 

w = - a ; ^ w + - ^ E i o c . (62) 

We now study the consequences brought about by the fact that the local electric field 
and the macroscopic electric field may be dijfferent. 

Consider Eq. (62) when the electric field and the relative displacement are periodic 
in space and time with the form 

Eioc = Eo e^(q-'-'^*)e^* and w = WQ e^^ '̂̂ '̂ ^^e^* ; 

the exponential exp(77t) with r/ -^ 0"̂  has been included, so that the electric field is 
turned on adiabatically at t = — 00. We obtain 

(a; H- ir})^ WQ = -UJI WQ -h -z-JZ ^0 e 

M 

Thus the ionic polarizabiUty becomes 

___ e*wo e*^ 1 ^ e*^ a;g 

(where 2r] has been relabeled as 77). The ionic polarizability has a significant frequency 
dependence in the infrared region. 

Let us indicate with a+ and a_ the electronic polarizabilities of the cation and the 
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anion of the polar crystal; in the infrared region we can neglect any frequency depen­
dence of electronic polarizabilities. Assmning that electronic and ionic polarizabilities 
add up, the total polarizability (per unit cell) becomes 

0 * 2 

QJtot(i*̂ ) = a^. H-a_ + 
UJI 

M*a;Q CJQ a;2 — ir]ijj 
(63) 

Inserting Eq. (63) into Eq. (60), we obtain for the dielectric function 

47r N 

e{u) = 1 + 
a-f. -h a_ 4- 777-7 T ^—r 

ir]u 

- v ^ ^ ^^V "++"- + M ^ : ; r ^ 
It is convenient to introduce the quantities Aex and Aion defined as 

(64) 

47r AT ^ 
and Aion = 

47riV 

3 V M*wl 

We can re-write Eq. (64) in the form 

3(Aei + Aion)t̂ o - ^AeijuP' + irjw) 
e{u}) = 1 + (65) 

(1 - 7 ^ 1 - 7>lion)wg - (1 - 7^el)(t^2 + j^^^) • 

With an eye to the denominator of Eq. (65) we define the "renormalized transverse 
frequency" WTO as 

2 2 •'̂  ~ 7"el ~ 7-^ion /oc\ 
^TO=^o ^_^^^ (66) 

(notice that in the case local field effects are negligible 7 = 0 and UTO = ^^O)- Prom 
Eq. (65) we obtain 

3(Aei + Aion)cc;o - 3Aei(u;^ + ir}uj) 1 
e{uj) = 1 + (67) 

1 - 7^61 uj^Q - (a;2 + ir]uj) 

The above expression, in the limiting case of static and high-frequency regions, takes 
the values 

es = 1 + 

Eq. (67) thus becomes 

3(Aei + •Aion)a;g 

(1 - 7^el)c^TO 
and = 1 + 

3Ael 

^/. .N_i . {es-l)ujlo-{eoo-\){uj'^^ir]u) _^ 
(jjiQ —(a;̂ H-z7/u;) 

CJ. TO 
u): ^jPQ —u^ — irju 

(ss-Soo) . (68) 

Comparison of Eq. (68) with Eq. (54) is self-explanatory; we see that local field ef­
fects do not change the form of e:(a;), except for the "renormalization" of the transverse 
and longitudinal frequencies UJTO and ULO- In particular the transverse frequency (66) 
decreases with respect to the short-range value a;o as an effect of long-range Coulomb 
interaction and tends to become soft. In any case the renormaUzed transverse and 
longitudinal frequencies are still related by the Lyddane-Sachs-Teller relation, as this 
depends on the analytic structure of the response function, rather than on the details 
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Fig. 15 (a) Temperature dependence of the soft transverse-optical branch in KTaOa [from 
G. Shirane, R. Nathans and V. J. Minkiewicz, Phys. Rev. 157, 396 (1967); copyright 1967 
by the American Physical Society], (b) Dielectric constant and reciprocal susceptibility of 
KTaOs as a function of temperature [from S. H. Wemple, Phys. Rev. 137, A1575 (1965); 
copyright 1965 by the American Physical Society]. 

of the orienting fields. We do not have to discuss again the polariton dispersion curves, 
as the treatment can be performed following step-by-step the previous section, once 
transverse and longitudinal frequencies are renormalized (as specified by Eq. (66)). 

An interesting implication of the local field theory is the possible occurrence of 
soft phonon modes. Prom Eq. (66) we see that UJTO is reduced with respect to a;o, 
since the long-range Coulomb interaction tends to counteract the short-range restoring 
forces. In the case, due to some mechanism, the frequency UTO tends to zero, from 
the Lyddane-Sachs-Teller relation we expect that 63 tends to infinity. Thus a polar 
crystal, which exhibits a transverse optical branch with a low frequency mode UTO^ is 
candidate to develop an extraordinary large polarization. Eventually the crystal might 
undergo a phase transition and acquire a spontaneous polarization, even in the absence 
of external fields. Neutron measurements and far infrared optical measurements well 
support the role of a soft transverse branch in some perovskite ionic crystals. 

As an example, we consider the case of perovskite potassium tantalite, and we 
report in Fig. 15 the temperature dependence of the soft transverse-optical branch 
(studied by inelastic neutron scattering techniques), as well as the dielectric constant 
measurements. Prom Fig. 15 it can be seen that the phonon energy of the soft mode 
at g = 0 is 10.7 meV at 295 K, and decreases to 3.1 meV at 4K; correspondingly 
the dielectric constant passes from the value e = 243 at 295 K to very large values 
(exceeding several thousands) at low temperatures. 
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Appendix A. Quantum theory of the linear harmonic oscillator 

Creation and annihilation operators 

We summarize here some results of the quantum theory of the hnear harmonic oscilla­

tor, that are prehminary and useful for the discussion of lattice vibrations of crystals. 

Consider a one-dimensional harmonic oscillator, of angular frequency a;, described 

by the Hamiltonian 

The lowering (or annihilation) operator and the raising (or creation) operator are 
defined by the following hnear transformations of the observables x and Px 

a = A / % x + i ~w- '\nmz^^ 
{A2) 

The operators a and a^ satisfy the commutation rule 

In terms of a and a\ the Hamiltonian {Al) takes the form 

H = hw{a^a + I) , (AA) 

as can be easily verified inserting expression (̂ 42) into Eq. (^44). 
In order to work out eigenvalues and eigenfunctions of the Hamiltonian (A4), we 

note a few relationships from the commutation relation (^3). We have 

aa t ^ ^ t a^a -h 1 , aa^'^ = [a^a + l)a^ = a^'^a + 2a^ , 

and in general 

aa^'^^a^'^a^na^''-^ . (A5) 

Let |0) denote the normalized state that satisfies the equation a|0) = 0; and let |n) 
indicate the normalized state 

n) = ^ a + ^ | 0 ) . (A6) 

The correctness of the normahzation follows from the observation that 

(0|a^at^|0) = (0|a^-iaa+"|0) = n(0 |a^- ia t^- i |0 ) = n! , 

where use has been done of Eq. {Ah). With similar procedures, we have that 

a^a|n) = n|n) . 

The number operator a^a indicates the niunber of quanta (phonons) in the state |n). 
The eigenvalues of the Hamiltonian (̂ 44) are thus E^ = (n^-^hu) with n = 0,1,2 
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Prom the expression (^46) of the normaUzed eigenstates of the harmonic oscillator, 
we see that the operators a and a^ satisfy the relations 

a \n) = y/n \n - 1} a^ \n) = VrTTT |n + 1) . 

We also notice that 

(n|a^^aP|n) = {n\a^P\n - p){n - p\a^\n) = ( y ^ n - p + 1 • . . . • i/n)^ n>p 

Thus 

n\/{n — p)\ iin>p 

0 if n < p 
{n\a^Pa^\n) = {A7) 

Statistical average of operators 

At thermodynamic equilibrium, the statistical average of an operator A is defined as 

where 

Pn = 

n=0 

^-{n-\-^)huj/kBT ^-nhuj/ksT 

(A8) 

y ^ g-(m+^)/iu>/fcBT y ^ /^-Hw/kBT^I' 

oo 

(A) = (l-^)52^"(n|A|n> 
n = 0 

with 2; = exp{—huj/kBT) 

Summing up the geometric series in the denominator, and replacing into Eq. (^8), we 
have 

{A9) 

Using Eq. (̂ 49) we can obtain the thermal average of operators of interest. For 
instance, for the thermal average of the number operator we have 

oo oo 

{a^a) = (l~z) ^ z''{n\a^a\n) = (1-z) J^^^'' 
n = 0 n=0 

oo 

n=0 

which expresses the standard Bose-Einstein statistics. We also have 

{aa}) = (a+a> + l 

{a a) = {a)o}) = 0 . 

With a little of algebra, we can prove the following relation 

(AlO) 

(a^PflP) = p! (a^o)P (All) 
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for any p = 0,1,2, In fact, from Eq. (A9) and Eq. {A7) we have 

n\ ^ ,. . ^ (n+p)! 
(at̂ â ) = (l-z) J2 

n{>p) 
{n-p)\ = (!--) E n+p 

n = 0 n! 
{A12) 

From Eq. (AlO) it foUows 

zP jl-z)zP 
{a^a)P -

{l-z)P (l-2)P^i 

( l - z ) z P i+(p+i,.+ <£±ffl£±2,.^.... 
n = 0 

= ('-)^'E^«"- (̂ ") 
From comparison of Eq. (^412) and Eq. (^413), we obtain Eq. (^11). 

Weyl identity 

We establish now two identities (the Weyl identity and the Bloch identity), which are 
very useful in the study of the correlation functions and Debye-Waller factor in the 
scattering theory of the harmonic crystal (see Chapter X). We remember the Weyl 
identity, discussed in standard quantum mechanics textbooks [see for instance A. S. 
Davydov "Quantum Mechanics" (Pergamon Press, Oxford 1965) p. 132]. 

Consider any two operators A and B, that commute with their commutator [A, B]] 
then we have 

e^e^ = e^+^et^'^1/2 if [A[AB]] = [BM.B]]=0. (AU) 

The proof of the above identity can be performed, for instance, following a procedure 
due to Glauber. We replace momentarily the operators A and B by xA and xB, 
respectively, where the parameter x will be set equal to 1 at the end of the reasoning. 
We consider then the following two operators depending from the parameter x: 

Fi{x) = e^^e^^ and F2{x) = e^^^+^^e^'t^'^l/^ (^^5) 

We show below that both functions Fi{x) and F2{x) satisfy the differential equation 

dP 
dx 

=={A-\-B-^x[A,B])F{x) . {A16) 

Eq. (i416), together with the boundary condition Fi(0) = ^2(0), implies Fi{x) = F2{x) 
for any x] in particular for x = 1 we have Eq. (^414). 

It is immediately seen that the function ^2(0:) satisfies Eq. (^416); thus, we have 
only to prove that also Fi{x) satisfies it. In fact 

dx 
[A + e^^Be-^^]Fi(x) . (All) 

We now use the operatorial identity 

'-'•"k'^-h'^^- O 1 + S + ^S'' + ^S^ + ... 
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= 0 + [0,5] + i [ [ 0 , 5 ] , 5 ] - f i [ [ [ 0 , S ] , 5 ] , S ] + . . . , (A18) 

which holds for any operator O and 5. The particular case S = -xA and O = B gives 
exp(x A) B exp(-a; A) = B-{-x[A, B]] this result, together with Eq. (All), proves that 
Fi{x) satisfies the differential equation (^416). 

Bloch identity 

We now prove that any operator C, arbitrary linear combination of phonon operators 
a and a^, satisfies the Bloch identity 

Cv _ ^(C^)/2 
(e"> (A19) 

this theorem states that the thermal average of the exponential of an operator, linear in 
a and a^ is just the exponential of half of the thermal average of the squared operator 
itself. 

Consider in fact the linear combination of the phonon operators a and a^ of the 
form 

C = cio^ H- C2a 

with ci and C2 arbitrary complex numbers. We remark that 

(^2) = ciC2 [2(aM + 1] . 

Using the Weyl identity it follows 

QC _ gCia^+C2a _ gCia^gC2agCiC2/2 

Performing the thermal average one gets 

^-^ m\n\ 
mn 

In the double sum only the terms with m = n survive, and using Eq. (^411) it follows 

^gC^ ^ gCiC2/2 y ^ ( £ l £ 2 r ; ^ ^ t ^ ^ m ^ gCiC2[2(ata)+lI/2 ^ 

m 

and the Bloch identity is thus proved. 
Prom the Bloch identity and the Weyl identity, we can obtain the following impor­

tant result. Let A and B indicate two operators linear in creation and annihilation 
operators; it holds 

(^e^e^) = (e^+^)ef^'^^/2 = e<^'+2AB+B2)/2 (A20) 

This relation will be used in Chapter X, in the study of the dynamical structure factor 
for the scattering of particles from harmonic crystals. 
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