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In the previous chapter we have laid down the basic concepts of the quantum mechan-
ical theory of electrons and nuclei in mutual interaction. According to the adiabatic
principle, the system of light particles (the electrons) is preliminarly studied with the
heavy particles (the nuclei) fixed in a given spatial configuration; the total ground-state
energy of the electronic system, thought of as a function of the nuclear coordinates,
becomes then the potential energy for the nuclear motion. We are interested here in
small displacements around the equilibrium configuration of the ground adiabatic en-
ergy surface (supposed to be non-degenerate). Within the harmonic approximation,
we describe the dispersion curves for normal mode propagation in crystals, and intro-
duce the concept of phonons, as travelling quanta of vibrational energy. In the study
of the lattice vibrations of ionic or partially ionic crystals (polar crystals), essentially
new features appear in the long-wavelength limit; in polar crystals, the coupling of op-
tical vibrational branches with the electromagnetic field leads to the concept of mixed
phonon-photon quasiparticles, known as polaritons.
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Fig. 1 Longitudinal displacements in a one-dimensional monatomic lattice. The equilibrium

positions t, = na are indicated by circles; the displacements u, at a given instant are
indicated by arrows.

1 Dynamics of monatomic one-dimensional lattices

To describe the lattice vibrations of crystals, we consider first linear chains of equal
atoms (present section), then linear chains with a basis of different atoms (Section 2),
and finally general three-dimensional structures (Section 3). This sequence of increas-
ing sophistication is adopted because some physical concepts are better illustrated
in one-dimensional situations, where notations and technicalities can be kept at the
essential.

So, we begin by considering a one-dimensional chain, of lattice constant a, formed
by a (large) number N of atoms of mass M. We indicate by u, the (longitudinal)
displacement of the n-th atom from the equilibrium position ¢,, = na, at a particular
time (see Fig. 1). We denote by Eo({un}) the total ground-state energy of the crystal
Hamiltonian, with the nucle: fized in the positions R,, = na+uy; the energy Eo({un})
is also called static lattice energy. The ground state of the crystal is supposed to be
non-degenerate for all configurations {u,} of interest.

In agreement with the general adiabatic principles of Section VIII-2, the total
ground-state energy Fo({un}) of the interacting electronic-nuclear system, with the
nuclei fixed in the configuration u,,, becomes the “potential energy” for the nuclear
motion. It is also assumed that, the forces F; = —~9E({u,})/0u; acting on the nuclei
depend on the instantaneous nuclear positions {u,}; retardation effects due to the
finite propagation velocity of light are neglected at this stage and must be properly
included, whenever necessary (see Section 7).

In the study of small oscillations, it is convenient to expand the total ground-state

energy Eo({u,}) in increasing powers of the displacements u,; we have the Taylor
expansion

() = 5o0)+ 5 3 (e ) e
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(derivatives evaluated at the equilibrium configuration carry the subscript 0). In the

expansion (1), the linear terms in the displacements are not present since Eq/0u,, = 0

at the equilibrium configuration. The total ground-state energy Fp(0) at the equilib-
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rium configuration is important in the discussion of the cohesive energy, but irrelevant
in the discussion of lattice vibrations. The truncation to quadratic terms in the expres-
sion (1) is called “harmonic approximation”; in general the anharmonic terms (cubic,
quartic terms and so on) are taken into account only after the harmonic approximation
has been carried out.

In the harmonic approximation, which is appropriate for sufficiently small displace-
ments, the total crystal energy (1) becomes

(harm) _ 1
Eg™™ ({un}) = Eo(0) + 5 Z Doty (2)
where
0°E,
Dn == | — 3
" <6un8un/ )0 3)

denote the second derivatives of the static lattice energy Eo({u,}) evaluated at the
equilibrium configuration. The quantities Dy, are called force constants, and the
matrix D formed with the force constants D, is called force-constant matriz. The
force constants D, represent the proportionality coefficients connecting the forces
acting on the nuclei with the displacements suffered by the nuclei; in the harmonic
approximation, in fact we have

BE(harm)
Fn = 6u = — Z Dnnl'u,nl . (4)

There are some general symmetries and constraints that must be obeyed by the
force-constant matrix D. From the definition (3), it follows that the force-constant
matrix D is real and symmetric

Dyt = Dy . (5a)
The translational symmetry of the lattice requires

Dnnt = Dy if b — b/ = b — tynr (5b)
Furthermore we have the general and important “sum rule”

Z D, =0 foranyn ; (5¢)

this is a trivial consequence of the fact that the forces, given by Eq. (4), vanish not
only when all nuclear displacements are zero, but also when all nuclear displacements
are equal. Eq. (5a) and Eq. (5¢) show that the sum of the matrix elements of any row
or any column of the force-constant matrix D vanishes.

We consider now the classical equation of motion for the nth nucleus of mass M in
the position R, = na + u, under the force F,,; we have

- Z Dnn’ Un/ (6)
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with n = 1,2,..., N. The set of coupled differential equations (6) can be solved, in
general, looking for solutions periodic in time of the form u,(t) = Anexp(—iwt). In
the present case, we can take advantage of the translational symmetry of the force-
constant matrix D in real space; this suggests to solve Egs. (6) looking for solutions
in the form of travelling waves, periodic in space and time, of the type

un(t) = Aeilama—et) (M

Replacing Eq. (7) into Egs. (6), we have that the phonon frequencies w are given by
the relation

—MLUZA - _ ZDnn’ e—iq(na—-nla)A .

The above expression can be recast in the form

Mu?(q) = D(q)|, (8a)

where

D(q) =) Dpp e~iame=m'a) |, (8b)
nl

notice that the Fourier transform D(g) of the force-constant matrix elements Dy
does not depend on the specific value of n because of the property (5b).

Equation (8a) provides the dispersion relation w = w(q) connecting the phonon
frequency to the phonon wavenumber of the travelling plane wave of type (7). Notice
that the displacements (7), are unaffected by changes of ¢ by integer multiples of 27/a;
the independent values of ¢ are confined within the Brillouin zone —7/a < ¢ < 7/a.
When standard Born—von Karman boundary conditions are applied, i.e. one requires
Un(t) = un4+n{t), the allowed values of ¢ within the Brillouin zone become discretized
with values m (2w /Na) and m integer; the number of allowed wavenumbers within the
Brillouin zone equals the number of unit cells of the crystal (see Section I-1). We now

apply our analysis to the specific case of a linear chain of atoms with nearest neighbour
interactions only.

Linear monatomic chain with nearest neighbour interactions

To show the essential aspects of the lattice vibrations in the linear chain, we sup-
pose that the only relevant inter-atomic interactions occur between nearest neighbour
atoms; in other words, we assume that the only force constants different from zero are
Dyny Dpny1 and Dy . From the general properties of the force constants summa-
rized by Egs. (5), it is seen that there is a unique independent parameter (denoted
below by C), and it holds

Dnn =2C ) Dnn+1 = D'n.—ln =-C. (9)

The energy (2) of the linear chain, in the harmonic approximation and nearest
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Fig. 2 Phonon dispersion curve for a monatomic linear lattice with nearest neighbour inter-
actions only; the Brillouin zone is the segment between —/a and +7/a.

neighbour interaction becomes (taking Fy(0) as the reference energy)
g™ — lC’Z:(2u2 — Uplnt1 — Uplp_1) = lCX:(u —uny1)? . (10)
0 9 - n n Yn+ n Un— 9 - (1 n

Equation (10) is quite intuitive and represents the elastic energy of a chain of atoms,
connected to nearest neighbours with springs of constant C.
The classical equations of motion (6) for the nuclear vibrations are thus

|Miln = —C(2up, — Uny1 — Un—1) I (11)

for any n integer number. The set of discrete coupled differential equations (11) can
be solved looking for travelling waves, periodic in space and time, of the form u,(t) =
A exp(igna — iwt). By direct substitution, or equivalently from Egs. (8), one obtains

) ) 1
—Muw? = ~C(2 — €'9% — ¢7%9%) = —4( sin? 590 - (128)

The dipersion relation for normal modes is thus

[4C . 1
W=7 |'sin §qa| , (12b)

and is illustrated in Fig. 2; we see that the spectrum of vibrational frequencies extends
from zero to a cutoff frequency wyax = 1/4C/M.

It is interesting to consider the normal modes in the long wavelength limit qa < 1.
The dispersion relation (12b) takes the form

w=\/%aq5vsq (ga < 1);

the proportionality coefficient v; between phonon frequency w and phonon wavenum-
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Table 1 Energy units of most frequent use for phonons.

hv (v=10"? hertz) = 4.1357 meV Fuw (w =103 rad /sec) = 6.5822 meV
1eV/hc=8065cm™! 1eV/kp =11605K
for brevity: leVe——s 8065cm™! leVe— 11605K
1 meVe—— 8.065cm™? lem™ «— 0.124 meV

ber g represents the velocity of the sound in the medium, and is given by

\/% a. (12c)

From Eq. (12¢), we can estimate the value of the cutoff angular frequency

/C  2v, 10°cm/sec
Wax = 2 in as = WéﬂT = 10" rad/sec .

Us

il

A typical vibration spectrum extends in general to the infrared region, up to energies
fuw of several tens of meV (see Table 1).

In the long wavelength limit, we can perform a continuous approximation to the
set of discretized coupled differential equations (11); in fact (—2up + Un+1 + Un—1)/ a?
can be considered as the finite difference expression of the second order derivative
8%u/8z2. Equation (11) is thus equivalent to Mi = Ca?8%u/8z? and the propagation
velocity of the elastic wave is again given by Eq. (12c).

2 Dynamics of diatomic one-dimensional lattices

We consider now the dynamics of a diatomic linear chain, of lattice constant ag, with
two atoms of mass M; and M, in the unit cell; this model can be considered as the
prototype of a crystal with basis. In the equilibrium configuration, we assume that
the atoms of mass M; occupy the sublattice positions Rf,l) = nagp, while the atoms of
mass Ma occupy the sublattice positions R = (n+1/2)ap (see Fig. 3).

We denote by u, the displacements of the atoms of mass M; and with v, the
displacements of the atoms of mass M,. For simplicity we assume that only near-
est neighbour atoms interact with elastic forces of spring constant C. The classical
equations of motion for the two types of particles are

Ml'&n = —C(2un — Un-1 — ’Un) (13)

My, = —C(2up, — Un — tUn41)

for any integer number n.



SOLID STATE PHYSICS 313

(n-1)ag (n-%)ao nag (n+%—)a0 | (n+1)ag (n+%)a0:

| ]

: M; M, : M, M, : M, M; l
—-—o—(O—0—(O—0—(—--

I » €« | >« | —> <« |

I upr vp |

| |

Up vp | oupy Vps! |
i

Fig. 3 Longitudinal displacements in a one-dimensional diatomic lattice. The equilibrium
positions of the two sublattices of atoms, of mass M; and M3, are indicated by black and
white circles, respectively; the displacements u, and v, at a given instant are indicated by
arrows.
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Fig. 4 Phonon dispersion curves of a diatomic linear chain, with nearest neighbour atoms
interacting with spring constant C. The masses of the atoms are M; and M, (with M; > M2);
M* is the reduced mass.

To solve the set of discrete coupled differential equations (13), we look for travelling
waves, periodic in space and time, of the form

Up(t) = A; €970~ w)  and g, (t) = A, eilenaotdac/2—wt) (14)

We notice that the vibrations of atoms of the same sublattice in different cells have
the same amplitudes and phase relations of Bloch type.
Replacing (14) into (13), we obtain

—M; w2A1 = —C(2A1 — A; e i990/2 _ As eiqao/2)
‘-Mz w2A2 = —C(2A2 - A1 e—iqao/2 - A1 6iqa0/2) B

The two linear homogeneous equations in the two unknown amplitudes A; and A;
have a non-trivial solution if the determinant of the coefficients of A; and A; is zero,
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namely

2C - Myw?  —2Ccos 72
=0.
—-ZC'c;osg-%g 2C — My w?

The eigenvalues are given by

2 )
2 1 1 1 1 __ 4sin®(gao/2) 15
w _C<—1+_"2 +C TR M, (15a)

and the corresponding amplitudes satisfy the relation

Ay 2Ccos(qao/2)
A, " 2C— Mu?
The dispersion relations (15a) are illustrated in Fig. 4. We have now two branches,
the lower one called “acoustic” and the upper one called “optical”, with a frequency
gap between them. In the particular case that M;=Mjy, the gap between the acoustic
branch and the optical branch disappears and we recover the result of the previous
section [in the case M; = M;, Fig. 4 and Fig. 2 coincide exactly, once the trivial
folding due to the fact that ap = 2a is performed].

(15b)

Long wavelength limit of a diatomic linear chain: acoustic and optical modes

We consider now the normal modes of a diatomic chain in the long wavelength limit

gag < 1. For small gag, the two roots w? and the corresponding amplitudes (given by
Egs. 15) are

9 2C (ao 2

— (2,2 4 _ .
YT M M \2 ) 7" +0(q") A; = Az acoustic branch
and
2 _ 2C 2 .
W= + O(¢“) My A; = —~MyA; optical branch ,

where M* is the reduced mass given by 1/M* = (1/M;) + (1/My).

In the acoustic branch, in the long wavelength limit, the atoms vibrate in phase and
with the same amplitude; the frequency w is proportional to the wavenumber ¢, and
the proportionality coeflicient, the sound velocity v,, is given by

S S O
TV (M + M2 2

The above relation is the obvious counterpart of expression (12c), if we notice that the
average mass {M; + M2)/2 replaces the mass M; a and ag/2 denote nearest neighbour
distance in the monatomic and diatomic models, respectively; C is the spring constant.
In the upper branch, A; and As have opposite signs and absolute values inversely
proportional to atomic masses; this means that the two atoms in the unit cell move in
opposite directions, while the “center of mass” of the unit cell remains fixed. As ¢ — 0,
the frequency w(g) of the optical branch tends to the finite value wy = /2C/M*.
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It is instructive to consider the optical modes of the diatomic chain in the continuous
approximation; this is useful also to justify the origin of the name attached to such a
branch. For optical modes in the long wavelength limit, we can assume that nearest
neighbour atoms on the same sublattice have the same displacements. Eqs. (13) can
be recast in the form

Miii=-2C(u—v) (16a)
My =-2C(v—u), (16b)

where the discretized index n is now replaced by the continuous variable z in the
argument of the functions u(z,t) and v(z,t). In optical modes, the atoms in the two
sublattices move against each other; so it is convenient to discuss optical vibrations via
the relative displacement variable w = u — v. If we divide both members of Eq. (16a)
by Mj, both members of Eq. (16b) by M, and subtract, we obtain

W= —wiw (17)

where wg = 1/2C/M*; the relative motion of the atoms M; and M around the center
of mass of the unit cell is harmonic with frequency wp.

The optical modes owe their name to the fact that they are expected to couple
strongly with electromagnetic fields (of appropriate frequency). Suppose in fact that
the diatomic crystal can be pictured as composed by ionic (or partially ionic) units,
with effective net charge +e* (polar crystals). In the presence of electric fields, the
equations of motion (16) have to be modified in the form

Miii = —2C(u — v) + €* Fioc (18a)
Myt =—-2C(v—u) — € Ejpc - (18b)

We have indicated with FEj,. the local electric field acting at the lattice sites, as
this field may be different from the average macroscopic electromagnetic field; the
distinction between local and average fields (if any) is discussed in Section 7-3. In
terms of the relative displacement w we have

e*
M+
the above equation describes the forced oscillations of a mechanical system of proper
frequency wp, coupled to a driving field of some frequency w; coupling effects are
expected to be particularly significant when the frequency w is resonant or almost
resonant with the optical mode frequency wg. A detailed analysis of the coupling of
photon and phonon modes in polar crystals, and the resulting polariton effects are
discussed in Section 7.

W= __w(Z),w + Eyoc > (19)

3 Dynamics of general three-dimensional crystals

Crystal dynamical matrix and phonon frequencies

In the previous two sections, we have discussed the lattice dynamics of one-dimensional
crystals, with or without a basis. We complete now the subject, addressing the general
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problem of lattice dynamics of three-dimensional crystals, with or without a basis; for
this purpose, we follow step-by-step the script of the previous two sections.

Consider a general three-dimensional crystal, with N unit cells, translational vectors
t,, and a basis of atoms in the positions dj, dg, ..., dn,. We label atoms with
two indices (nv), where the (Latin) index n denotes the unit cells of the crystal
and the (Greek) index v the atoms inside the unit cell. According to the general
principles of the adiabatic approximation, we consider first the nuclei fized in the
positions t, +d, + u,,, and we denote by Ey({u,,}) the total ground-state energy (or
static lattice energy) of the electronic-nuclear system. The expansion of Ey up to second
order in the displacements from the equilibrium positions (harmonic approzimation)
gives

1
B () =Bo@+5 3 Duanvetmatnve  (20)
nva,n’v’a’
where a,o’ = z,y,2; v,V =1,2,... ,n; n=1,2,... ,N. The “force constants” are
defined as the second derivative of Eg({u,.}) evaluated at the equilibrium configura-

tion
0*Ey
nvan’'vie — \ 4 & . 20b
b ” <8unua 6un’u’a’ ) 0 ( )

In the expansion (20a), the linear terms in the displacements are not present since
O0Fo/0unyq = 0 at the equilibrium configuration.

The matrix D, formed with the “force constants” elements Dypq nva’, Obeys some
general properties and’ constraints. From the definition (20b), we have immediately
that the matrix D is real and symmetric, with

Dnva,n’u’a’ = Dn'u'a’,nua . (213')
The translation symmetry of the lattice implies
Dnua,n’u’a’ = Dmua,m’u'a’ if th =t =ty —tm; (21b)

(the presence of point symmetry operations may imply further constraints, that can
be analysed with group theory considerations). Furthermore we have the general and
important “sum rule”

Z D‘nua,n'v’a’ =0 (210)
n'v’
[the proof is a straightforward generalization of what already done for the demonstra-
tion of Eq. (5¢)].
The classical equations of motion for the nuclei in the instantaneous positions t,, -+
d, + u,, under the forces F,, = —8E(()hmm)/ du,, are

Muﬁnua = - E Dnua,n’u’a’ Un'v'a! (22)

n'va’




SOLID STATE PHYSICS 317

where n,n’ =1,2,... ,N; 1,v/=1,2,... ,m; a,& = z,y, 2. The presence of transla-
tional symmetry suggests to solve the set of coupled differential equations (22) looking
for solutions in the form of travelling waves of the type

Uny(t) = Ay (q,w) eHFtn=w1) (23a)

The polarization vectors A,q(q,w) (v = 1,2,... ,np; @ = z,¥, ) of the vibrations of
the nuclei within the primitive cell are left unspecified and are determined below by
solution of an appropriate secular equation. Replacing (23a) into (22), we have

_Mu szucx = - z Dnua,n'u’a’ e_iq.(tn_—tnl)Au'a' . (23b)

n'v'a’

Non trivial solutions of Eq. (23b) are obtained by solving the determinantal equation

“Dua,u'a’ (@ - M, w25aa'5u,u’ ” =0{, (23¢)

where

DVG,V'G' (Q) = Z Dm/a,n’u’a' e—iq.(tn—tnl) . (23(1)

n’

The matrix D(q), with elements D,q o/(qQ) is called “the dynamical matriz of the
crystal’ in reciprocal space.

Equation (23c) is the fundamental eigenvalue equation for the normal modes of a
crystal. The dynamical matrix D(q) has dimension 3n;, where n; is the number of
atoms forming the basis of the unit cell. The secular equation (23c) produces 3n,
eigenvalues (called phonons or normal modes); at every vector q we have thus 3n,
normal modes, giving rise to 3n; phonon branches as q is varied within the first Bril-
louin zone. For a crystal with N unit cells, the total number of normal modes equals
3npN, i.e. 3 times the total number of atoms. Let w(q,p) (p = 1,2,...3n,) denote the
frequency of the p-th normal mode of wavevector q, and A, (q,p) (v =1,2,... ,np)
the corresponding polarization vectors. A mode w(q,p) is called “longitudinal” (or
“transverse”) in the case the polarization vectors A, (q,p) are parallel to q (or per-
pendicular to q). Modes which involve oscillating electric dipoles are called “optically
active” since they can couple directly with electromagnetic fields.

From the standard algebraic properties of matrix eigenvalue equations, the eigen-
vectors of the secular equation (23c) satisfy the orthogonality relations

Z M,,A,’ja(q,p) Aua(q) p/) = 61’:17' *

va

The above relation can be written in extended form

MyA%(q,p) - A1(q,p) + ... + M, Aj, (4,D) - An,(q,0)) = bpp - (24)

In the case of a monatomic three-dimensional Bravais lattice, ny = 1 in Eq. (24), and
for the three branches it holds A*(q,p) - A(q,p’) = épp-
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It is interesting to consider the eigenvalue equation (23c) in the long wavelength
limit q — 0. From the sum rule (21c) and Eq. (23d) it follows

EDua,u’a'(q=0) =0;

in particular we have
Z Dua,u’a’ (q:O) Ay =0. (253')
via'
The above equation shows that vibrations, with amplitudes A, v = Ao equal for
all the atoms of the basis, satisfy the secular equation (23c) with frequency w = 0.
Thus any three-dimensional crystal presents three acoustic branches with w(q) — 0 as
q — 0, with all atoms in the unit cell vibrating in phase and with the same amplitude.
The remaining 3n; — 3 “optical” modes vibrate in such a way that the motion of the
center of mass of the cell is unaltered; in fact the orthogonality relation (24) to the
acoustic modes, with polarization vectors A* independent from the atomic index, gives

MiA;+ MyAs + ...+ My, An, =0 (25b)

for any of the optical modes.

Before considering a few examples of phonon branches in crystals, it is convenient
to summarize the basic approximations contained in the dynamical matrix approach.
According to the general adiabatic principle (see Section VIII-2), one preliminarily
considers the nuclei fixed in a given configuration {R;}, and determines (ab initio
or semiempirically) the total ground-state energy Fo({R;}) versus {R;} (the ground
state is supposed to be non-degenerate). Then, the crucial assumption is done that
the static lattice energy Eo({Rr}), which is just a static property, actually controls
the nuclear dynamics. To justify this crucial point, it is required that transitions from
the ground adiabatic surface to the excited adiabatic surfaces, induced by the nuclear
motion, can be neglected. It is also required that the forces acting on the nuclei depend
on the instantaneous nuclear positions, so that retardation effects can be neglected too.
Finally, it is assumed that the displacements from equilibrium positions are sufficiently
small to justify the expansion of Eq({Rr}) to second order in the displacements. In
summary, the basic approximations of the crystal dynamical matrix approach include
() the adiabatic approzimation, (ii) the harmonic approzimation, and (iii) instantly
interparticle interactions.

Phonon dispersion curves with the crystal dynamical matrix and short-range or
long-range nature of force constants

We wish now to provide a few illustrative examples of phonon dispersion curves in crys-
tals, obtained with the force constant approach. First principle methods based on the
density functional theory have permitted the accurate calculation of the total ground-
state energy of several materials (with the nuclei fixed in chosen configurations); this
has made it possible the more ambitious project of calculating the inter-atomic force
constants in a number of cases. First principle calculations of force constants are in
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Fig. 5 Phonon dispersion curves of aluminum along symmetry directions. The solid lines
represents the calculations of A. A. Quong and B. M. Klein, Phys. Rev. B46, 10734 (1992)
{copyright 1992 by the American Physical Society). Longitudinal and transverse acoustic
branches are indicated by LA and TA (or TA; and TA3), respectively. The experimental
points are from the papers of G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 (1966) and
R. Stedman, 8. Almqvist and G. Nilsson, Phys. Rev. 162, 549 (1967).

general very demanding; thus most often, empirical assumptions and special models
of interaction are made. The assumption of “two-body” central forces, acting between
pairs of atoms composing the lattice is the most common; however in many cases
this approximation is too drastic, and angular forces and torsional forces are to be in-
cluded appropriately. Often the force constants of the dynamical matrix are considered
as disposable or semi-empirical parameters.

Once a specific model of interatomic forces has been chosen, the dynamical matrix
in reciprocal space can be set up and diagonalization at several points of the Bril-
louin zone provides the phonon dispersion curves of the crystal. Some crystals can
be intuitively described as consisting of neutral atoms interacting with short-range
forces; the force constants extend to a reasonably small number of shells (say nearest
neighbours, second nearest neighbours and possibly a few more up to ten shells or so)
and become safely negligible afterwards. Examples of crystals with short-range nature
of inter-atomic forces include simple Bravais lattices, metals, homopolar elemental
semiconductors (such as silicon and germanium).

In polar crystals, such as ionic crystals and heteropolar semiconductors, the crystal
lattice can be intuitively described as constituted by charged ions interacting both
with short-range forces and long-range Coulomb forces. In the ionic picture of polar
crystals, appropriate site dependent “Born effective charges” are attributed to the ions
of the different sublattices, to mimic long-range interactions.

The crystal dynamical matrix for polar crystals is obtained by direct summation
of short-range terms and Ewald method for long-range Coulomb terms. It should be
noticed that the dynamical matrix of polar crystals at small g is particularly vulnerable
to the long-range nature of the force constants in real space; actually, the dynamical
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Fig. 6 Phonon dispersion curves and density-of-states of Si and Ge calculated by P. Gian-
nozzi, S. de Gironcoli, P. Pavone and S. Baroni, Phys. Rev. B43, 7231 (1991) (copyright 1991
by the American Physical Society). Longitudinal and transverse acoustic (or optical) modes
are indicated by LA and TA (LO and TO), respectively. The experimental points are from
G. Dolling, in “Inelastic Scattering of Neutrons in Solids and Liquids” edited by S. Ekland
(IAEA, Vienna 1963) Vol.1I, p.37; G. Nilsson and G. Nelin, Phys. Rev. B3, 364 (1971) and

Phys. Rev. B6, 3777 (1972). Conversion to meV units can be done noting that 1 cm™'=
0.124 meV.

matrix has a pathological behaviour (called “non-analyticity”), which is responsible
of the transverse-longitudinal splitting of optical phonons (see Section 7 for further
aspects). The effects due to the long-range nature of inter-atomic forces are evident in
the optical phonon branches of polar semiconductors (see Fig. 7), and are even more
important in typical ionic crystals (see Fig. 8).

In Fig. 5 we show the phonon dispersion curves of aluminum, together with the ex-
perimental measurements obtained with coherent inelastic scattering of slow neutrons.
Since aluminum crystallizes in a simple fcc Bravais lattice, the phonon dipersion curves
consist of three acoustic branches. The acoustic modes are degenerate at q = 0 ; along
the high symmetry directions I'l. and T'X the two transverse modes are degenerate; in
directions of low or no symmetry, the three branches are non-degenerate.

In Fig. 6 we show the phonon dispersion curves of silicon and germanium. Since
these elemental semiconductors crystallize in a fcc lattice with two atoms per unit
cell, we have now three acoustic branches and three optical branches. The acoustic
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Table 2 Frequencies wro and wro (in cm™!) of longitudinal optical and transverse optical
phonons for six semiconductors. The calculations are taken from P. Giannozzi, S. de Gironcoli,
P. Pavone and S. Baroni, Phys. Rev. B43, 7231 (1991), to which we refer for further details;
experimental data are in parentheses. The static and the high frequency dielectric constants
are also given; notice that the ratio w},/w?, equals (within experimental error) the ratio
€s/€oo-

Si Ge GaAs AlAs GaSb AISb
wro 517 (517) 306 (304) 291 (291) 400 (402) 237 (233) 334 (344)
wro 517 (517) 306 (304) 271 (271) 363 (361) 230 (224) 316 (323)

: 1 1 1.15 (1.17) 1.22 (1.24) 1.06 (1.08) 1.12 (1.14)
TO

€s 12.1 16.5 12.40 10.06 15.69 12.04
€oo 12.1 16.5 10.60 8.16 14.44 10.24
£ 1 1 1.17 1.23 1.09 1.17

o <]

branches as well as the optical branches are degenerate at q = 0. Along the high
symmetry directions I'X and I'LL the two transverse acoustic modes and the two trans-
verse optical modes are degenerate; in direction of low or no symmetry, all modes are
non-degenerate.

In Fig. 7 we show the phonon dispersion curves for heteropolar semiconductors
GaAs, AlAs, GaSb and AlSb. In these crystals the inter-atomic forces include long-
range Coulomb interaction, because of the partial ionic nature of the chemical bond.
Since these heteropolar semiconductors crystallize in a fec lattice with two atoms per
unit cell, the phonon curves present three acoustic and three optical branches; as
expected, the acoustic and optical branches are well separated in crystals where the
mass difference of the two atoms in the unit cell is large. A most important feature of
Fig. 7 is the longitudinal-transverse splitting of optical modes at q = 0; this splitting
is the fingerprint of the long-range nature of inter-atomic forces, and is connected with
the break of cubic symmetry, due to the induced dipoles accompanying the vibrational
modes. A simplified modellistic study of the long-wavelength optical phonons is given
in Section 7. In Table 2 we report for convenience the frequencies of the optical phonons
at the center of the Brillouin zone for the elemental semiconductors Si and Ge, and
for the polar semiconductors GaAs, AlAs, GaSb, AlSb.

As a final example, we report in Fig. 8 the phonon branches of LiF. Lithium fluoride
is a typical ionic material with the NaCl structure; there are two ions in the unit cell,
and there are thus three acoustic and three optical branches. The long-range nature of
interionic forces produces a strong longitudinal-transverse splitting of optical modes
at q =~ 0. In LiF the ratio of the low-frequency dielectric constant (¢, = 8.9) and
high-frequency dielectric constant (£, = 1.9) is relatively large, and so is the squared
ratio of the measured LO and TO mode frequencies.
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Fig. 7 Calculated phonon dispersion curves and density-of-states for binary semiconductors
GaAs, AlAs, GaSb and AISb [from P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni,
Phys. Rev. B43, 7231 (1991); copyright 1991 by the American Physical Society]. Longitudinal
and transverse acoustic (or optical) modes are indicated by LA and TA (LO and TO),

respectively.
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Fig. 8 Measured phonon dispersion curves along three directions of high symmetry in LiF;
the solid curves are a best least-squares fit of a parameter model [from G. Dolling, H. G.
Smith, R. M. Nicklow, P. R. Vijayaraghavan and M. K. Wilkinson, Phys. Rev. 168, 970
(1968); copyright 1968 by the American Physical Society].

4 Quantum theory of the harmonic crystal

In the previous sections, we have discussed the lattice vibrations by means of the clas-
sical equations of motion. We can reconsider the problem from a quantum mechanical
point of view, and show that the classical and quantum treatments are completely
equivalent as far as dispersion curves are concerned; on the other hand, the quantum
treatment of the elastic field shows that energies are discretized into quanta, called
phonons.

In Section 1, we have considered the classical dynamics of a monatomic linear chain;
we consider now the quantum mechanical counterpart of the same problem. In the
harmonic approximation, and nearest neighbour interactions (see Eq. 10), the Hamil-
tonian of the linear chain becomes

1 1
H= Z mpi + 5 CZ(z’LL?L = UnpUn+1 — unun—-l) 3 (26)
n n

where u,, and p,, are the coordinate and conjugate moment of the nucleus at the nth
site; these observables obey the commutation rules
[Un, Pnr] = thbp e [tn, uns] = [Pn,Pnr] =0 . (27)

Instead of the dynamical variables u,, and p,, it is convenient to perform a canonical
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transformation, with the final aim to put in diagonal form the Hamiltonian (26). We
define the “phonon annihilation operator” a, and the “phonon creation operator” ag
as the following linear combination of displacements and momenta of the nuclei

1 (28a)

— 1 —igtn
aq—ﬁ;e Up + ¢ 2thqpn

1 ; Mw(q
1 - LS it )y _—" 28b
% \/N; “ 2th (28b)

The angular frequency w(q) is at the moment left unspecified, and determined later so
that to diagonalize the operator H. According to Egs. (28), the phonon annihilation
and creation operators are defined as linear combinations of the dynamical variables
of all the nuclei, with appropriate phase factors exp(igt,) of the Bloch form.

It is easily seen that the transformations (28) from the set of operators un, pn, to
the set of operators aq, a; are canonical, i.e. the commutation rules are preserved. For
this purpose we remember the standard properties

1 ! 1 ;
-]\7 Z e”’(q"q Vo — 6q,ql and N Z e—zq(t"_t"/) = 5n,n’ . (29)
tn

q

Mw(a)

7

From the first of relations (29) and commutation rules (27), it is immediate to verify
that

[aq,a;] = §g,¢ and [aq,aql] = [a};,a;] =0;

thus the transformation (28) is canonical.
With the use of the second of the relations (29), we can invert Egs. (28) and obtain

oo ot VS B
- \;%Xq: /ﬁMtzd(‘I) gidtn [aq —atq] ) (30b)

Insertion of Egs. (30) into Eq. (26) gives

H== 3 Tt ot oy

+ :11- %—KCZ [aq + af_q] [a_q + a};] {2 — e'e — e”iq“] .
q

We now exploit the arbitrariness in the frequency w(q) by choosing

(2 — €' — e %) |; (31a)
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notice the equivalence of Eq. (31a) and Eq. (12). The Hamiltonian (26) of the linear
chain then becomes

(31b)

H =Y ho(o)alq +3)

which is the sum of the Hamiltonians of N independent linear oscillators of frequency
w(q). The quanta of energy fw(q) are called phonons.

Completely similar analysis and conclusions could be performed for the diatomic
linear chain of Section 2, and the general three-dimensional crystal of Section 3; the
dispersion relations provided by the quantum mechanical treatment and by the classi-
cal treatment are the same, since the unitary transformation from localized variables
to itinerant (or collective) variables are the same in the classical and quantum treat-
ment. The quantum theory thus recovers the same w = w(q,p) dispersion curves of
the classical theory; however the quantum theory leads to the quantization of the elas-
tic field in terms of phonons, which can be considered as travelling quanta of energy
hw = hw(q, p), wavevector propagation q and branch index p(p =1,2,...3n,).

5 Lattice heat capacity. Einstein and Debye models

Consider a crystal composed by N unit cells and a basis of ny atoms in the unit
cell; the crystal volume is V = Nf) and the total number of atoms is N, = N ny,.
In the harmonic approximation, the system of N, vibrating atoms is equivalent to
a system of 3N, independent (one-dimensional) oscillators of frequency w = w(q,p),
where q assumes N allowed values in the first Brillouin zone, and p runs over the
3n, branches of the phonon dispersion curves. The average vibrational energy of the
harmonic crystal is the sum of independent phonon contributions; according to the
Bose—Einstein statistics, we have

Usine(T) =Y [——Mq’-—p)—— + -;—ﬁw(q, P)

efw(ap)/ksT _ |
qp -

The lattice heat capacity at constant volume, using Eq. (I11-23a), is given by

_ aUvibr _ 0 hw(qyp)
Cv(T) = oT  oT g; erw(@p)/ksT _ 1 | (32)

The above expression allows the numerical calculation of the lattice heat capacity of
crystals, once the phonon dispersion curves w(q,p) are known. In the following we
consider the application of Eq. (32) to simple models of dispersion curves, that can be
worked out analytically.

Einstein model

In the Einstein model, the actual frequencies of the normal modes are replaced by
a unique (average) frequency w. (Einstein frequency). If N, is the total number of
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atoms, Eq. (32) for the heat capacity at constant volume becomes

0 hwe o (o 2 hwe/kaT
“BT ehwe/ksT _ | BA\kpT ) (ehwel*sT —1)% "

The behaviour of Cy(T) in the low and high temperature limits is
~hwe/ksT  for  kpT < hwe

Cv(T) = 3N, =—

Cy —e
and
Cyv — 3Nkg for kT > hw. .

In the high temperature limit the Einstein model recovers the Dulong and Petit value
3N, kg. In the low temperature limit, the Einstein model predicts for Cy (T") an expo-
nentially vanishing behaviour, contrary to the T2 experimental law. The origin of this
discrepancy is the presence in crystals of the phonon acoustic branches, which can-
not be mimicked by a unique Einstein frequency, and actually need a more realistic
description.

Debye model

Any three-dimensional crystal, with or without a basis, presents three acoustic branches
with linear dispersion w = v,q for small q. For simplicity we assume the same sound
velocity v, for each of the three acoustic branches and extend the linear dispersion
relation to the whole Brillouin zone. To avoid inessential details, we approximate
the Brillouin zone with a sphere (Debye sphere) of equal volume (in order to pre-
serve the total number of allowed wavevectors); we indicate with gp the radius of the
Debye sphere and define wp = vsqp as the cutoff Debye frequency. We notice that
(4/3)mqd, = (2m)3 /K2, where § is the volume of the unit cell in the direct space.

The density of phonon states corresponding to a branch with linear dispersion re-
lation w=w,q is easily obtained. In fact the number of states D(w) dw with frequency
in the interval [w,w + dw| equals the number of states in the reciprocal space with
wavevector between [g, g + dg]; namely:

D(w) dw = ——4nq?dg = Ve (2) 42
@rE LM T s \Y, ) v
It follows
\% w? NQ 4ng} 302 3w?
Dlw) = W va; (2m)3 3D w? - w3 0swswp (33)

(IV is the number of unit cells of the crystal).
The contribution of the three acoustic branches to the average vibrational energy
(apart the constant zero point energy) is

(a.coustxc) “D hw
Vlbr (T) 3 0 N % eﬁw/kBT -1 dw . (34)

It is convenient to perform the change of variables £ = hw/kgT and define zp =
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fwp/kgT = Tp/T, where Tp = hwp /kp is called Debye temperature. The expression
(34) becomes

) 3 z D 3
- Uleoustio) (1) = gNkpT (%) /0 ef_ -da . (35)

In the high temperature limit Tp <« T, zp < 1 and €* — 1 =~ z. The integral in
Eq. (35) then gives 2%/3 and hence U (T) = 3NkpT; thus for T > Tp, the
heat capacity of the three acoustic branches approaches the value 3Nkp of the Dulong
and Petit law.

In the low temperature limit 7' < Tp we can replace zp = oo, and the integral in
Eq. (35) equals 7% /15 [for a simple and instructive demonstration of the value of this
integral see for instance B. D. Sukheeja, Am. J. Phys. 38, 923 (1970)]. Equation (35)
thus gives

acoustic 3 T4
USeeiN(T) = 3W4Nk3ﬁ T<Tp.
D

Correspondingly, in the low temperature region the heat capacity becomes

Cyv(T) = -127r4NkBT—§ T <« Tp
5 T3
and the correct experimental T3 behaviour is reproduced.

The Debye model can be refined in several ways. For instance the three acoustic
branches could be treated with different sound velocities. In the case of crystals with a
basis, one could use the Debye model for the acoustic modes and the Einstein model for
the optical modes. We notice that, in the high temperature limit, anharmonic effects
are of increasing importance, and corrections to the Dulong and Petit value are likely
to be of significance. In metals, besides the vibrational contribution to the internal
energy, we have to consider the electronic contribution; the electronic contribution
to the heat capacity is proportional to T' at any temperature and may become the
dominant term at very low temperatures (see Section ITI-3). We notice finally that the
T3 law depends on the crystal dimensionality. In a two-dimensional crystal, instead
of Eq. (33), the density-of-states D(w) is proportional to w and the low temperature
lattice heat capacity is characterized by a T? power law. Similarly, in an ideal one-
dimensional crystal, one would obtain a lattice heat capacity linear in the temperature.

6 Considerations on anharmonic effects and melting of solids

So far we have confined our attention to the harmonic approximation for the lattice
vibrations; in this approximation, phonons are elementary excitations of the elastic
field, which do not decay and cannot interact. The anharmonic terms, which corre-
spond to cubic, quartic and successive terms in the series expansion of the crystal
potential energy, have quite important consequences; for instance, cubic terms make
possible three-phonon processes in which one-phonon decays into two phonons or two
phonons merge into one. Among the physical effects of anharmonicity, we mention the
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thermal expansion of solids, the change of normal mode frequencies with temperature
(or other parameters), the thermal resistivity, the broadening of one-phonon peaks in
neutron scattering experiments, the solid-liquid transition. It is not our intention to
discuss the wealth of problems related to anharmonicity; here we simply provide some
intuitive remarks concerning the amplitude of localized motions of the atoms and the
Lindemann criterion of melting.

The mean quadratic displacement of a given atom about its equilibrium position
is an important quantity, which influences X-ray scattering, cold neutron scattering,
Maossbauer effect, and also determines the solid-liquid transition. We wish thus to give
an estimate of the mean quadratic displacement of an atom around its equilibrium
position as a function of temperature.

For simplicity we consider a three-dimensional crystal with N unit cells and one
atom per unit cell. In this case the normal modes consist of three acoustic branches,
of frequency w(q,p) and polarization vectors A(q,p) (p = 1,2, 3). We can expand the
displacement u,, of the atom at t,, in normal modes; as a straight generalization of
Eq. (30a), we have

h i

_ q-tn )

u, = % SN Mw(a.p) A(q,p)e [aqp + a_qp] . (36)
To avoid unessential details, we assume that the three acoustic branches are de-

generate, so that w(q,p) does not depend on the polarization index p. Furthermore,

for any wavevector, the three polarization vectors A(q, p) form an orthonormal triad,

that we intend to orient parallel to some fixed reference frame. Then the component

of u,, along a direction, say 2, dropping the now unnecessary polarization index p in
Eq. (36) becomes

h ia-
U'nz_—_; meqt" [aq+af_q] .

We can now calculate the ensemble average (u2,) of the quadratic displacement
u2,. Without loss of generality we take t,, = 0, and use the standard results

1
(a;a’q) = eXp(ﬁLUq/kBT) _ 1 ) (aqa:f;) = (

alaq) +1,

where (aIlaq) is the well known Bose population factor (see Appendix A). The average
square displacement (u2) of each atom thus becomes

h 2
W)= 2 Nt mamn= Y | 0

It is instructive to calculate the average square displacement for the Debye model
of the phonon spectrum. We have already seen that the density-of-states for any of
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the three branches is given by Eq. (33). Equation (37) thus becomes

“p R 2 3w?
2\ —_—

D
If we introduce the dimensionless variable z = hw/kgT and define fwp = kgTp, we
have
R (To/T 1
2\ _ bt
(ug) = 3Mk:BT3 / (em_1+2>$dx. (38)

The integral can be easily performed in the limits of very high temperatures (T' > Tp)
using a series development of the exponential, and of very low temperatures (T' <« Tp).
We have respectively

2
%M%-TE for Tk TD
@ =1 (39)
R4T
BW for T>Tp .
From Eq. (39), it is seen that the value of (u?) at zero temperature is only somewhat
smaller than the value of (u?) at the Debye temperature; in fact (u2)p—7, = 4(u)r—o.
We can now establish a simple qualitative criterion for melting. Let vy be the mean
radius of the unit cell, and consider the ratio

V2) + () + (u2) 9RPT
= =4y|l——— T>Tp. 40a
f To MkpTor2 P (402)
When the ratio f reaches a critical value f. (almost independent from the specific
solid in consideration), melting is expected to occur. The melting temperature is thus
given by the Lindemann formula

T = MkBTL%rO : (40b)

on2
the critical value f, turns out to be of the order of 0.2-0.3 in many solids.

Another interesting conclusion can be done on the stability of one-dimensional and
two-dimensional crystals. In these cases, the calculation of the mean quadratic dis-
placement in the plane or in the chain (using the appropriate density of phonon
states), leads to a divergent value at any temperature. Thus one-dimensional and
two-dimensional crystals are unstable in the harmonic approximation; some three-
dimensional interaction (whatever small with respect to intralayer or intrachain inter-
action) is necessary to stabilize low-dimensional structures.

7 Optical phonons and polaritons in polar crystals

7.1 General considerations

In Section 3, we have studied the crystal lattice vibrations by means of the dynamical
matrix formalism. The dynamical matrix treatment implicitly assumes that the inter-
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Fig. 9 (a) Schematic behaviour of phonon dispersion curves of a cubic homopolar semicon-
ductor (or insulator) with two equal atoms per unit cell, along a high symmetry direction.
(b) Schematic behaviour of phonon dispersion curves of a cubic heteropolar semiconductor
(or insulator) with two different atoms per unit cell, when retardation effects are ignored. (c)
Superimposed to the previous phonon dispersion curves, there is now the photon dispersion
curve w(q) = ¢ ¢//Fco, assuming momentarily no coupling between electromagnetic waves
and lattice vibrations. We have indicated by go & /oo wro/c = (/€0 vs/c)(2m/a) the point
at which the photon-like dispersion curve crosses the transverse phonon dispersion curve. In
the figure, the slope of the photon dispersion curve (of the order of the velocity of light) and
the slope of the acoustic modes (of the order of sound velocity) could not be drawn in scale.
(d) Schematic picture of polariton effects. Phonons and photons with nearly equal wavevec-
tors and energies interact and determine the polariton dispersion curve. Polariton effects
eztend from q¢ = 0 to approzimately qo, which is a fraction of the order of vs/c = 107° of the
Brillouin zone dimension {see Fig. 10 and Fig. 11 for an expanded scale and further details).

Notice that polariton effects restore the threefold degeneracy of the state of frequency wro
at g =0.

atomic interactions are instantaneous. For polar crystals (such as ionic crystals and
heteropolar semiconductors), the long-range nature of inter-atomic Coulomb interac-
tions requires a proper account of retardation effects due to the finite velocity of light.
The coupling of transverse mechanical waves and electromagnetic waves is particu-
larly important for wavevectors ¢ in the range from ¢=0 to approximately the value
go, which denotes the crossing point of the dispersion curves of (uncoupled) photons
and phonons (see Fig. 9). Before considering a continuous model to describe the op-
tical phonons in polar crystals, we briefly summarize some relevant phenomenological
aspects.

As a preliminary to further considerations, let us compare the vibrational curves
of homopolar and heteropolar cubic crystals with two atoms per unit cell (see Fig. 6,
Fig. 7 and Fig. 8 for specific examples; see also Fig. 9 for a schematic summary of
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the important features). From the general discussion of Section 3, we have seen that
the dispersion curves of a diatomic crystal consist of three acoustic and three optical
branches. In cubic crystals, for vectors q along high symmetry directions, there are
two degenerate transverse acoustic modes (TA) and one longitudinal acoustic mode
(LA). Similarly, there are two degenerate transverse optical modes (TO) and one
longitudinal optical mode (LO), whose frequencies go to finite values wro and wro
in the long wavelength limit. In nonpolar diatomic cubic crystals, the optical modes
for small wavelengths are degenerate, i.e. wro = wro (Fig. 9a). On the contrary, the
frequencies wro and wro of longitudinal and transverse optical phonons are different
in polar crystals, in spite of the cubic symmetry (Fig. 9b); this symmetry-breaking
effect is due to the long-range nature of the electrostatic forces.

The longitudinal-transverse splitting has implications also on the infrared dielectric
properties of polar semiconductors and insulators. These materials are strongly reflect-
ing in the frequency region wro < w < wro; repeated reflexions can be used to select
a band of wavelengths of infrared radiation, which is known as Reststrahlen (resid-
ual rays) radiation. Furthermore, the frequencies wyo and wro satisfy the Lyddane-
Sachs-Teller relation

2
“YLo _ &s (41)
wio, €

where €, is the static dielectric constant and €., is the high-frequency dielectric con-
stant. By €4, we mean the infrared dielectric constant at frequencies much higher than
a typical phonon frequency (so that ionic displacement contribution can be neglected)
and much smaller than any electronic transition frequency; £, is determined by the
electronic contribution to the static dielectric constant. If wro and wro are signifi-
cantly different, the same occurs for €, and €., (and vice versa); in some materials
(such as ferroelectric ionic crystals), wro is anomalously small and ¢, anomalously
large.

The electromagnetic coupling between a radiation field and transverse optical phonons
leads to the concept of new quasiparticles, known as polaritons; photons and transverse
phonons strongly interact near the crossing of the corresponding dispersion curves,
which are modified into polariton dispersion curves (see Fig. 9c and Fig. 9d). We pass
now to interpret the phenomenological properties of polar crystals mentioned above,
with a suitable continuous model.

7.2 Lattice vibrations in polar crystals and polaritons
The continuous approximation for optical vibrational modes in isotropic materials

We can establish a reasonable simple model for polaritons, combining a continuous
approximation for the description of the mechanical waves of the optical modes and
the Maxwell equations for the description of the electromagnetic waves [J. J. Hopfield
and D. G. Thomas, Phys. Rev. 132, 563 (1963)]. We confine our attention here to
polar cubic crystals with two atoms (cation and anion) in the unit cell, of effective
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charge +e*, mass M; and M, (and reduced mass M*). In optical vibrational modes,
cations and anions move against each other, so we can discuss the motion of the ions
in the unit cell by the relative displacement variable w. In analogy with Eq. (19), we
expect for isotropic cubic crystals that the relative displacement variable w obeys the
equation of motion

M*
Notice that in the case the effective charge e* vanishes, the three optical modes become
degenerate, with frequency wro =wro = wp, and are dispersionless. The continuous
model, summarized by Eq. (42), is rather simplified, but it has the merit to allow an-
alytic elaborations and to provide guidelines for more complicated situations. Among
the limitations of the model, we notice that the local electric field acting on the site
effective charge and the average electric field (due to any internal or external sources)
are supposed to coincide; local field effects are introduced in Section 7.3.

In order to estimate semi-empirically the quantity e*/M*, consider Eq. (42) in
the presence of a static electric field E,; the static ionic displacement is given by
ws = (e*/wiM*)Es. The average ionic polarization of a crystal, of volume V and
N unit cells, is Pigns = (N/V)e*ws = (N/V)(e*?/wiM*)E;. The static dielectric
constant €5 and the high-frequency dielectric constant €., are related by the expression

P, 4m(N/V)er
s = Eoo + AMT——== =00 + _—(wg/l\l 2

W= —wiw +

E. (42)

Eg
Using the above equation, we can re-write Eq. (42) in the form

. 2 2 €5 — €Exo
W= —wiw +wj————E
oW+ 4r(N/V)e*

The ionic contribution to the polarization (dipole per unit volume) of the specimen
is given by

(43)

Pion = Ve*w .
Multiplying both members of Eq. (43) by (N/V)e* we obtain
. €s — €oo
Pion = -wgPion + wg > an E|. (44)

Equation (44) is the very useful “constitutive” equation of polar crystals; it couples
the electric polarization, produced by the vibrating lattice of ions, to the electric field
in the crystal; the phenomenological coupling constant is given by wg(es — €c0)/47.

We consider first the propagation in the medium of longitudinal optical vibrations,
in which case the polarization field and the electric field are also expected to be of
longitudinal type with the form

Pion (I‘, t) = PO ei(q-r—wt) with Pollq (453.)

E(r,t) = Eg @™ with Eolq . (45b)
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We can easily show that for longitudinal fields we have

Eo = —ﬂpo Eo”P()”q . (45(:)

€00

In fact the microscopic charge density accompanying the polarization field (45a) is
given by pmicr = ~divPio, = —igPpexp(iq - r — iwt); the value Eq is determined so
that divE = igFEyexp(iq - r — iwt) = 4WPmicr/Eco- Also notice that the curl of the
longitudinal fields (45) vanish identically.
Inserting Egs. (45) into Eq. (44), it is found that the frequency w for the longitudinal
waves satisfies
—w? = —w? —w§68 “fo o —wgfi
oo 600

Thus the longitudinal waves are characterized by the dispersionless relation

>
w? = wge—s =wi, . (46)

oo

The effect of the long-range Coulomb field on the longitudinal optical vibrations does
not introduce any dispersion; it however does increase the “restoring forces” and does
increase the oscillation frequency from wg (the value neglecting long-range contribu-
tions) to wro.

We consider now the propagation in the medium of transverse optical vibrations, in

which case the polarization field and the electric field are of transverse type, with the
form

Pion(r,t) = Po @™t with Py lq (47a)
E(r,t) = Egefa™*Y  with Bo Lq. (47b)
It is shown below that for transverse fields we have
drw?

Eo Py| EoPolq. (47¢)

c2q? — eoow?

From Eq. (47c¢) it is seen that the ratio Ey/P, for transverse fields depends both on
¢ and w, contrary to the situation for longitudinal fields expressed by Eq. (45c); also
notice that for ¢ — 0 and finite w, Eq. (47c) coincide with Eq. (45c), and the transverse
and longitudinal polaritons become thus degenerate.

It is worthwhile to remark that the divergence of the transverse fields vanishes
identically (in particular ppicr = —div Pjon = 0 means that no microscopic charge is
accompanying the polarization wave, and thus also div E = 0). For transverse fields
eurl E # 0; before considering the correct treatment of curl E with the Maxwell equa-
tions, we examine the so called electrostatic limit (also called the ¢ — oo limit, or
instantaneous interaction limit, or omission of retardation effects), which just consists
in taking curl E = 0. Since also div E = 0, we conclude that the electric field accompa-
nying a transverse optical vibration vanishes; the frequency of the optical transverse
modes would be unchanged with respect to wp in the electrostatic approximation.
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For the correct determination of curl E, we have to resort to the appropriate Maxwell
equations
1B

-2 48
curlE = (48a)

10D € OE | 47 OPjon

R T e T o
From the curl of both members of Eq. (48a), and using Eq. (48b) (in non-magnetic
materials B = H), we have

(48b)

o AT
curlcurlE = _'ECTE — C—ZPM .
For transverse fields div E = 0; using the vectorial identity curlcurl = graddiv — V2,
it follows
—vE=-S2k-Tp,, (49)
c ¢
it is then seen by inspection that Eq. (47a) and Eq. (47b) imply Eq. (47c).
We insert now Eqgs. (47) into the constitutive Eq. (44) and obtain the compatibility
condition

Eoow? — (wies + @) + Wi =0. (50)

We can solve for w? and obtain the dispersion relation for polaritons

1
w?=o— [wges +cf¢* + \/ (whes + €2¢?)? — dwfcPgPeoo | - (51)
200

The dispersion curves for polaritons, given by Eq. (51), are schematically shown in
Fig. 10.

It is interesting to examine the lower and upper polariton branches in the limit of
g < go and g > qo, where qo is the point for which (¢/,/) g0 = wro. For ¢ > qo,

the two solutions of Eq. (51), and the corresponding amplitudes Eq and Pg given by
Eq. (47c) are

and
w? = ——¢* Po=0 Eg#0;

thus for ¢ > qo the lower branch is a pure mechanical wave (with Eg = 0) and the
upper branch is a pure electromagnetic wave (with Py = 0).

For q < go, the two solutions of Eq. (51), and the corresponding amplitudes Eq and
P, given by Eq. (47¢) are

€ 4r
w2 = UJ%——S = UJ%O Ey = ——PO
Eoo €0
and
2 €5 — €
w2 = —q2 PO =22 c’OE() .
Eg 47
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Fig. 10 Schematic description of polaritons. The dispersion curves of uncoupled transverse
phonons and photons are shown by dashed lines; go is the crossing point go = wro/(¢/\/Ex);
dispersion curves of the longitudinal phonon and transverse polaritons are shown by solid
lines. In the lower polariton branch, the character of the dispersion curve changes from
photon-like for ¢ < go to phonon-like for ¢ > go; in the upper branch, the character changes
from phonon-like to photon-like as q increases.

Thus for ¢ smaller or near go the polariton modes have the character of coupled
mechanical-electromagnetic waves, with Eg and Py simultaneously different from zero.
Notice in particular that for w = wro we have Eg = —(47/£4 )Pg both for transverse
and longitudinal waves (see Eq. 45¢); thus the degeneracy of transverse and longitu-
dinal modes is restored at q = 0.

As an illustrative example of the concepts developed so far, we report in Fig. 11
the polariton dispersion curves in GaP. The dispersion curves for optical phonons of
long wavelength, in the absence of coupling to photons, are horizontal straight lines;
transverse optical phonons and photons with nearly the same energy and wavevector
are strongly coupled by the phonon—photon interaction and lead to the polariton
dispersion curves.

We have seen that transverse optical phonons and photons with nearly the same
energy and wavevector are strongly coupled; we notice that quite similar coupling
effects occur also for photons and transverse excitons (exciton states have been studied
in Section VII-1). The mixed exciton-photon states are called exciton—polaritons and
their dispersion curves have a behaviour qualitatively similar to the polariton curves
so far discussed [see for instance L. C. Andreani in “Confined Electrons and Photons:
New Physics and Devices” edited by E. Burnstein and C. Weisbuch, Plenum Press
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Fig. 11 Polariton dispersion curves in GaP. In Fig. 11a the vector diagram of Raman spec-
troscopy measurements is also indicated; ki, ks and q are the wavevectors of the incident
laser photon, scattered Stokes photon, and polariton; @ is the scattering angle. Values of
energies and wavevectors which are kinematically possible at angle 6 are shown by long-
dashed lines. In Fig. 11b the plot of the observed energies and wavectors of polaritons and
LO phonons are given. The figures are taken from C. H. Henry and J. J. Hopfield, Phys. Rev.
Lett. 15, 964 (1965); copyright 1965 by the American Physical Society.

1995, p.57, and references quoted therein]. An example of dispersion curves of exciton—
polaritons in CuCl is reported in Fig. 12.

Infrared dielectric properties of polar crystals

We can now discuss the infrared dielectric properties of polar crystals exploiting the
“constitutive” equation (44), that couples the ionic polarization to the electric field
in the medium. We consider the response of the system to a time-dependent driving
electric field, periodic in space and time, of the form

E(r,t) = Egef@r—wten ; (52a)

the electric field is turned on adiabatically from ¢ = —o0, and this is achieved through
the exponential factor exp(nt) with n — 0F. By analogy to Eq. (52a), we assume for
Pion the expression )

Pion(r,t) = Pgel@r—wtlent (52b)
Replacing Egs. (52) into Eq. (44), one obtains

W Es — €co

Py =
0" Z-(wt+m?E 4ar

Eo (53)

(for the present model under consideration, it is irrelevant whether Eq and Py are
parallel or orthogonal to the vector q).

The dielectric function is given by e(w) = £o + 4w Fy/Ey, where as before e
denotes the dielectric constant due to the electronic polarizability (at frequencies well
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Fig. 12 Dispersion curves of the transverse exciton—polaritons of CuCl in the anomalous
dispersive region. The dashed lines refer to the laser energies used to study luminescence
line shape due the decay from bound pairs of excitons [from J. K. Pribram, G. L. Koos,

F. Bassani and J. P. Wolfe, Phys. Rev. B28, 1048 (1983); copyright 1983 by the American
Physical Society).

below any electronic transition resonance). Using Eq. (53), we obtain for the dielectric
function of the polar crystal

2
w,
E(w)=eoo+ 3 g

Wy

T2 i —inw(ss — €0) (54)

(where 27 has been relabelled as 7). The real and imaginary parts of the dielectric
function are schematically indicated in Fig. 13.

In the limit of 7 — 0% the real and imaginary parts of Eq. (54) become

w? Es W2 — Eoo W2
el(w) = €00 + wg—_—-owz(ss - Eoo) = —a?—g—__—u%—- (55&)
and
ea(w) = T2 T €0) 50, ) 5w +wo)] - (55b)

2

At positive frequencies, €;(w) exhibits a pole for w = wp = wro (transverse phonon
frequency) and has a zero for w = wp+/€,s/€00 = wro (longitudinal phonon frequency);
the values wro and wro satisfy the Lyddane—Sachs-Teller relation (41).

The dielectric function €;(w) is negative for wro < w < wro. In this region the
reflectivity equals one, and the electromagnetic propagation in the crystal is forbidden.
Outside the interval [wro,wro] the dielectric function &;(w) is positive and go(w)
vanishes (when n — 0%); in this region, the dispersion relations for electromagnetic
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Fig. 18 Schematic behaviour of the real and imaginary part of the dielectric function e(w)
of a polar crystal in the infrared region. Since 1(w) and e2(w) are even and odd functions of
w, respectively, only the part w > 0 is indicated. For n — 07, the real part £1(w) presents a
pole at w=wyq, while the imaginary part e2{w) presents a é-like singularity at w=wo.

waves propagating in a medium are determined by the requirement

c
\/51((.4)) e

(see also the discussion at the end of Section XI-1). We have w?e;(w) = c?¢?; using
for £ (w) the expression (55a), we obtain

(56a)

2 2
w25swo—5oow 2 2

e =c*q® . (56b)

It can be immediately seen that Eq. (56b) coincides exactly with Eq. (50), and defines
thus the dispersion curves of the polaritons in the crystal.

7.3 Local field effects on polaritons
The internal field according to Lorentz

In the discussion of Section 7.2 we have assumed that the macroscopically averaged
electric field E and the local field Ej.. are the same. In solids, however, there can be
significant differences betweeen the two fields, and a central (and not easy) problem
in the theory of dielectrics is the calculation of the electric field at the position of a
given atom or molecule. Without entering in all the subtleties of this problem, we here
briefly discuss the internal field according to Lorentz.

Consider an isotropic dielectric crystal with the shape of a bar, very long in the
z-direction (see Fig. 14). Imagine that microscopic electric dipoles are set up at the
lattice points so to give rise to a uniform polarization P in the 2 direction. We notice
that since P is uniform, we have pmic, = —div P=0 and no volume microscopic charge
density is accompanying the polarization. We also notice that the geometry of the
(thin and very long) bar is chosen so that P is parallel to the surface of the sample;
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Fig. 14 Schematic representation of the Lorentz cavity for the calculation of the local electric
field. The sample (with the ideal shape of a thin and infinitely long bar) is supposed to be
uniformly polarized with P parallel to the surface of the sample.

thus no discontinuity of the normal component of P occurs at the surfaces, and no
microscopic surface charge density occurs either. Because of the absence of any internal
and external charges, we have div E = 0; in stationary situations also curl E=0 and
the electric field is thus zero.

Although the uniformly polarized specimen in the geometry of Fig. 14 is in a null
electric field, it is easily realized that the local electric field acting on the microscopic
dipoles, which are the origin of the macroscopic polarization field P, is in general
different from zero. For simplicity, we confine our attention to the extreme tight-
binding limit, in which the crystal can be viewed as a collection of microscopic electric
dipoles, well localized around the lattice sites; in this case, the local field can be
obtained with the following arguments.

Imagine we carve a small spherical region around the site at which the local field
is to be evaluated. The medium contained in this region is considered as a discretized
collection of dipoles and we determine the electric field at the center of the cavity by
summing up the electric fields generated by every dipole (except the one at the origin);
when certain conditions of symmetry are fulfilled, the sum may vanish. For simplicity,
we focus our attention on structures with sufficiently high local symmetry (some cubic
structures, for instance), so that the electric field generated by the point-like dipoles
within the cavity vanishes at its center.

The uniformly polarized medium outside the Lorentz cavity is dealt with in the con-
tinuum approximation (Fig. 14). The contribution due to the dipoles outside the ideal
cavity, of radius R, can be obtained noticing that the discontinuity of the component
of P normal to the surface implies a microscopic density of surface polarization charge
given by

op =P, =—Pcosf .
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The electric field in the z direction at the center of the cavity due to the polarization
charges at the cavity surface is

v
- 4
Ey =/ (—Pcos6)-Rdf-2R sin0~Ei- cosf = —37£P . (57)
)

From Eq. (57), we see that in (above specified) isotropic materials in null electric
field, the local field is (47 /3)P. If the electric field E applied to the material is different
from zero, we have that the local field acting on the dipoles is the sum of E and
(47 /3)P. In summary, in the Lorentz model, the relationship between local field,
average macroscopic field and electric polarization is given by

Ec=E+ ‘%”P . (58a)

The above expression has several limitations. These may be due to the overlapping of
electronic clouds, or dipolar fields far from homogeneity. At times the Lorentz field is
better approximated by the generalized form

Eo. = E+ f%"? , (58b)

where 1 is a semi-empirical parameter. The case vy = 0 indicates no distinction between
local and average field (this is the case of free electrons or essentially spread out
wavefunctions), while v = 1 is the case of strong localized dipoles in highly symmetric
crystals. In even more refined models, v may be different for different sublattices.

Internal field, polarizability and dielectric constant of materials

Consider a system that can be visualized as constituted by N atoms {or molecules) in
the volume V, and suppose for simplicity that the interaction between different atoms
(or molecules) can be neglected. We wish to express the dielectric constant ¢ of the
material in terms of the polarizability o of the composing units.

In the presence of an applied field E, the average polarization due to induced dipoles
of polarizability « is

P=N

N 47
VaEloc = VQ(E +’7?P) .

Hence

_ (N/V)a
= T an/3) (NV)a k- (59)

It is interesting a brief discussion of Eq. (59). In the case the local field and the
macroscopic field are the same (v = 0), we have P = (N/V)oE; the polarization P is
thus finite for any finite polarizability. In the case the local field and the macroscopic
field are different (v # 0), the polarization tends to diverge if v(47/3)(N/V)a — 1;
this condition is known as “polarization catastrophe”. For ordinary dielectrics, the
denominator in Eq. (59) is safely far from vanishing condition. For very special crystals,
candidate to become ferroelectric, the polarization catastrophe considerations are basic
for understanding physical and structural properties near phase transition. Notice that
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the polarization catastrophe concept is inherent to the local field theory (v # 0) and
is essentially a cooperative effect.

From Eq. (59), we obtain for the dielectric constant (¢ = 1447 P/E) the expression

_ dn(N/V)a
T TSGR e |

(60)

Equation (60) expresses the dielectric constant in terms of the polarizability « of the
composing units and of the parameter 4, which characterizes the local field. In the
specific case v = 1 (Lorentz field), Eq. (60) becomes

4n(N/V)a

= . 61
€= T B (N V)a (612)
The Lorentz formula (61a) can also be written in the form
e—1 4x N
=2 61b
c+2 3V (61b)

which is named Lorentz—Lorenz (or Clausius-Mossotti) relation.

Infrared dielectric function and polaritons in polar crystals in the presence of local
field effects

In Section 7.2 the study of polaritons and optical properties of polar crystals in the in-
frared region has been done starting from the equation of motion (42). In the presence
of local field effects we have rather to consider the equation of motion of the type

o+
M+
We now study the consequences brought about by the fact that the local electric field
and the macroscopic electric field may be different.

Consider Eq. (62) when the electric field and the relative displacement are periodic
in space and time with the form

W= —wiw+ B - (62)

Eioe = Eg 9T “e™  and  w=wyq gilar—wt)nt ;

the exponential exp(nt) with n — 0% has been included, so that the electric field is
turned on adiabatically at t = —o0o. We obtain
2 2 e’
—(w+i = Z_E,.
(w +in)* wo w§ Wo + = Eo
Thus the ionic polarizability becomes

ewy e’ 1 e*? wa

Eo  M* &2 — (w+in)? T MR - — i

Qion{w) =

(where 27 has been relabeled as 7). The ionic polarizability has a significant frequency
dependence in the infrared region.
Let us indicate with .y and a_ the electronic polarizabilities of the cation and the
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anion of the polar crystal; in the infrared region we can neglect any frequency depen-
dence of electronic polarizabilities. Assuming that electronic and ionic polarizabilities
add up, the total polarizability (per unit cell) becomes

6*2 2

“wa
aor{w) = ay +a_ + Mook o —imw (63)
Inserting Eq. (63) into Eq. (60), we obtain for the dielectric function
N e*? wh
iry [a+ to-+ M*w wé —w® —inw
e(w)=1 + puye g — (64)
T 0
T3V [a++a +M*w wh — w* ——mw]
It is convenient to introduce the quantities A} and A;on defined as
4t N 4r N e*?
A = - Aion=——r73 -
=g ylerta) and Ae=Fgons
We can re-write Eq. (64) in the form
V2 2,
W) =1+ 3(Ael + Aion)w§ — 3Aa(w? + inw) (65)

(1 = yAa ~ YAien)w§ — (1 — vAa)(W? + inw) -
With an eye to the denominator of Eq. (65) we define the “renormalized transverse
frequency” wro as
PR ETIELTR
(notice that in the case local field effects are negligible ¥ = 0 and wro = wp). From
Eq. (65) we obtain

(66)

3(Aer + Alon)wo - 3Ael(“-’ + an) 1
1 —vAq wio — (W2 +inw)

The above expression, in the limiting case of static and high-frequency regions, takes
the values

ew)=1+

(67)

3(Ael + Aion)wg 3Aq

gg=14 22 00 apg g = 14—
° (1- ’YAel)w%o oo 1 —-vAa
Eq. (67) thus becomes
12 _ 2
e(w) =14 &z oro — oo - Vi hine) _ IO (e, —e) . (68)

wi o — (w? +inw)

Comparison of Eq. (68) with Eq. (54) is self-explanatory; we see that local field ef-
fects do not change the form of e(w), except for the “renormalization” of the transverse
and longitudinal frequencies wro and wro. In particular the transverse frequency (66)
decreases with respect to the short-range value wyp as an effect of long-range Coulomb
interaction and tends to become soft. In any case the renormalized transverse and
longitudinal frequencies are still related by the Lyddane-Sachs—Teller relation, as this
depends on the analytic structure of the response function, rather than on the details
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Fig. 15 (a) Temperature dependence of the soft transverse-optical branch in KTaOj; {from
G. Shirane, R. Nathans and V. J. Minkiewicz, Phys. Rev. 157, 396 (1967); copyright 1967
by the American Physical Society]. (b) Dielectric constant and reciprocal susceptibility of
KTaO3 as a function of temperature [from S. H. Wemple, Phys. Rev. 137, A1575 (1965);
copyright 1965 by the American Physical Society].

of the orienting fields. We do not have to discuss again the polariton dispersion curves,
as the treatment can be performed following step-by-step the previous section, once
transverse and longitudinal frequencies are renormalized (as specified by Eq. (66)).

An interesting implication of the local field theory is the possible occurrence of
soft phonon modes. From Eq. (66) we see that wro is reduced with respect to wp,
since the long-range Coulomb interaction tends to counteract the short-range restoring
forces. In the case, due to some mechanism, the frequency wro tends to zero, from
the Lyddane-Sachs—Teller relation we expect that &, tends to infinity. Thus a polar
crystal, which exhibits a transverse optical branch with a low frequency mode wrop, is
candidate to develop an extraordinary large polarization. Eventually the crystal might
undergo a phase transition and acquire a spontaneous polarization, even in the absence
of external fields. Neutron measurements and far infrared optical measurements well
support the role of a soft transverse branch in some perovskite ionic crystals.

As an example, we consider the case of perovskite potassium tantalite, and we
report in Fig. 15 the temperature dependence of the soft transverse-optical branch
(studied by inelastic neutron scattering techniques), as well as the dielectric constant
measurements. From Fig. 15 it can be seen that the phonon energy of the soft mode
at ¢ = 0 is 10.7 meV at 295K, and decreases to 3.1 meV at 4K; correspondingly
the dielectric constant passes from the value £ = 243 at 295K to very large values
(exceeding several thousands) at low temperatures.
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Appendix A. Quantum theory of the linear harmonic oscillator

Creation and annihilation operators

We summarize here some results of the quantum theory of the linear harmonic oscilla-
tor, that are preliminary and useful for the discussion of lattice vibrations of crystals.
Consider a one-dimensional harmonic oscillator, of angular frequency w, described
by the Hamiltonian
1
) Mpm

The lowering (or annihilation) operator a.nd the raising (or creation) operator are
defined by the following linear transformations of the observables z and p,

The operators a and a' satisfy the commutation rule
[a,al]=1. (43)
In terms of @ and af, the Hamiltonian (A1) takes the form

H= += Mw (A1)

(42)

H = hw(a'a + %) , (A4)

as can be easily verified inserting expression (A2) into Eq. (A4).
In order to work out eigenvalues and eigenfunctions of the Hamiltonian (A4), we
note a few relationships from the commutation relation (A3). We have

aat =ala+1, aa'? = (ala+1)al = a%a+ 24t
and in general

aa!™ = a"a + na™1 . (A5)

Let |0) denote the normalized state that satisfies the equation a|0) = 0; and let |n)
indicate the normalized state

In) = TGT"IO) (46)
The correctness of the normalization follows from the observation that
(0la™a™|0) = (0|a™ *aa!™|0) = n (0]a™ ta!"|0) = n!,
where use has been done of Eq. (A5). With similar procedures, we have that
ataln) =nln) .

The number operator aa indicates the number of quanta (phonons) in the state |n).
The eigenvalues of the Hamiltonian (A4) are thus E, = (n+ §)hw withn =0,1,2....



SOLID STATE PHYSICS 345

From the expression (A6) of the normalized eigenstates of the harmonic oscillator,
we see that the operators a and a! satisfy the relations

alny=vnln-1) djny=va+rijn+1).
We also notice that
(nlat?a?In) = (nla'?ln — p)(n — pla¥ln) = (VA= pF1-...-vA)2 n2p.
Thus
nl/(n—-p)! fn>p

(nlaPaPin) = { . (A7)

0 fn<p

Statistical average of operators

At thermodynamic equilibrium, the statistical average of an operator A is defined as

[ o]
(A) =Y Pu(n|Aln) (A8)
n=0
where
e—(n+3)hw/kpT e~ /ksT

P, = = :
T e tmHdhe/ksT TN (o=hu/kaT)™

Summing up the geometric series in the denominator, and replacing into Eq. (A8), we
have

(A)=(1-2))_2"(n|Aln) with z=exp(—hw/kpT)|. (A9)
n=0

Using Eq. (A9) we can obtain the thermal average of operators of interest. For
instance, for the thermal average of the number operator we have

(afa) = (1-2) Z z"(nlataln) = (1—2) Z nz"

n=0 n=0
= ., z 1

which expresses the standard Bose-Einstein statistics. We also have
(aal) = (afa) + 1
(aa) = (ala’) =0.

With a little of algebra, we can prove the following relation

(a!PaP) = p! (aa)? (A11)
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for any p =0,1,2,.... In fact, from Eq. (A9) and Eq. (A7) we have

(a'PaP) = (1-2) Z e p)lz =(1-z )E n+p) P (A12)

n(zp)
From Eq. (A10) it follows

2P =(1-—z)z”
(1-2z)p  (1-z)P"

(ala)? =

=(1-2)2P [1+(p+1)z+ 'z" . (A13)

(p+lé(!p+2) N ]

n=0

From comparison of Eq. (A12) and Eq. (A413), we obtain Eq. (A11).

Wey! identity

We establish now two identities (the Weyl identity and the Bloch identity), which are
very useful in the study of the correlation functions and Debye-Waller factor in the
scattering theory of the harmonic crystal (see Chapter X). We remember the Weyl
identity, discussed in standard quantum mechanics textbooks [see for instance A. S.
Davydov “Quantum Mechanics” (Pergamon Press, Oxford 1965) p.132].

Consider any two operators A and B, that commute with their commutator [A, B];
then we have

le4eB = eA+BelaBI2| it (A, [A,B]| = [B,[A,B] =0. (A14)

The proof of the above identity can be performed, for instance, following a procedure
due to Glauber. We replace momentarily the operators A and B by zA and zB,
respectively, where the parameter z will be set equal to 1 at the end of the reasoning.
We consider then the following two operators depending from the parameter z:

Fi(z) = e™4e"B  and Fy(r) = e=(4+B)[4.Bl/2 (A15)

We show below that both functions Fi(z) and Fy(z) satisfy the differential equation

‘;_5 ~ (A+ B +]A, B))F(z) . (A16)

Eq. (A16), together with the boundary condition F;(0) = F»(0), implies Fi(z) = Fa(z)
for any z; in particular for £ = 1 we have Eq. (414).
It is immediately seen that the function Fy(z) satisfies Eq. (A16); thus, we have
only to prove that also Fi(z) satisfies it. In fact
dF,
dr
We now use the operatorial identity

=Ae"e™B + e Be™® = [A+ e*4 Be ™4 Fi(z) . (A17)

e %068 = [1—S+ Sz——s3 ]0{1+S+%S2+%S3+...]
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=O+[O,S]+%[[O,S],S]+%[{[O,S],S],S]+... , (A18)

which holds for any operator O and S. The particular case S = —z A and O = B gives
exp(z A) B exp(—x A) = B+x[A, BJ; this result, together with Eq. (A17), proves that
Fy(z) satisfies the differential equation (A16).

Bloch identity

We now prove that any operator C, arbitrary linear combination of phonon operators
a and a!, satisfies the Bloch identity

(e€) = {2 (A19)

this theorem states that the thermal average of the exponential of an operator, linear in

a and al, is just the exponential of half of the thermal average of the squared operator
itself.

Consider in fact the linear combination of the phonon operators a and a! of the
form

C=cial +ca
with ¢; and ¢, arbitrary complex numbers. We remark that
(C?*) = c1c2 [2{a’a) + 1] .
Using the Weyl identity it follows

C _ _ciat+cza

e = 02066162/2 X

=eae
Performing the thermal average one gets

C\ _ e1c2/2) c1at jcaa\ _ c1c2/2 acs tm_ n
() =¢e (€1 %) =¢ E (a™a™)
- m!n! )
n

In the double sum only the terms with m = n survive, and using Eq. (411) it follows

(e€) = ecres/? Z 0102) = earcal2(ala)+1l/2

and the Bloch identity is thus proved.

From the Bloch identity and the Weyl identity, we can obtain the following impor-
tant result. Let A and B indicate two operators linear in creation and annihilation
operators; it holds

<€A6B> — (eA+B>e[A,B]/2 — e(A2+2AB+B2>/2 . (A20)

This relation will be used in Chapter X, in the study of the dynamical structure factor
for the scattering of particles from harmonic crystals.
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