2 1. Introduction

mental laboratory. where one learns about ultra-high-vacunm systems, their
operation and main components, as well as about some general procedures
used for sample preparation. Chapters 4-7 are devoted to the experimental
methods of surface analysis, including, diffraction techniques, electron spec-
troscopy, ion-scattering spectroscopy and microscopy, respectively. Within
each chapter a set of particular methods are considered. The scheme of the
presentation of the technigue is as follows: First. the physical phenomena.,
which constitute the basis of the technique, are introduced. Then, the ex-
perimental set-up is described. Finally, information which can be gained by
the technique is specified. The purpose of Chap. 8 is to give an impression of
what perfect atomically clean surfaces of a crystal constitute on the atomic
scale. Chapter 9 illustrates the structure of clean crystal surfaces, on which
submonolayer films (i.e., those with thickness below one atomic monolayer)
have been adsorbed. Here, the formation of two-dimensional ordered surface
phases, phase transitions and phase diagrams are discussed. The defect-free
crystal is an apparent idealization. In practice, the crystal surface always
contains a certain number of defects (for exam ple, adatoms, vacancies, steps,
ete.), which are discussed in Chap. 10. Among other defects, atomic steps are
given especial attention, as their discussion involves such important topics as
surface stability, surface morphology and equilibrium crystal shape. Surface
electronic structure and properties are addressed in Chap. 11. Chapters 12
and 13 are devoted to elementary atomic processes on the surface, namely,
adsorption, desorption and surface diffusion. In Chap. 14, the surface phe-
nomena involved in the growth of thin films (with thickness exceeding the
monolayer range) and their effect on the growth mode. as well as on the strue-
ture and morphology of the grown films, are discussed. Chapter 15 reflects
very recent trends in surface science and deals with so-called nanostructures
fabricated nsing atomic manipulations and self-organization processes.
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- 2. Basics of Two-Dimensional Crystallography

i

~In this chapter, the nomenclature used to describe surfm'n struet ures is tl.(-‘V(-‘l-
uped An understanding of this nomenclature is very important, as it will be
32 usad continuously throughout all the following clmptt'r.s uf the textbook. It
~ should be noted, however, that here only the formal definitions and concepts

are given,

2.1 Two-Dimensional Lattices

2 2.1.1 Lattice, Basis, and Crystal Structure (3D Case)

Recall, first, the main concepts accepted in bulk erystallography. Tlu_‘ st I'l:('-
ture of an ideal crystal is deseribed conventionally in terms of a lattice. For
the bulk three-dimensional (3D) crystal, the lattice is defined by three fun-
damental translation vectors a, b, e such that the atomic arrangement of the

- crystal looks absolutely the same when viewed from point 7 as when viewed

from the point
v =r+na+mb+ ke, (2.1)

where n, m. k are integers (0, £1, £2, ...). Hence, a lattice can be vi'sualizwl
as a set of points v/ that fit (2.1). A lattice is a geometrical abstraction. The
erystal structure (a physical object) is formed when an atom or a group of
atoms called a basis is attached to every lattice point, with every basis being
identical in composition, arrangement and orientation (Fig. 2.1). Thus. it can
be written

lattice + basis = erystal structure. (2.2)

2.1.2 Concept of a 2D Lattice

As for crystalline surfaces and interfaces, these are essentially two-dimensional
(2D) objects. Although the surface (or interface) region is, in principle, a 3D
entity having a certain thickness, all symmetry properties of the surface are

~ two-dimensional, i.e., the surface structure is periodic only in two directions.
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Fig. 2.1. The crystal structure is formed by the addition of the basis to every point
of the space lattice

Thus, surface crystallography is two-dimensional and for describing the sur-
face lattice only two translation vectors a and b are used and (2.1) is rewritten
as

v =r+na+mb. (2.3)

Sometimes a surface lattice is called a net. The parallelogram with sides a
and b is called a unit cell or a mesh, The unit cell with the minimum area is
called a primitive cell.

Another possible type of primitive cell is represented by a Wigner Seitz
cell, which is constructed according to the following procedure (see Fig. 2.2);

® The chosen arbit rary lattice point is connected by straight lines with all
neighboring lattice points.

® Through the midpoints of these lines. perpendicular lines are drawn (planes
in the 3D case).

® The smallest area (volume in the 3D case) enclosed in this way comprises
the Wigner Seitz primitive cell.

To describe completely the structure of a given surface, one should define
its 2D lattice and its basis (i.e., the arrangement of the surface atoms within
a unit cell). This is similar to the concept introduced by logic (2.2) for the
bulk erystal. Moreover. one may notice that the schematic example shown in
Fig. 2.1 actually corresponds to the 2D case.

2.1.3 2D Bravais Lattices

All the great variety of surface lattices are organized into five main tvpes,
called two-dimensional Bravais lattices (recall that there are 14 Bravais lat-

Fig. 2.2. Schematic diagram illustrating the construction of the Wigner-Seitz prim-
itive cell

tices in three dimensions). The 2D Bravais lattices are shown in Fig. 2.3.
They are

® oblique lattice la| # [b], ~ # 90°,
e rectangular lattice la| # |b], ~ = 90°.
e centered rectangular lattice |a| # |b], v = 90°.
e square lattice lal=[b], 7= 900;
e hexagonal lattice |a| = |bl, ¥=120°.

Note that in Fig. 2.3 two types of unit cell are shown for the {.'(tntt'ru(l rect-
angular lattice. The primitive it cell is non-rectangular, while the .['('('t-
angular cell is non-primitive. Nevertheless, in practice, one often uses it for
convenience of description.

Centered rectangular

Square Hexagonal

Fig. 2.3. Five two-dimensional Bravais lattices. Translation vectors a and b are
shown, unit cells ( meshes) are hatched
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2.2 Miller Indices for Crystal Planes

2.2.1 Definition of Miller Indices

Before describing a particular surface structure one should specify first what
the plane of the crystal is under consideration. The orientation of the plane
is denoted by Miller indices which are determined in the following way:

e First, the intercepts of the plane on the axes are found in terms of the lattice
constants a, b, ¢, which may be those of a primitive or non-primitive unit
cell.

® Then, the reciprocals of the obtained numbers are taken.

e Finally, they are reduced to three integers having the same ratio, usually
the smallest three integers.

The result enclosed in parentheses (hkl) constitutes the Miller inder of the
crystal plane,

;

Fig. 2.4. This plane intercepts the a. b, ¢ axes at la. 2b. 3c. Thus, the Miller
indices of the plane are (632) (see text)

For example, if the intercepts of the plane are
l! 2! 3

(Fig. 2.4), then the reciprocals are

1 3
1, =, =
2 3
and the smallest three integers that have the same ratio are

6, 3, 2,

-

2.2 Miller Indices for Crystal Planes T

the index of this plane is (632). If the plane is parallel to the axis. it is
ccepted that the intercept is at infinity and the corresponding Miller index
gero. If the plane intercepts the axis on the negative side of the origin. the
esponding index is negative, To indicate this, a minus is placed above the
: (hkl). As an example, Fig. 2.5 illustrates the Miller indices of some
jmportant planes in a cubic crystal. The set of planes that are equivalent
- symmetry are denoted by braces around the Miller indices (for example,
} for the cube faces).

R e A

(100)

2.5. Miller indices of some important planes in a cubic crystal

For the description of the hep (hexagonal close-packed) lattice. four axes
conventionally introduced. three of equal length a in the basal plane
ed at 120° to each other and one axis of length ¢ normal to this plane.
, four-index notation is employed for planes in the hep erystal. One can
that the three-index notation (hkl) corresponds to the four-index notation
—h—k,l), i.e., the three-index notation is obtained from the four-index
by simply omitting the third index. Note that the necessary requirement
e this rule is that. in the three-index notation, the axes in the basal plane
an angle of 120°. If the axes are chosen so that they make an angle of
then the corresponding four-index notation is (h. k — h, —k.1).
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2.2.2 Low-Miller-Index Planes of Some Important Crystals

Figures 2.6, 2.7, 2.8, and 2.9 show the atomic arrangement of the
low-index planes of fee (face-centered cubic)
(hexagonal closed-packed) and diamond ory
atoms are shown by white circles, the atoms in the deeper laye
cles: the deeper the layer, the darker the circles, The lay

from the topmost one, are indicated. The surface unit cells are outlined.

Fig. 2.7. Main low-index planes of a bee (body-ce

ntered cubic) erystal

2.2.3 High-Miller-Index Stepped Surfaces

If the crystal surface is misoriented from the low-index plane by

a small
angl

e, it can be described by the combination of three parameters: tilt angle,
tilt azimuth, and tilt zone. The tilt zone specifies the axis, around which the
rotation from the basal low-index plane to the tilted plane is conducted, the
azimuth specifies the direction of the rotation. and the tilt angle specifies the
angle of rotation (see Fig. 2.10).

On the atomic scale, such a surface, called a stepped or vicinal surface, is
composed conventionally of terraces separated by steps of monatomic height,

principal
. bee (body-centered cubic), hep
stals, respectively. The topmost
rs by gray cir-
er munbers, counted

-,

3

I ;"\.r I

oS _: :"\':t

2.2 Miller Indices for Crystal Planes 9

(100)

[i2i0)

Fig. 2.8. Main low-index planes of a hep (hexagonal t'l(:ﬁu-pa_\('kﬂfl} (‘T_\.’.‘it.llil. l-'.ur the
(1010) and (1011) planes, two possible types of surface termination are shown

diamond (1) (100)

Fig. 2.9. Main low-index planes of a diamond crystal

which may also have kinks in them (Fig. 2.11). Although this :-‘.urfa:fb (-;‘11{
be designated by its corresponding Miller indices, for example, {?'Ji}] .m.l
Fig. 2.11a, this notation does not indicate, at a glance, the geometric strue-
ture of the surface. A more vivid notation, devised by Lang, Joyner, and
Somorjai [2.1], gives the structure in the form of

H{htkt!‘) X (l:aksiﬁ) .

Here (hykily) and (hghkgls) are the Miller indices of the terrace 1.)1}1111‘ and step
plane, respectively, and n gives the number of atomic rows in the terrace



Fig. 2.10. The misoriented plane P

rotation around the ['ZOIIGI axis towards the [azimuth]
I'he vectors n and n denote the normals to the pla

fec [6(111)x(100)] or fec (755)

is obtained from the low-index plane P by

direction by the tjlt angle ¢,
nes P and P'. respectively

Fig. 2.11. (a) Stepped (755) and (b)

parallel to the step edge. Thus, the (7
6(111)x(100), as it consists of (111

monatomic steps of (100) orientatic

kinked (10 8 7) fee crystal faces

55) surface of the fee crystal is denoted
) terraces, 6 atoms wide, separated by
m (Fig. 2.11a). A stepped surface with

steps that are themselves high-Miller-index surfaces is called a kinked surface.

2.4 Notation for Surface Structures 11

- The fee (10 8 7), ie., 7(111)x(310) surface (Fig. 2.11b) furnishes an example
- of a kinked surface.

-:' 2.3 Indices of Directions

- To specify a certain direction in a crystal or in its surface, the direction
~ vector is expressed by indices in square brackets, [hkl). The values h, k., | are
the set of the smallest integers that have the ratio of the components of a
~ vector, referred to the axes of the crystal. Thus, the directions of the axes are
~ designated as [100], [010] and [001]. The negative component of the direction

vector is indicated by a minus placed above the index. [hkl]. The full set of
equivalent directions is denoted as (hkl). In cubic crystals, the direction [h ki
is normal to the plane (hkl) with the same indices: however, this does not
hold generally for other crystal types.

2.4 Notation for Surface Structures

’. The structure of the surface layer is not necessarily the same as that of

the underlying bulk planes even for clean surfaces (i.c., adsorbate-free). The

term superstructure is used conventionally to outline the specific structure
- of the top atomic layer (or a few layers). The notation used to describe a

superstructure ties its 2D lattice to that of the underlying substrate plane.
This is done conventionally in one of two ways.

~ 2.4.1 Matrix Notation

B The notation proposed by Park and Madden [2.2] resides in the determina-

tion of the matrix which establishes a relation between the basic translation
vectors of the surface under consideration and those of the ideal substrate
plane. That is, if a,, by and a, b are the basic translation vectors of the
superstructure and substrate planes, respectively. than they can be linked by
the equations

as = Ga+ Gb

bs = Ga1a + Gyab (2.4)
and the superstructure is specified by the matrix:
_ [ Gn G -
G = (sz Cm) (2.5)

The values of the matrix elements G;; determine whether the structure of the
surface is commensurate or incommensurate with respect to the substrate.
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Commensurability means that a rational relationship between the vectors aq.
b, and a, b can be established. If there is no rational relationship between the
unit vectors of the surface superstructure and the substrate, the superstruc-
ture is incommensurate. In other words, the incommensurate superstructure
is registered in-plane incoherently with the underlying substrate lattice.

2.4.2 Wood’s Notation

A more vivid but less versatile notation for surface superstructures was pro-
posed by Wood [2.3]. In this notation, the ratio of the lengths of the basic
translation vectors of the superstructure and those of the substrate plane
is specified. In addition, one indicates the angle of rotation (if any) which
makes the unit mesh of the surface to be aligned with the basic translation
vectors of the substrate. That is, if on a certain substrate surface X (hkl) a
superstructure is formed with the basic translation vectors of

las| = mlal, |ay| = n|b| (2.6)
and with the rotation angle of ¢°, then this surface structure is labeled as
X(hkl)m x n- R ¢° . (2.7)

If the unit mesh of the superstructure is aligned along the axes of the sub-
strate net, i.e., ¢ = 0, than the notation does not specify this zero angle
(for example, Si(111)7x7). A possible centering is expressed by the character
¢ (for example, Si(100)c(4x2)). If the superstructure is induced by the ad-
sorbate, this adsorbate is specified by its chemical symbol at the end of the
notation (for example, Si(111)4x 1-In). Sometimes, the number of adsorbate
atoms per unit cell is indicated (for example, Si(111)v3xv/3-R30°-3Bi).

Note that Wood’s notation is applicable only for the cases where the
included angles of the superstructure and substrate meshes are the same. This
requirement is matched when both meshes have the same Bravais lattice or
when one is rectangular and the other is square. But, in general, it does not
provide an adequate description for mixed symmetry meshes, in which case
the matrix notation should be used. Sometimes, however, the Wood 's-type
notation is used in the literature even for the cases where strictly speaking
it is not applicable. In these instances, the notation is included in quotes,
which indicates that it does not provide an exactly true relationship. The
clean Si(110) surface can serve as an example. The structure of this surface
22
71
often labeled as Si(110)“2 x 16 with quotes indicating that the unit mesh of
the “2x16” structure is non-rectangular in contrast to the rectangular (1x1)
mesh of the ideal Si(110) plane.

is properly described in matrix notation as Si( 110) 1 ) However, it is

2.4 Notation for Surface Structures 13

In conclusion of this section, let us consider some simple examples of nsing the
‘above nomenclature. Figures 2.12 and 2,13 display several superlattices on
- monﬂ and square lattices, respectively. The 2D lattice of the substrate
~ is shown by black dots and the lattice of the superstructure is shown by
empty circles. Note that we deal here with lattices only, not structures (see

~ Sect. 2.1).
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- Fig. 2.12. Wood's and matrix notation for some superlattices on a hexagonal 21
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2.13. Wood's and matrix notation for some superlattices on a square 21D

When the superstructure has a unit cell of the same size as the substrate
cell and parallel to it, i.e., the two lattices coincide (Fig. 2.12a and
- 2.13a), then the superstructure is designated as

T 10
1 %1 or (01).

unit cell of the superstructure is three times as long as the substrate
along one major crystallographic axis and has the same length along
r (Fig. 2.12b), the superstructure is designated as
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30
3% 1or (0 1) L

The qualitatively similar case with the 1x2 or ( (1} g) superstructure is shown
in Fig. 2.13h.

Figure 2.12¢ represents the 3x v/3- R30° superlattice, in which the basic
vectors are /3 times as long as those of the substrate, and the superstric-
ture mnit cell is rotated by 30° with respect to the substrate unit cell. The
superstructure can be designated in matrix notation as _f :)

The superlattice shown in Fig. 2.13¢ can be designated in one of three
possible ways. First. it can be denoted as ¢(2x2), since it may be viewed as a
(2x2) surface lattice with an extra lattice point in its center. If one considers
the primitive unit cell, the superstructure can be designated as

V2 x V2- R45° or ( . ]).

2.5 2D Reciprocal Lattice

The concept of the reciprocal lattice is very useful when one deals with strue-
tural investigations by means of diffraction techniques. This point will be
addressed in Chap. 4 devoted to diffraction methods of surface analysis. Here
only the basic definitions are introduced.

The 2D reciprocal lattice is a set of points whose coordinates are given by
the vectors

Gui = ha* + kb* . (2.8)

where h, k are integers (0, £1, £2, ... ) and the primitive translation vectors,
a* and b*, are related to the primitive translation vectors of the real-space
lattice, @ and b, as

$_ bxn . nxa
=24 I—a—x—b—l = &T f_a_x_f)_i (29}

where nis a unit vector normal to the surface.

From (2.9), one can casily distinguish the following properties of the vec-
tors a*, b*:

® The vectors a*, b* lie in the same surface plane as the real-space vectors
a,b.

® The vector a* is perpendicular to vector b: b is perpendicular to vector
a.

2.5 2D Reciprocal Lattice 15

e The lengths of vectors a*, b* are

% 2w

Ll b v g
o 2

it v o

Note that while the real-space vectors a, b have the dimensions of [length],
the reciprocal lattice vectors a*. b* have the dimensions of [1/length].

A
b
\ed Lk
a* - -
a ; b =
e ' E
n‘ i -—E—-—
o by _» b*
@ pNY/a* A \
P | ' a 3 *
c d 4

i i ors i shes » real-space and corresponding
Fig. 2.14. Translation vectors and unit meshes of the rea . : ®
mcgipmca] 2D Bravais lattices: (a) oblique lattice; (b) rectangular ]l}ltl(‘t‘. {the square
lattice is essentially the same with |a| = |b]); (¢) hexagonal lattice, (d) centered
rectangular lattice

Figure 2.14 shows the reciprocal lattices for the real-space '.?D Bravais
lattices. Here only the square lattice is omitted as it can l)u:-mml(lvm[ as a
simple specific case of a rectangular lattice with |a| = |bl. With reference to
Fig. 2.14 two general features can be seen:

e Each pair consisting of a real-space lattice and the corresy n?nrling reciprocal
lattice belong to the same type of Bravais lattice, i.e.. if the 1'(!&1-51»1{1.0
lattice is, say, hexagonal, than the reciprocal lattice is also h(’xagt.mal: if
the real-space lattice is centered rectangular, the corresponding reciprocal
lattice is also centered rectangular, ete.

e The angle between the reciprocal unit vectors £ (a”*. b*) is related to that
between the real-space unit vectors (a, b) by

L(a*,b*) = 180° — £(a.b). (2.10)

Thus, for rectangular and square lattices these angles are the same, 9[}"0,
but for the real-space and reciprocal hexagonal lattices the angle is 120
and 60°, respectively.
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2.6 Brillouin Zone

A Wigner-Seitz primitive cell (see Fig. 2.2) in the reciprocal lattice is referred
to as the first Brillouin zone. The concept of the Brillouin zone is of prime
importance for the analysis of the electronic energy-band structure of erystals,
As an example, Figures 2.15, 2.16, and 2.17 show the 2D Brillouin zones of
the main planes of the fee, bee and hep erystals, respectively, in relation
to the respective bulk Brillouin zones. Symmetry points and directions are
indicated using BSW (Bouckaert Smoluchowski Wigner) notation [2.4].

Fig. 2.15. Relation between the 2D Brillouin zones of the (100) and (111) planes

of the fce crystal and the bulk Brillouin zone. Note that the reciprocal lattice of
the fee lattice is the bee lattice

bece

Fig. 2.16. Relation between the 2D Brillouin zones of the (100) and (111) planes

of the bee erystal and the bulk Brillouin zone. Note that the reciprocal lattice of
the bee lattice is the fee lattice

Problems 17
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2.17. Relation between the 2D Brillouin zone of the (0001) plane of the hep
al and the bulk Brillouin zone

‘oblems

Do the points shown in the following figure form a 2D lattice? If “yes”,
show its primitive translation vectors. If “no”, provide the arguments.

.:_.2 Show the (133), (331), and (113) planes in the simple cubic crystal. Are
- they equivalent planes?

. Specify the type of the 2D Bravais lattice of the (111) plane of the fee
(face-centered cubic) crystal. What is the period of this 2D lattice. if the
edge of the fee cell is a?

L Prove that the matrix notation for the V3xv3 R30° superstructure on

the 2D hexagonal lattice is ., when the basic translation vectors

21
=
- make an angle of 120°. How will the matrix notation change, if one

~ chooses basic vectors which make an angle of 60°?
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2.5 Nickel adsorption on the Si(11 1) surface (hexagonal lattice) induces a
commensurate superstructure v7xv7-R ¢°. Find the value of the angle
¥ and construet the 2D lattice of this superstructure superposed on the
Ix1 lattice. How is this superstructure designated in matrix notation?

Further Reading

1. C. Kittel: Introduction to Solid State Physics. Tth edu. (John Wiley. New
York 1996) Chapter |

2. G.A. Somorjai: Introduction to Surface themastry and Catalysis (John
Wiley, New York 1994) Chapter 2
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- 3. Experimental Background

_"Tile purpose of this chapter is to familiarize the reader with the experimental
- background of surface science. First, the necessity for usage of UHV is justi-
~ fied. Then, vacuum concepts are briefly considered before introducing UHV
~ technology. Finally, the main experimental techniques for the preparation of
- atomically clean surfaces and the deposition of materials are discussed.

81 Why Ultra-High Vacuum?

'_.'; The characterization of a solid surface on an atomic level implies unam-
~ biguously that the surface composition remains essentially unchanged over
3 the duration of an experiment. This means that the rate of arrival of reac-
- tion species from the gas environment should be low, or, in other words, the
~experiments should be conducted in vacuum. The concept of vacuum is nor-
- mally understood in terms of molecular density, mean free path and the time
- constant to form a monolayer. According to the kinetic theory of gases, the
- flux 7 of molecules impinging on the surface from the environment is given
by the expression

' | " 3.1

_ V2rmkp1 : d)

._ : ~ Here p is the pressure, m is the mass of the molecule, kg is Boltzmann’s
- constant, and T'is the temperature. Then, one can easily obtain

n= Ic%' molecular density. (3.2)

A= #, mean free path, (3.3)

= ;?E_ = E—J?W’ time constant to form a monolayer .  (3.4)
pre hc;‘; is the molecular cross-section, and ny, is the number of atoms in a
110 .

Table 3.1 illustrates how these values vary with the pressure. What can
learned from the table concerning the vacuum requirements for surface



